Building Blocks of Integrated-Circuit Amplifiers

Size: px
Start display at page:

Download "Building Blocks of Integrated-Circuit Amplifiers"

Transcription

1 Building Blocks of ntegrated-circuit Amplifiers 1

2 The Basic Gain Cell CS and CE Amplifiers with Current Source Loads Current-source- or active-loaded CS amplifier Rin A o R A o g r r o g r 0 m o m o Current-source- or active-loaded CE amplifier Rin r A o g r m o R o A r o g r 0 m o

3 The Basic Gain Cell ntrinsic Gain The max. gain obtainable in a CS or CE amplifier For the BJT C, VA gm ro V A 0 For the MOSFET T g r m o V V A T C (00V/V~5000V/V) D g C W / L V / m n ox D OV r o V A D V' A D L V V' V' C A A A n ox A0 V OV / V OV D L WL (0V/V~40V/V) 3

4 The Basic Gain Cell EX μm technology NMOS with L=0.4μm, W=4μm, k n =67μA/V, and V A =10V/μm. BJT with β=100 and V A =10V. Assume D = C = 100μA. Compare NMOS with BJT. Neglecting the Early effect, for the NMOS For the BJT, 4

5 The Basic Gain Cell Effect of the Output Resistance of the Current Source Loads Current-source load can be implemented using a PMOS. Voltage gain f r o = r o1, 5

6 The Basic Gain Cell Practical implementation of the active-loaded CS amplifier 6

7 The Basic Gain Cell EX 6.3 V DD =3V, V tn = V tp =0.6V, k n =00A/V, k p =65A/V. L=0.4m, W=4m, V An =0V, V ap =10V, REF =100A. A v=? W g k r ' m1 n REF L 1 o1 VAn 0V 00k 0.1mA D mA/V 0.4 r o VAp 10V 100k 0.1mA D m1( o1 o) 0.63(mA/V) (00 100)(k ) 4V/V A g r r V SG of Q and Q3 corresponding to D3 = REF =100A 1 ' W V D k p VSG Vtp 1 L 3 V V OV VOV VOV 3 V V OV 3 OV V SD Ap V V SG 7

8 The Basic Gain Cell VOA VDD VOV 3.47 V Expression for v O vs. v i 1 k i D1 D W O V 1 V An ' n tn L 1 1 ' W VDD O k p VSG Vtp 1 L V Ap O O O O Substituting v O = V OA =.47V, V A =0.88V. Substituting V OB = V B V tn, V B =0.93V, V OB =0.33V V V 0.05V B A V V.14V O OB OA O V/V 0.05 t is very close to A v = -4, indicating that segment is quite linear. 8

9 The Basic Gain Cell ncreasing the Gain of the Basic Cell Current buffer between the load and the drain of Q1 increasing the output resistance. 9

10 The Cascode Amplifier Cascoding - CS(CE)+CG(CB) high trans-conductance, high output resistance, wide bandwidth 10

11 The Cascode Amplifier MOS Cascode n Fig. (c), n Fig. (d), Since g m 1/r o1, 1/r o, At the d node, 11

12 The Cascode Amplifier Thus, Output resistance Voltage at the source of Q 1

13 The Cascode Amplifier Voltage Gain For the case and, Cascoding to raise the output resistance of the current source load 13

14 The Cascode Amplifier Combining the cascode amplifier with a cascode current source Thus, For the case in which all transistor are identical, 14

15 The Cascode Amplifier Ex 6.4 Cascode current source with =100mA and R o =500kΩ. Assume 0.18-μm technology CMOS with V DD =1.8V, V tp = 0.5V, k p =90mA/V and V A = 10V/μm. Use V OV =0.3V. Output resistance For the largest signal swing, use the min. voltage across Q4 Assuming Q3 and Q4 are identical, 15

16 The Cascode Amplifier Distribution of Voltage Gain in a Cascode Amplifier Recalling and, 16

17 The Cascode Amplifier R d1 = r o1 R in, where R in is the input resistance of Q. Since g m r o 1, Total resistance at the drain of Q1 Voltage gain of Q1 mpedance transformation of CG amplifier 17

18 The Cascode Amplifier Table 6.1 Gain Distribution in the MOS Cascode Amplifier for Various Values of R L * * For the case r o1 = r o = r o 18

19 The Cascode Amplifier Output Resistance of a Source-Degenerated CS Amplifier Source-degeneration resistance reducing the effective transconductance to g m /(1 + g m R s ) The output resistance expression of the cascode can be used to find the output resistance of a source-degenerated common-source amplifier. Here, a useful interpretation of the result is that R s increases the output resistance by the factor (1 + g m R s ). Since g m r o 1, 19

20 The Cascode Amplifier Double Cascoding Higher output resistance and higher gain For the case of identical transistors, R ( g r ) r o m o o A ( g r ) A v m o Folded Cascode CS NMOS + CG PMOS 0

21 The Cascode Amplifier BJT Cascode BJT Cascode amplifier with an ideal current-source load. n Fig (c), 1

22 The Cascode Amplifier Node equation for (c 1, e ), Since g m 1/ r π, 1/ r o1 and 1/ r o, Node equation for c, Thus,

23 The Cascode Amplifier We set v i = 0, Voltage at the emitter node, Loop eq. around the c-e-ground loop Substituting for v π, Since g m ( r o1 r π ) 1, The maximum possible R o 3

24 The Cascode Amplifier Open ckt. Voltage gain, For the case of identical transistors, When r o r π, the maximum possible gain magnitude, the current source load must also be cascoded. 4

25 The Cascode Amplifier Output Resistance of an Emitter-Degenerated CE Amplifier Output resistance, Since g m r o 1, mpedance transformation of CB amplifier. 5

26 The Cascode Amplifier BiCMOS Cascodes nfinite input resistance and high output resistance. 6

27 C Biasing Current Sources and Current Mirrors Basic MOSFET Current Source Diode connected transistor forcing it to operate in the saturation mode. 1 W k V V ' D1 n GS tn L 1 D1 REF V DD V Assuming Q is operating in saturation, R GS 1 W k V V ' O D n GS tn L REF W / L / 1 O W L n the case of identical transistors, O = REF current mirror 7

28 C Biasing Current Sources and Current Mirrors Effect of V O on O To ensure that Q is saturated, V V V V O GS t O V OV Output resistance, R V O o ro O V A Output current considering the Early effect, O / O REF 1 W / L VA W L V V 1 O GS 8

29 C Biasing Current Sources and Current Mirrors EX 6.5 V DD =3V and REF =100μA, design the current source to obtain O of 100μA. Find R if Q1and Q are matched and L=1μm, W=10μm, V t =0.7V, and k n =00μA/V. What is the lowest value of V O? Assuming V A =0V/μm, find R O and the change in output current resulting from a +1V change in V O. 1 W k V ' D1 REF n OV L VOV V VGS Vt VOV V VDD VGS 31 R 0k 0.1mA REF V OV V Omin V OV 0.3 V VA V R O 0V ro 0.M 100A VO 1V O 5A r 0.M o 9

30 C Biasing Current Sources and Current Mirrors MOS Current-Steering Circuits Current mirrors can be used to implement a current-steering function. 3 REF REF W / L W / L 1 W / L 3 W / L To operate in the saturation region, V, V V V V D D3 SS GS1 tn 3 is fed to the input side of a current mirror formed by Q4 and Q W / L 5 W / L To keep Q5 in saturation, V V V D5 DD OV

31 C Biasing Current Sources and Current Mirrors BJT Circuits BJT current mirror i B 0(finite β) n case of sufficiently high β, C1 = REF. f Q is matched to Q1, O REF The area of the EBJ of Q is m times that of Q. O m REF O Area of EBJ of Q Area of EBJ of Q REF S S1 1 For the finite β, REF C C / C 1 O REF C C For a nominal current transfer ratio m ( S = m S1 ) O REF m m

32 C Biasing Current Sources and Current Mirrors Output resistance R V O o ro O V A O O will be at its nominal value only when Q has the same V CE as Q1 (V O =V BE ). Taking both the finite β and the finite R o into account, O m V V 1 O BE REF 1 ( m1) VA Simple current source REF V CC V R BE O REF 1 / 1 VO V BE VA R o V A ro O V A REF 3

33 C Biasing Current Sources and Current Mirrors Current steering REF V V V V R CC EE EB1 BE 1 = REF, 3 = REF (double EBJ area) = REF, 4 =3 REF (three times EBJ area) 33

34 Current-Mirror Circuits with mproved Performance Current mirrors biasing and active load. Two performance parameters the accuracy of the transfer ratio, the output resistance. Cascode MOS Mirrors Assuming the signal voltages at the gates of Q and Q3 are zero, R r 1 g g r r o o3 m3 mb3 o3 o g r r m3 o3 o Bipolar Mirror with Base-Current compensation REF C 1 1 O C O REF 1 Connecting node x to V CC and R instead of REF, REF V V V R CC BE1 BE 3 34

35 Current-Mirror Circuits with mproved Performance Wilson Current Mirror O REF 1 1 C C Output resistance R o r o / 35

36 Current-Mirror Circuits with mproved Performance Wilson MOS Mirror Output resistance R r g r o o3 m3 o g r r m3 o3 o 36

37 Current-Mirror Circuits with mproved Performance Widlar Current Source Neglecting base currents, V V V REF BE1 T ln S V O BE T ln S REF VBE1VBE VT ln O V V R BE1 BE O E R O E T REF V ln O Assuming the signal voltages at the base of Q are zero, R 1g R r r o m E o 37

38 Current-Mirror Circuits with mproved Performance Ex 6.14 O =10A. ( REF =1mA at V BE =0.7V) For the basic current-source circuit, V R R BE1 1 10μA 0.7 VT ln 0.58 V 1mA k 0.01 For the Widlar current source k 1 1mA R3 0.05ln 10μA R3 11.5k 38

39 Some Useful Transistor Pairings CC-CE, CD-CS, and CD-CE Configuratiosn - Wide bandwidth, high R in 39

40 Some Useful Transistor Pairings Ex = = 1mA, =100. R sig =4k, R L =4k. G v =? (gnore r o ) gm R 40mA/V re 5 r 100.5k g 40 m in r.5k 1 R r R in 1 e1 in k Vb1 Rin V/V V R R 55 4 sig in sig Vb Rin V/V V R r V b1 in e1 o gmrl V b V/V For the CE amplifier, G v Vo V/V V sig * CC-CE configuration.5 times of G v 40

41 Some Useful Transistor Pairings Darling Configuration nput resistance 1 1 R r r R in 1 e1 e E - Output resistance R R // r out E e r R e1 sig Voltage gain Vo RE Vsig RE re re 1 Rsig

42 Some Useful Transistor Pairings CC-CB and CD-CG Configurations - Wide bandwidth, low-frequency gain equal to the CB with high input resistance. 4

43 Some Useful Transistor Pairings Ex 6.8 Find R in, v o /v i, and v o /v sig. (Neglect r o ) - nput resistance - Overall voltage gain Rin 1 1 r - Voltage gain vo RL v r i e e v R R v R R r o in L sig in sig e 43

Solid State Devices & Circuits. 18. Advanced Techniques

Solid State Devices & Circuits. 18. Advanced Techniques ECE 442 Solid State Devices & Circuits 18. Advanced Techniques Jose E. Schutt-Aine Electrical l&c Computer Engineering i University of Illinois jschutt@emlab.uiuc.edu 1 Darlington Configuration - Popular

More information

Building Blocks of Integrated-Circuit Amplifiers

Building Blocks of Integrated-Circuit Amplifiers CHAPTER 7 Building Blocks of Integrated-Circuit Amplifiers Introduction 7. 493 IC Design Philosophy 7. The Basic Gain Cell 494 495 7.3 The Cascode Amplifier 506 7.4 IC Biasing Current Sources, Current

More information

Multistage Amplifiers

Multistage Amplifiers Multistage Amplifiers Single-stage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)

More information

Chapter 7 Building Blocks of Integrated Circuit Amplifiers: Part D: Advanced Current Mirrors

Chapter 7 Building Blocks of Integrated Circuit Amplifiers: Part D: Advanced Current Mirrors 1 Chapter 7 Building Blocks of Integrated Circuit Amplifiers: Part D: Advanced Current Mirrors Current Mirror Example 2 Two Stage Op Amp (MOSFET) Current Mirror Example Three Stage 741 Opamp (BJT) 3 4

More information

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor Course Number Section Electronics ELEC 311 BB Examination Date Time # of pages Final August 12, 2005 Three hours 3 nstructor Dr. R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

More information

CS and CE amplifiers with loads:

CS and CE amplifiers with loads: CS and CE amplifiers with loads: The Common-Source Circuit The most basic IC MOS amplifier is shown in fig.(1). The source of MOS transistor is grounded, also the drain resistor RD replaced by a constant-current

More information

Unit 3: Integrated-circuit amplifiers (contd.)

Unit 3: Integrated-circuit amplifiers (contd.) Unit 3: Integrated-circuit amplifiers (contd.) COMMON-SOURCE AND COMMON-EMITTER AMPLIFIERS The Common-Source Circuit The most basic IC MOS amplifier is shown in fig.(1). The source of MOS transistor is

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

Current Mirrors. Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4-1

Current Mirrors. Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4-1 Current Mirrors Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4- 郭泰豪, Analog C Design, 08 { Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4- 郭泰豪, Analog C Design, 08 { Current Source and Sink Symbol

More information

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers ECE 442 Solid State Devices & Circuits 15. Differential Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 442 Jose Schutt Aine 1 Background

More information

ECE315 / ECE515 Lecture 8 Date:

ECE315 / ECE515 Lecture 8 Date: ECE35 / ECE55 Lecture 8 Date: 05.09.06 CS Amplifier with Constant Current Source Current Steering Circuits CS Stage Followed by CG Stage Cascode as Current Source Cascode as Amplifier ECE35 / ECE55 CS

More information

ECE315 / ECE515 Lecture 7 Date:

ECE315 / ECE515 Lecture 7 Date: Lecture 7 ate: 01.09.2016 CG Amplifier Examples Biasing in MOS Amplifier Circuits Common Gate (CG) Amplifier CG Amplifier- nput is applied at the Source and the output is sensed at the rain. The Gate terminal

More information

V o. ECE2280 Homework #1 Fall Use: ignore r o, V BE =0.7, β=100 V I = sin(20t) For DC analysis, assume that the capacitors are open

V o. ECE2280 Homework #1 Fall Use: ignore r o, V BE =0.7, β=100 V I = sin(20t) For DC analysis, assume that the capacitors are open ECE2280 Homework #1 Fall 2011 1. Use: ignore r o, V BE =0.7, β=100 V I = 200.001sin(20t) For DC analysis, assume that the capacitors are open (a) Solve for the DC currents: a. I B b. I E c. I C (b) Solve

More information

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits Microelectronic Circuits II Ch 0 : Operational-Amplifier Circuits 0. The Two-stage CMOS Op Amp 0.2 The Folded-Cascode CMOS Op Amp CNU EE 0.- Operational-Amplifier Introduction - Analog ICs : operational

More information

ES 330 Electronics II Homework # 6 Soltuions (Fall 2016 Due Wednesday, October 26, 2016)

ES 330 Electronics II Homework # 6 Soltuions (Fall 2016 Due Wednesday, October 26, 2016) Page1 Name Solutions ES 330 Electronics Homework # 6 Soltuions (Fall 016 ue Wednesday, October 6, 016) Problem 1 (18 points) You are given a common-emitter BJT and a common-source MOSFET (n-channel). Fill

More information

Lecture 34: Designing amplifiers, biasing, frequency response. Context

Lecture 34: Designing amplifiers, biasing, frequency response. Context Lecture 34: Designing amplifiers, biasing, frequency response Prof J. S. Smith Context We will figure out more of the design parameters for the amplifier we looked at in the last lecture, and then we will

More information

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 11-1 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of

More information

Lecture 21: Voltage/Current Buffer Freq Response

Lecture 21: Voltage/Current Buffer Freq Response Lecture 21: Voltage/Current Buffer Freq Response Prof. Niknejad Lecture Outline Last Time: Frequency Response of Voltage Buffer Frequency Response of Current Buffer Current Mirrors Biasing Schemes Detailed

More information

COMPARISON OF THE MOSFET AND THE BJT:

COMPARISON OF THE MOSFET AND THE BJT: COMPARISON OF THE MOSFET AND THE BJT: In this section we present a comparison of the characteristics of the two major electronic devices: the MOSFET and the BJT. To facilitate this comparison, typical

More information

ECE 546 Lecture 12 Integrated Circuits

ECE 546 Lecture 12 Integrated Circuits ECE 546 Lecture 12 Integrated Circuits Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Integrated Circuits IC Requirements

More information

Chapter 4 Single-stage MOS amplifiers

Chapter 4 Single-stage MOS amplifiers Chapter 4 Single-stage MOS amplifiers ELEC-H402/CH4: Single-stage MOS amplifiers 1 Single-stage MOS amplifiers NMOS as an amplifier: example of common-source circuit NMOS amplifier example Introduction

More information

CMOS Cascode Transconductance Amplifier

CMOS Cascode Transconductance Amplifier CMOS Cascode Transconductance Amplifier Basic topology. 5 V I SUP v s V G2 M 2 iout C L v OUT Device Data V Tn = 1 V V Tp = 1 V µ n C ox = 50 µa/v 2 µ p C ox = 25 µa/v 2 λ n = 0.05 V 1 λ p = 0.02 V 1 @

More information

Reading. Lecture 33: Context. Lecture Outline. Chapter 9, multi-stage amplifiers. Prof. J. S. Smith

Reading. Lecture 33: Context. Lecture Outline. Chapter 9, multi-stage amplifiers. Prof. J. S. Smith eading Lecture 33: Chapter 9, multi-stage amplifiers Prof J. S. Smith Context Lecture Outline We are continuing to review some of the building blocks for multi-stage amplifiers, including current sources

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

Chapter 8 Differential and Multistage Amplifiers

Chapter 8 Differential and Multistage Amplifiers 1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.

More information

QUESTION BANK for Analog Electronics 4EC111 *

QUESTION BANK for Analog Electronics 4EC111 * OpenStax-CNX module: m54983 1 QUESTION BANK for Analog Electronics 4EC111 * Bijay_Kumar Sharma This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract

More information

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT) Course Outline 1. Chapter 1: Signals and Amplifiers 1 2. Chapter 3: Semiconductors 3. Chapter 4: Diodes 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

More information

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs Integrated Circuit Amplifiers Comparison of MOSFETs and BJTs 17 Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 )

More information

Lecture 33: Context. Prof. J. S. Smith

Lecture 33: Context. Prof. J. S. Smith Lecture 33: Prof J. S. Smith Context We are continuing to review some of the building blocks for multi-stage amplifiers, including current sources and cascode connected devices, and we will also look at

More information

F7 Transistor Amplifiers

F7 Transistor Amplifiers Lars Ohlsson 2018-09-25 F7 Transistor Amplifiers Outline Transfer characteristics Small signal operation and models Basic configurations Common source (CS) CS/CE w/ source/ emitter degeneration resistance

More information

Current Mirrors and Ac0ve Loads

Current Mirrors and Ac0ve Loads Current Mirrors and Ac0ve Loads Simple Bipolar Current Mirror The two V BE s are equal. The currents are equal to a first approxima0on. However There is a systema0c error due to base current. The two V

More information

Current Mirrors & Current steering Circuits:

Current Mirrors & Current steering Circuits: Current Mirrors & Current steering Circuits: MOS Current Steering Circuits: Once a constant current is generated, it can be replicated to provide DC bias currents for the various amplifier stages in the

More information

EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7

EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7 Issued: Friday, Oct. 16, 2015 PROBLEM SET #7 Due (at 8 a.m.): Monday, Oct. 26, 2015, in the EE 140/240A HW box near 125 Cory. 1. A design error has resulted in a mismatch in the circuit of Fig. PS7-1.

More information

Lecture 030 ECE4430 Review III (1/9/04) Page 030-1

Lecture 030 ECE4430 Review III (1/9/04) Page 030-1 Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material

More information

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S. CE Frequency Response The exact analysis is worked out on pp. 639-64 of H&S. The Miller Approximation Therefore, we consider the effect of C µ on the input node only V ---------- out V s = r g π m ------------------

More information

Lecture 21 - Multistage Amplifiers (I) Multistage Amplifiers. November 22, 2005

Lecture 21 - Multistage Amplifiers (I) Multistage Amplifiers. November 22, 2005 6.02 Microelectronic Devices and Circuits Fall 2005 Lecture 2 Lecture 2 Multistage Amplifiers (I) Multistage Amplifiers November 22, 2005 Contents:. Introduction 2. CMOS multistage voltage amplifier 3.

More information

L It indicates that g m is proportional to the k, W/L ratio and ( VGS Vt However, a large V GS reduces the allowable signal swing at the drain.

L It indicates that g m is proportional to the k, W/L ratio and ( VGS Vt However, a large V GS reduces the allowable signal swing at the drain. Field-Effect Transistors (FETs) 3.9 MOSFET as an Aplifier Sall-signal equivalent circuit odels Discussions about the MOSFET transconductance W Forula 1: g = k n ( VGS Vt ) L It indicates that g is proportional

More information

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of MOS Amplifiers Common

More information

Lecture 27: MOSFET Circuits at DC.

Lecture 27: MOSFET Circuits at DC. Whites, EE 30 Lecture 7 Page 1 of 8 Lecture 7: MOSFET Circuits at C. We will illustrate the C analysis of MOSFET circuits through a number of examples in this lecture. Example N7.1 (similar to text Example

More information

EECS3611 Analog Integrated Circuit Design. Lecture 3. Current Source and Current Mirror

EECS3611 Analog Integrated Circuit Design. Lecture 3. Current Source and Current Mirror EECS3611 Analog ntegrated Circuit Design Lecture 3 Current Source and Current Mirror ntroduction Before any device can be used in any application, it has to be properly biased so that small signal AC parameters

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

EE105 Fall 2015 Microelectronic Devices and Circuits. Basic Single-Transistor Amplifier Configurations

EE105 Fall 2015 Microelectronic Devices and Circuits. Basic Single-Transistor Amplifier Configurations EE05 Fall 205 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH 2- MOSFET Basic Single-Transistor Amplifier Configurations BJT 2-2 Two-Port Model of Amplifiers

More information

Electronics I ELEC 311/1 BB. Final August 14, hours 6

Electronics I ELEC 311/1 BB. Final August 14, hours 6 Course Number Section Electronics I ELEC 311/1 BB Examination Date Time # of pages Final August 14, 2009 3 hours 6 Instructor(s) Dr.R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages Outline Common drain amplifier Common gate amplifier Reading Assignment: Howe and Sodini; Chapter 8, Sections 8.78.9 6.02 Spring 2009 . Common

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

Operational Amplifier (OPAMP)

Operational Amplifier (OPAMP) Operational Amplifier (OPAMP) Analog Cs nclude Operational Amplifier Filters Analog-to-Digital Converter (ADC) Digital-to-Analog Converter (DAC) Analog Modulator Phase-Locked Loop Analog Multiplier Others

More information

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016)

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Page1 Name ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Problem 1 (15 points) You are given an NMOS amplifier with drain load resistor R D = 20 k. The DC voltage (V RD

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers Chapter 4 CMOS Cascode Amplifiers 4.1 Introduction A single stage CMOS amplifier cannot give desired dc voltage gain, output resistance and transconductance. The voltage gain can be made to attain higher

More information

Amplifier Design Using an Active Load

Amplifier Design Using an Active Load THE PENNSYLVANIA STATE UNIVERSITY EE 310 : ELECTRONIC CIRCUIT DESIGN I Amplifier Design Using an Active Load William David Stranburg 1 Introduction: In Part 1 of this lab, we used an NMOS amplifying transistor

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

SKEL 4283 Analog CMOS IC Design Current Mirrors

SKEL 4283 Analog CMOS IC Design Current Mirrors SKEL 4283 Analog CMOS IC Design Current Mirrors Dr. Nasir Shaikh Husin Faculty of Electrical Engineering Universiti Teknologi Malaysia Current Mirrors 1 Objectives Introduce and characterize the current

More information

LECTURE 19 DIFFERENTIAL AMPLIFIER

LECTURE 19 DIFFERENTIAL AMPLIFIER Lecture 19 Differential Amplifier (6/4/14) Page 191 LECTURE 19 DIFFERENTIAL AMPLIFIER LECTURE ORGANIZATION Outline Characterization of a differential amplifier Differential amplifier with a current mirror

More information

Microelectronic Devices and Circuits- EECS105 Final Exam

Microelectronic Devices and Circuits- EECS105 Final Exam EECS105 1 of 13 Fall 2000 Microelectronic Devices and Circuits- EECS105 Final Exam Wednesday, December 13, 2000 Costas J. Spanos University of California at Berkeley College of Engineering Department of

More information

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Objective To analyze and design single-stage common source amplifiers.

More information

Lab 4: Supply Independent Current Source Design

Lab 4: Supply Independent Current Source Design Lab 4: Supply Independent Current Source Design Curtis Mayberry EE435 In this lab a current mirror is designed that is robust against variations in the supply voltage. The current mirror is required to

More information

The Differential Amplifier. BJT Differential Pair

The Differential Amplifier. BJT Differential Pair 1 The Differential Amplifier Asst. Prof. MONTREE SRPRUCHYANUN, D. Eng. Dept. of Teacher Training in Electrical Engineering, Faculty of Technical Education King Mongkut s nstitute of Technology North Bangkok

More information

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN Name: EXAM #3 Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit. Data: Use the following data in all

More information

Voltage Biasing Considerations (From the CS atom toward the differential pair atom) Claudio Talarico, Gonzaga University

Voltage Biasing Considerations (From the CS atom toward the differential pair atom) Claudio Talarico, Gonzaga University Voltage Biasing Considerations (From the CS atom toward the differential pair atom) Claudio Talarico, Gonzaga University Voltage Biasing Considerations In addition to bias currents, building a complete

More information

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

More information

Pg: 1 VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 Department of Electronics & Communication Engineering Regulation: 2013 Acadamic Year : 2015 2016 EC6304 Electronic Circuits I Question

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor Neamen Microelectronics, 4e Chapter 3-1 In this chapter, we will: Study and understand the operation

More information

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB Department of Electronic ELEC 5808 (ELG 6388) Signal Processing Electronics Final Examination Dec 14th, 2010 5:30PM - 7:30PM R. Mason answer all questions one 8.5 x 11 crib sheets allowed 1. (5 points)

More information

C H A P T E R 5. Amplifier Design

C H A P T E R 5. Amplifier Design C H A P T E 5 Amplifier Design The Common-Source Amplifier v 0 = r ( g mvgs )( D 0 ) A v0 = g m r ( D 0 ) Performing the analysis directly on the circuit diagram with the MOSFET model used implicitly.

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

Applied Electronics II

Applied Electronics II Applied Electronics II Chapter 2: Differential Amplifier School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa University Daniel D./Abel G. April 4, 2016 Chapter

More information

1. The fundamental current mirror with MOS transistors

1. The fundamental current mirror with MOS transistors 1. The fundamental current mirror with MOS transistors The test schematic (ogl-simpla-mos.asc): 1. Size the transistors in the mirror for a current gain equal to unity, a 30μA input current and V DSat

More information

Lecture 14. FET Current and Voltage Sources and Current Mirrors. The Building Blocks of Analog Circuits - IV

Lecture 14. FET Current and Voltage Sources and Current Mirrors. The Building Blocks of Analog Circuits - IV Lecture 4 FET Current and oltage s and Current Mirrors The Building Blocks of Analog Circuits n this lecture you will learn: Current and voltage sources using FETs FET current mirrors Cascode current mirror

More information

SAMPLE FINAL EXAMINATION FALL TERM

SAMPLE FINAL EXAMINATION FALL TERM ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM 2001-2002 NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need

More information

Common Gate Stage Cascode Stage. Claudio Talarico, Gonzaga University

Common Gate Stage Cascode Stage. Claudio Talarico, Gonzaga University Common Gate Stage Cascode Stage Claudio Talarico, Gonzaga University Common Gate Stage The overdrive due to V B must be consistent with the current pulled by the DC source I B careful with signs: v gs

More information

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Device Structure N-Channel MOSFET Providing electrons Pulling electrons (makes current flow) + + + Apply positive voltage to gate: Drives away

More information

CHAPTER 8 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

CHAPTER 8 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS CHAPTER 8 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS Chapter Outline 8.1 The CMOS Differential Pair 8. Small-Signal Operations of the MOS Differential Pair 8.3 The BJT Differential Pair 8.4 Other Non-ideal

More information

Lecture 18: Common Emitter Amplifier.

Lecture 18: Common Emitter Amplifier. Whites, EE 320 Lecture 18 Page 1 of 8 Lecture 18: Common Emitter Amplifier. We will now begin the analysis of the three basic types of linear BJT small-signal amplifiers: 1. Common emitter (CE) 2. Common

More information

Lecture 34: MOSFET Common Gate Amplifier.

Lecture 34: MOSFET Common Gate Amplifier. Whites, EE 320 Lecture 34 Page 1 of 10 Lecture 34: MOSFET Coon Gate Aplifier. We ll continue our discussion of discrete MOSFET aplifiers we began with the coon source aplifier in Lectures 31 and 32. Here

More information

Week 12: Output Stages, Frequency Response

Week 12: Output Stages, Frequency Response ELE 2110A Electronic Circuits Week 12: Output Stages, Frequency esponse (2 hours only) Lecture 12-1 Output Stages Topics to cover Amplifier Frequency esponse eading Assignment: Chap 15.3, 16.1 of Jaeger

More information

DC Coupling: General Trends

DC Coupling: General Trends DC Coupling: General Trends * Goal: want both input and output to be centered at halfway between the positive and negative supplies (or ground, for a single supply) -- in order to have maximum possible

More information

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III Lecture 3 Biasing and Loading Single Stage FET Amplifiers The Building Blocks of Analog Circuits III In this lecture you will learn: Current biasing of circuits Current sources and sinks for CS, CG, and

More information

Single-Stage Integrated- Circuit Amplifiers

Single-Stage Integrated- Circuit Amplifiers Single-Stage Integrated- Circuit Amplifiers Outline Comparison between the MOS and the BJT From discrete circuit to integrated circuit - Philosophy, Biasing, etc. Frequency response The Common-Source and

More information

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages. November 17, 2005

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages. November 17, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 20 1 Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages November 17, 2005 Contents: 1. Common source amplifier (cont.) 2. Common drain

More information

4.5 Biasing in MOS Amplifier Circuits

4.5 Biasing in MOS Amplifier Circuits 4.5 Biasing in MOS Amplifier Circuits Biasing: establishing an appropriate DC operating point for the MOSFET - A fundamental step in the design of a MOSFET amplifier circuit An appropriate DC operating

More information

INTRODUCTION TO ELECTRONICS EHB 222E

INTRODUCTION TO ELECTRONICS EHB 222E INTRODUCTION TO ELECTRONICS EHB 222E MOS Field Effect Transistors (MOSFETS II) MOSFETS 1/ INTRODUCTION TO ELECTRONICS 1 MOSFETS Amplifiers Cut off when v GS < V t v DS decreases starting point A, once

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

MOSFET Amplifier Configuration. MOSFET Amplifier Configuration

MOSFET Amplifier Configuration. MOSFET Amplifier Configuration MOSFET Amplifier Configuration Single stage The signal is fed to the amplifier represented as sig with an internal resistance sig. MOSFET is represented by its small signal model. Generally interested

More information

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Problem 1. Consider the following circuit, where a saw-tooth voltage is applied

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

Analog Integrated Circuit Configurations

Analog Integrated Circuit Configurations Analog Integrated Circuit Configurations Basic stages: differential pairs, current biasing, mirrors, etc. Approximate analysis for initial design MOSFET and Bipolar circuits Basic Current Bias Sources

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors LECTURE NO. - 41 Field Effect Transistors www.mycsvtunotes.in JFET MOSFET CMOS Field Effect transistors - FETs First, why are we using still another transistor? BJTs had a small

More information

6.012 Microelectronic Devices and Circuits

6.012 Microelectronic Devices and Circuits Page 1 of 13 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Microelectronic Devices and Circuits Final Eam Closed Book: Formula sheet provided;

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #4 Lab Report MOSFET Amplifiers and Current Mirrors Submission Date: 07/03/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

ECE315 / ECE515 Lecture 9 Date:

ECE315 / ECE515 Lecture 9 Date: Lecture 9 Date: 03.09.2015 Biasing in MOS Amplifier Circuits Biasing using Single Power Supply The general form of a single-supply MOSFET amplifier biasing circuit is: We typically attempt to satisfy three

More information

ECE 255, MOSFET Basic Configurations

ECE 255, MOSFET Basic Configurations ECE 255, MOSFET Basic Configurations 8 March 2018 In this lecture, we will go back to Section 7.3, and the basic configurations of MOSFET amplifiers will be studied similar to that of BJT. Previously,

More information

F9 Differential and Multistage Amplifiers

F9 Differential and Multistage Amplifiers Lars Ohlsson 018-10-0 F9 Differential and Multistage Amplifiers Outline MOS differential pair Common mode signal operation Differential mode signal operation Large signal operation Small signal operation

More information

Chapter 10 Differential Amplifiers

Chapter 10 Differential Amplifiers Chapter 10 Differential Amplifiers 10.1 General Considerations 10.2 Bipolar Differential Pair 10.3 MOS Differential Pair 10.4 Cascode Differential Amplifiers 10.5 Common-Mode Rejection 10.6 Differential

More information

EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits

EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits Objective This experiment is designed for students to get familiar with the basic properties

More information

Analog Integrated Circuit Design Exercise 1

Analog Integrated Circuit Design Exercise 1 Analog Integrated Circuit Design Exercise 1 Integrated Electronic Systems Lab Prof. Dr.-Ing. Klaus Hofmann M.Sc. Katrin Hirmer, M.Sc. Sreekesh Lakshminarayanan Status: 21.10.2015 Pre-Assignments The lecture

More information

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre EJECICIOS DE COMPONENTES ELECTÓNICOS. 1 er cuatrimestre 2 o Ingeniería Electrónica Industrial Juan Antonio Jiménez Tejada Índice 1. Basic concepts of Electronics 1 2. Passive components 1 3. Semiconductors.

More information

Microelectronics Part 2: Basic analog CMOS circuits

Microelectronics Part 2: Basic analog CMOS circuits GBM830 Dispositifs Médicaux Intelligents Microelectronics Part : Basic analog CMOS circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim!! http://www.cours.polymtl.ca/gbm830/! mohamad.sawan@polymtl.ca!

More information