SAMPLE FINAL EXAMINATION FALL TERM

Size: px
Start display at page:

Download "SAMPLE FINAL EXAMINATION FALL TERM"

Transcription

1 ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need additional space, use the backs of the sheets. b. Partial credit is achievable, so include all of your calculations and clearly indicate what you are trying to do. c. Note that you have modicum of choice in the first question. d. The relative credit assigned to each question is indicated as a prudent time allocation. That is, there is a possible total credit of (Prudent time allocation 90 minutes) Briefly answer NINE (9) of the following FOURTEEN (14) questions: a. In the space below, plot the net charge density (sign and magnitude) and the built-in electric field as a function of position along a line which intersects a pn homojunction at right angles. The n-side of the junction has a doping level that is 10 times that of the p-side (i.e., N D 10 N A ). Label and/or note important features. See discussion at: <-- p-side center of junction n-side --> E(x) qn(x) Q Q-

2 PAGE-2 b. Suppose that a particular BJT has the following collector current characteristic curve: Using this characteristic, find the common emitter current gain (CECG) and the common base current gain (CBCG) of the transistor when it is operated in the active mode. Also find the Early voltage (V A ) of the transistor. β α ( ) ma µa β β I 0 V A [ I( V m ) I( 0) ] V 15.5 m 20 V 310 V [ ]

3 PAGE-3 c. What does the circuit illustrated below do? Explain how it does it.. V c n-channel MOSFET Input analog voltage Output voltage -V c p-channel MOSFET See discussion at: ml#trans_gate d. A two-part question about operational amplifier offsets i.) What is meant by the input offset voltage of an op amp? How is it measured? ii.) What is meant by the input offset current of an op amp? See Section 2.9 Sedra & Smith and Laboratory Assignment 1.

4 PAGE-4 e. The following circuit has been described as an improved rectifier. Explain. V supply V O V in -V supply V' O R L - See discussion at: l.html#rectifier

5 PAGE-5 f. For a diode with the characteristic depicted below, calculate the effective or small-signal resistance at a forward bias of 0.5 volts. Slope Method: ff V I 0.7 V 4.5 kω 155 µa Analytic Method: Assume that I V 1 therefore 1 ff I 0 exp V V T 1 d dv I exp V 0 V T I exp V 0 V T I V where V V T V V 1 2 T ln I ( V 1) I V 2 From graph: I( 0.50 V ) 45.5 µa; I 0.66 V V T V 1 V 2 ln I V 1 I V ln I V 45.5 µa ff V T 144 mv kω V 100 µa; I( 0.76 V ) 200 µa

6 PAGE-6 g. In the space below, sketch a complete small signal equivalent circuit of a MOS transistor (assume that the body is not connected to the source). Identify each element of the equivalent circuit and give a ball park estimate of its magnitude. See discussion at: ody_effect h. In the space below, draw a cascode amplifier stage and briefly describe the advantages this configuration offers in circuit design. See discussion at: i. An amplifier has the gain transfer function 10 2 s A s s 2π s /2π 10 5 In the space below sketch a Bode plot for its magnitude and specify the midband gain, the lower 3-dB frequency and the upper 3-dB frequency. ω /2π A ω 20 log A f 2 1 ω /2π log 1 1 ( ω /2π 10 5 ) 2 f 20 log 2 1 f / log 1 f /105

7 PAGE-7 60 db 40 db 20 log A ( f ) Midband Gain 20 db 0 db -20 db f ω/2π -40 db f 20 log log 1 ( f /10 2 ) 2 20 log 1 ( f /10 5 ) 2 See Section 7.1 and Example 7.1 in Sedra and Smith j. The following circuit is used as a temperature measuring device. Find an expression for v out as a function of the temperature to be measured. junction diode R s v s ideal op amp v out

8 PAGE-8 Assume that I V I 0 exp V n k T 1 therefore V S I R 0 exp V OUT S n k T 1 so that T V OUT V S n k ln 1 I 0 R S k. Consider the three Zener diode circuits illustrated below. In the spaces provide, sketch a representation of the time dependent output signal foach of the three cases

9 PAGE-9 l. In the following circuit, find v o in terms of v s1 and v s2 using the ideal op amp model. V V S2 2 kω V V S1 S 2 6 kω V - 4 kω V V S1 S 2 S1 6 kω V 2V S1 S2 3 V 1 9 V OUT therefore V OUT 3 ( V S1 2 V S2 ) m. Using expressions for the i D -v DS characteristics of an enhancement mode, n-channel MOSFET (as derived in the text and lecture), derive expressions for the small-signal transconductance g m in both the triode and saturation regions of operation. See discussion at:

10 PAGE-10 n. The following important characteristic curves for a particular BJT which tells us a good deal about that device performance. Briefly discuss the physics of this curve. What is the origin of this current? Why does have the shape that it does? What does it tell us about the given transistor s performance? See discussion at:

11 PAGE (Prudent time allocation 15 minutes) For the amplifier circuit shown below, find an expression for the output v O in terms of the two inputs v 1 and v 2. From this expression find expressions for the differential gain G d, the common-mode gain G CM and the common-mode rejection ratio CMMR. R 2 R 3 V O V 1 V 2 R 4 - v - v 1 v 0 v - R 2 v - v v v - R 4 R 3 R 4 v 2 R 4 R 3 R 4 v 2 R 2 R 2 v 1 R 2 R 2 v 1 v 0 R R 1 2 R 4 R v R 3 R 2 2 v 4 2 R R 1 2 R 4 R 3 R 4 v d 2 R 2 v 0 v cm v d 2 R 2 R 2 R 2 R 4 R 2 R 3 R 4 v cm G d 1 R 2 R 4 R 2 2 R 3 R 4 CMRR 20 log G d G cm 20 log 1 2 R 2 v 0 v cm v d 2 R 4 R 2 R 3 ( R 3 R 4 ) G cm R 4 R 2 R 3 R 3 R 4 R 4 ( R 2 ) R 2 R 3 R 4 R 4 R 2 R 3

12 PAGE (Prudent time allocation 30 minutes) Consider an npn BJT with the following I C -V CE characteristic:

13 PAGE-13 Suppose that such a transistor is used in the circuit illustrated below. 7V R B 10kΩ V (t) in - C V (t) out - a. By drawing a load line on the characteristic curve, choose the circuit quiescent point or DC operating point to maximize the AC voltage swing of V out (t). What are the DC values of the bias current, the collector current, R B and V out at the quiescent point (carefully specify units)? DC bias current 3.5 µa DC collector current 0.39 ma DC output voltage 3.2 V Bias resistor ( )/3.5 x MΩ b. For these quiescent point values, sketch in the space on the next page a complete small-signal equivalent circuit of the transistor including values and units for all parameters of the equivalent circuit (neglect any high frequency effects).

14 PAGE-14 From the graph at the Q - point: β 0.33 ma 3 µa 110 g m I c V T r π β g m 0.39 ma 25 mv Ω k Ω Ω r o v ce 8 V i c 0.09 ma 89 k Ω r π 6.9 kω -1 g v π (0.016 Ω ) v m π v IN 10 kω v OUT R 1.8 MΩ B r 89 kω ο c. Again at the quiescent point found above and at frequencies where we can neglect capacitive effects, find the small-signal voltage gain, input impedance and output impedance of the circuit. Small-signal voltage gain (0.016 Ω -1 ) (89 10) kω 144 Small-signal input impedance 1.8 MΩ 6.9 kω 6.9 kω Small-signal output impedance (89 10) kω 9.0 kω

15 PAGE (Prudent time allocation 15 minutes) If in the following circuit we assume that the three transistors are identical, find an expression for the ratio I o /I ref in terms of the β of the transistors. I ref Q 3 I o Q 1 Q 2 See the discussion at:

16 PAGE (Prudent time allocation 10 minutes) Measurements on the three circuits below yield the voltages indicated. Find the value of β foach of the pnp transistors. 5 V 5 V 10 V 1 kω 4.3 V 4.3 V 8.3 V 9 V 2 V 20 kω 2.3 V 150 kω 430 kω 2 kω 230 Ω 1 kω (a) (b) (c) (a) β (b) β (c) β

17 PAGE (Prudent time allocation 20 minutes) Consider a NMOS enhancement transistor with the following characteristics: 15 ma 10 ma Output Characteristics of a 2N6762 NMOS Enhancement Transistor V D S V G S - V t VGS 5.0V VGS 4.5V i D 5 ma VGS 4.0V VGS 3.5V VGS 3.0V VGS < Vt V t 2V - 5 ma 0.0 V 1.0 V 2.0 V V DS 3.0 V 4.0 V Suppose two such transistors are used in a common source, NMOS amplifier configuration where one transistor serves as the load of the other. Assume that the amplifier is powered by a single-sided 6 volt supply. a. Draw a circuit of such an enhancement loaded amplifier in the space below:

18 PAGE-18 b. Draw directly on the characteristic curve above the appropriate load curve for the amplifier. See characteristic curve c. Using this load curve, choose a quiescent point or dc operating point so as to maximize the ac voltage swing of the amplifier output. What are the dc values of the bias voltage, the drain current, and the drain-source voltage at the quiescent point (carefully specify units)? dc bias voltage 3.5 V dc drain current 3 ma dc drain-source voltage 2.5 V d. For these quiescent point values, find the ac voltage gain of the amplifier. voltage gain 1 7. (Prudent time allocation 15 minutes) As the first step in analyzing the following BJT amplifier, replace the transistor with its lowfrequency T equivalent circuit. Then, derive the gain v E /v i, the gain v C /v i, and the input impedance of the amplifier. V CC R C v C v i v E R E -V EE

19 PAGE-19 Nodal Analysis (neglecting r o - i.e r o ): Node B i b g m Node C ( v i v E ) v E v i Nodal Analysis (including r o ): Node B i b g m Node C ( v i v E ) v E v i g m Node E ( v i v E ) v C 0 R C g m Node E ( v i v E ) v C r o R C v E r o v E R E v i v E r o v E v C v i R E r o Results (neglecting r o - i.e r o ): v E v i R E R E R E v C g v m R C i R E 1 i b g R in v i R E m 1

20 PAGE-20 Results (including r o ): v E v i v C v i R E g r o R C r m ( re R e r o E ) r 1 g o R C m ( re R r o E ) r R o C re R r o R C E g m ( r o R C ) 1 g m R E r o r o R C r o 1 r o r e R E R E r o R C r R e E r r o R C e R E r o R C r o R E 1 i r R o C ( re R R b E r o R C E ) R in v i r 1 g o R C m ( re R r o E ) r R o C re R r o R C E g m - 1 s 8. (Prudent time allocation 10 minutes) For a particular npn transistor operating in the active mode the collector current is measured to be 1 ma and 10 ma for base-to-emitter voltages of 0.63 V and 0.70 V, respectively. Find the corresponding values of n and I S for this transistor. Assume that I C ( V BE ) I S exp V BE therefore n 1 V V 1 2 V T ln I ( V 1) I V 2 and I S I V C BE 10 ma exp V BE 700 mv exp n V T 30 mv nv T 1 25 mv ( ) V ln ma A mv 1 25 mv a. If two such devices are connected in parallel and a forward bias o 0.65 V is applied across the two base-emitter junctions, what total collector current do you expect? I C ( 650 mv ) mv ( A ) exp 30 mv 3.8 ma

21 PAGE (Prudent time allocation 12 minutes a. Draw a complete circuit diagram of an emitter-follower amplifier which uses an npn BJT. b. Draw a small-signal version of this complete emitter-follower that utilizes the most appropriate BJT small-signal equivalent circuit. c. Using this small-signal circuit, find an expression for the voltage gain of the amplifier d. Again using this small-signal circuit, find an expression for the input impedance of the amplifier. See discussion at: _amp 10. (Prudent time allocation 10 minutes) a. Assuming that the op amp is ideal, find the transfer function H( s) V 2 ( s) V 1 ( s).

22 PAGE-22 V 1 s 10 3 s V s 2 H s s V ( s) 10 2 V 1 ( s) s 10 3 s 10 3 s 1 s 10 3 b. Describe the behavior of this transfer function in both the high and low frequency limits. V ( s) 2 ω V 1 ( s) V ( s) 2 ω 0 V 1 ( s) H s H s 10 3 s s 11. (Prudent time allocation 15 minutes) a. Draw a complete circuit diagram of an source-follower amplifier which uses an n-channel MOSFET. b. Draw a small-signal version of this complete source-follower that utilizes the most appropriate MOSFET small-signal equivalent circuit. c. Using this small-signal circuit, find an expression for the voltage gain of the amplifier c. Again using this small-signal circuit, find an expression for the input impedance of the amplifier. See and adapt the The Common-Collector Amplifier or Emitter Follower discussion on page in Sedra & Smith.

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 11-1 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of

More information

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Multistage Amplifiers

Multistage Amplifiers Multistage Amplifiers Single-stage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)

More information

Midterm 2 Exam. Max: 90 Points

Midterm 2 Exam. Max: 90 Points Midterm 2 Exam Name: Max: 90 Points Question 1 Consider the circuit below. The duty cycle and frequency of the 555 astable is 55% and 5 khz respectively. (a) Determine a value for so that the average current

More information

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers 1. Explain the purpose of a thin, lightly doped base region.

More information

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor Course Number Section Electronics ELEC 311 BB Examination Date Time # of pages Final August 12, 2005 Three hours 3 nstructor Dr. R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

More information

QUESTION BANK for Analog Electronics 4EC111 *

QUESTION BANK for Analog Electronics 4EC111 * OpenStax-CNX module: m54983 1 QUESTION BANK for Analog Electronics 4EC111 * Bijay_Kumar Sharma This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment 11 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

HOME ASSIGNMENT. Figure.Q3

HOME ASSIGNMENT. Figure.Q3 HOME ASSIGNMENT 1. For the differential amplifier circuit shown below in figure.q1, let I=1 ma, V CC =5V, v CM = -2V, R C =3kΩ and β=100. Assume that the BJTs have v BE =0.7 V at i C =1 ma. Find the voltage

More information

ECE 3455: Electronics Section Spring Final Exam

ECE 3455: Electronics Section Spring Final Exam : Electronics Section 12071 Spring 2011 Version B May 7, 2011 Do not open the exam until instructed to do so. Answer the questions in the spaces provided on the question sheets. If you run out of room

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S. CE Frequency Response The exact analysis is worked out on pp. 639-64 of H&S. The Miller Approximation Therefore, we consider the effect of C µ on the input node only V ---------- out V s = r g π m ------------------

More information

Early Effect & BJT Biasing

Early Effect & BJT Biasing Early Effect & BJT Biasing Early Effect DC BJT Behavior DC Biasing the BJT 1 ESE319 Introduction to Microelectronics Early Effect Saturation region Forward-Active region 4 3 Ideal NPN BJT Transfer V Characteristic

More information

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016)

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Page1 Name ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Problem 1 (15 points) You are given an NMOS amplifier with drain load resistor R D = 20 k. The DC voltage (V RD

More information

(a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS (a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

More information

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M)

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M) SET - 1 1. a) Define i) transient capacitance ii) Diffusion capacitance (4M) b) Explain Fermi level in intrinsic and extrinsic semiconductor (4M) c) Derive the expression for ripple factor of Half wave

More information

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET SEMICONDUCT ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS Class XII : PHYSICS WKSHEET 1. How is a n-p-n transistor represented symbolically? (1) 2. How does conductivity of a semiconductor change

More information

Lab 2: Discrete BJT Op-Amps (Part I)

Lab 2: Discrete BJT Op-Amps (Part I) Lab 2: Discrete BJT Op-Amps (Part I) This is a three-week laboratory. You are required to write only one lab report for all parts of this experiment. 1.0. INTRODUCTION In this lab, we will introduce and

More information

ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

More information

Homework Assignment 10

Homework Assignment 10 Homework Assignment 10 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Carleton University ELEC Lab 1. L2 Friday 2:30 P.M. Student Number: Operation of a BJT. Author: Adam Heffernan

Carleton University ELEC Lab 1. L2 Friday 2:30 P.M. Student Number: Operation of a BJT. Author: Adam Heffernan Carleton University ELEC 3509 Lab 1 L2 Friday 2:30 P.M. Student Number: 100977570 Operation of a BJT Author: Adam Heffernan October 13, 2017 Contents 1 Transistor DC Characterization 3 1.1 Calculations

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices EIE209 Basic Electronics Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT)

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT) EE105 Fall 2014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 utardja Dai Hall (DH) 1 NPN Bipolar Junction Transistor (BJT) Forward Bias Reverse Bias Hole Flow Electron

More information

Electronics EECE2412 Spring 2018 Exam #2

Electronics EECE2412 Spring 2018 Exam #2 Electronics EECE2412 Spring 2018 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 29 March 2018 File:12262/exams/exam2 Name: General Rules: You

More information

EXP8: AMPLIFIERS II.

EXP8: AMPLIFIERS II. EXP8: AMPLIFIES II. Objectives. The objectives of this lab are:. To analyze the behavior of a class A amplifier. 2. To understand the role the components play in the gain of the circuit. 3. To find the

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Roll No. B.Tech. SEM I (CS-11, 12; ME-11, 12, 13, & 14) MID SEMESTER EXAMINATION, ELECTRONICS ENGINEERING (EEC-101)

Roll No. B.Tech. SEM I (CS-11, 12; ME-11, 12, 13, & 14) MID SEMESTER EXAMINATION, ELECTRONICS ENGINEERING (EEC-101) F:/Academic/22 Refer/WI/ACAD/10 SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT (Following Paper-ID and Roll No. to be filled by the student in the Answer Book) PAPER ID: 3301 Roll No. B.Tech. SEM

More information

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10 Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 base-emitter voltage, 16, 50 base-emitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar

More information

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Phy 335, Unit 4 Transistors and transistor circuits (part one) Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 3 Field Effect Transistors Lecture-8 Junction Field

More information

EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7

EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7 Issued: Friday, Oct. 16, 2015 PROBLEM SET #7 Due (at 8 a.m.): Monday, Oct. 26, 2015, in the EE 140/240A HW box near 125 Cory. 1. A design error has resulted in a mismatch in the circuit of Fig. PS7-1.

More information

Lecture 030 ECE4430 Review III (1/9/04) Page 030-1

Lecture 030 ECE4430 Review III (1/9/04) Page 030-1 Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material

More information

Mini Project 3 Multi-Transistor Amplifiers. ELEC 301 University of British Columbia

Mini Project 3 Multi-Transistor Amplifiers. ELEC 301 University of British Columbia Mini Project 3 Multi-Transistor Amplifiers ELEC 30 University of British Columbia 4463854 November 0, 207 Contents 0 Introduction Part : Cascode Amplifier. A - DC Operating Point.......................................

More information

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre EJECICIOS DE COMPONENTES ELECTÓNICOS. 1 er cuatrimestre 2 o Ingeniería Electrónica Industrial Juan Antonio Jiménez Tejada Índice 1. Basic concepts of Electronics 1 2. Passive components 1 3. Semiconductors.

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Differential Amplifier Design

Differential Amplifier Design Differential Amplifier Design Design with ideal current source bias. Differential and common mode gain results Add finite output resistance to current source. Replace ideal current source with current

More information

Physics 116A Notes Fall 2004

Physics 116A Notes Fall 2004 Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 beta Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second

More information

Homework Assignment 04

Homework Assignment 04 Question 1 (Short Takes) Homework Assignment 04 1. Consider the single-supply op-amp amplifier shown. What is the purpose of R 3? (1 point) Answer: This compensates for the op-amp s input bias current.

More information

I D1 I D2 V X D 1 D 2 EE 330. Homework Assignment 6 Spring 2017 (Due Friday Feb 17)

I D1 I D2 V X D 1 D 2 EE 330. Homework Assignment 6 Spring 2017 (Due Friday Feb 17) EE 330 Homework Assignment 6 Spring 2017 (Due Friday Feb 17) Unless specified to the contrary, assume all n-channel MOS transistors have model parameters μncox = 100μA/V 2 and VTn = 1V, all p-channel transistors

More information

Electronics EECE2412 Spring 2017 Exam #2

Electronics EECE2412 Spring 2017 Exam #2 Electronics EECE2412 Spring 2017 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 30 March 2017 File:12198/exams/exam2 Name: : General Rules:

More information

Analog Integrated Circuit Design Exercise 1

Analog Integrated Circuit Design Exercise 1 Analog Integrated Circuit Design Exercise 1 Integrated Electronic Systems Lab Prof. Dr.-Ing. Klaus Hofmann M.Sc. Katrin Hirmer, M.Sc. Sreekesh Lakshminarayanan Status: 21.10.2015 Pre-Assignments The lecture

More information

6.012 Microelectronic Devices and Circuits

6.012 Microelectronic Devices and Circuits Page 1 of 13 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Microelectronic Devices and Circuits Final Eam Closed Book: Formula sheet provided;

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2018 Contents Objective:...2 Discussion:...2 Components Needed:...2 Part 1 Voltage Controlled Amplifier...2 Part 2 A Nonlinear Application...3

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

EEE225: Analogue and Digital Electronics

EEE225: Analogue and Digital Electronics EEE225: Analogue and Digital Electronics Lecture I James E. Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Introduction This Lecture 1 Introduction Aims &

More information

Code No: Y0221/R07 Set No. 1 I B.Tech Supplementary Examinations, Apr/May 2013 BASIC ELECTRONIC DEVICES AND CIRCUITS (Electrical & Electronics Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

Each question is worth 2 points, except for problem 3, where each question is worth 5 points.

Each question is worth 2 points, except for problem 3, where each question is worth 5 points. Name: Date: DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Spring Term 2007 Quiz 1 6.101 Introductory Analog Electronics

More information

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS)

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) SOLUTIONS ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) Problem 1 (20 points) We know that a pn junction diode has an exponential I-V behavior when forward biased. The diode equation relating

More information

V o2 = V c V d 2. V o1. Sensor circuit. Figure 1: Example of common-mode and difference-mode voltages. V i1 Sensor circuit V o

V o2 = V c V d 2. V o1. Sensor circuit. Figure 1: Example of common-mode and difference-mode voltages. V i1 Sensor circuit V o M.B. Patil, IIT Bombay 1 BJT Differential Amplifier Common-mode and difference-mode voltages A typical sensor circuit produces an output voltage between nodes A and B (see Fig. 1) such that V o1 = V c

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Document Name: Electronic Circuits Lab. Facebook: Twitter:

Document Name: Electronic Circuits Lab.  Facebook:  Twitter: Document Name: Electronic Circuits Lab www.vidyathiplus.in Facebook: www.facebook.com/vidyarthiplus Twitter: www.twitter.com/vidyarthiplus Copyright 2011-2015 Vidyarthiplus.in (VP Group) Page 1 CIRCUIT

More information

BJT Characteristics & Common Emitter Transistor Amplifier

BJT Characteristics & Common Emitter Transistor Amplifier LAB #07 Objectives 1. To graph the collector characteristics of a transistor. 2. To measure AC and DC voltages in a common-emitter amplifier. Theory BJT A bipolar (junction) transistor (BJT) is a three-terminal

More information

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8 Bipolar Junction Transistor Aim: The aim of this experiment is to investigate the DC behavior

More information

Concepts to be Covered

Concepts to be Covered Introductory Medical Device Prototyping Analog Circuits Part 2 Semiconductors, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Semiconductors

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor EE 2110A Electronic Circuits Week 7: Common-Collector Amplifier, MOS Field Effect Transistor ecture 07-1 Topics to coer Common-Collector Amplifier MOS Field Effect Transistor Physical Operation and I-V

More information

UNIT I Introduction to DC & AC circuits

UNIT I Introduction to DC & AC circuits SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Basic Electrical and Electronics Engineering (16EE207) Year & Sem: II-B.

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

More information

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Problem 1. Consider the following circuit, where a saw-tooth voltage is applied

More information

Paper-1 (Circuit Analysis) UNIT-I

Paper-1 (Circuit Analysis) UNIT-I Paper-1 (Circuit Analysis) UNIT-I AC Fundamentals & Kirchhoff s Current and Voltage Laws 1. Explain how a sinusoidal signal can be generated and give the significance of each term in the equation? 2. Define

More information

Laboratory #5 BJT Basics and MOSFET Basics

Laboratory #5 BJT Basics and MOSFET Basics Laboratory #5 BJT Basics and MOSFET Basics I. Objectives 1. Understand the physical structure of BJTs and MOSFETs. 2. Learn to measure I-V characteristics of BJTs and MOSFETs. II. Components and Instruments

More information

Mini Project 2 Single Transistor Amplifiers. ELEC 301 University of British Columbia

Mini Project 2 Single Transistor Amplifiers. ELEC 301 University of British Columbia Mini Project 2 Single Transistor Amplifiers ELEC 301 University of British Columbia 44638154 October 27, 2017 Contents 1 Introduction 1 2 Investigation 1 2.1 Part 1.................................................

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Electronics Lab. (EE21338)

Electronics Lab. (EE21338) Princess Sumaya University for Technology The King Abdullah II School for Engineering Electrical Engineering Department Electronics Lab. (EE21338) Prepared By: Eng. Eyad Al-Kouz October, 2012 Table of

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

ECEG 350 Electronics I Fall 2017

ECEG 350 Electronics I Fall 2017 EEG 350 Electronics Fall 07 Final Exam General nformation Rough breakdown of topic coverage: 0-0% JT fundamentals and regions of operation 0-40% MOSFET fundamentals biasing and small-signal modeling 0-5%

More information

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

Each question is worth 4 points. ST07 One-hour Quiz #2 1 3/20/2007

Each question is worth 4 points. ST07 One-hour Quiz #2 1 3/20/2007 Name: Date: DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Spring Term 2007 Quiz 2 6.101 Introductory Analog Electronics

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05010204 Set No. 1 I B.Tech Supplimentary Examinations, Aug/Sep 2007 ELECTRONIC DEVICES AND CIRCUITS ( Common to Electrical & Electronic Engineering, Electronics & Communication Engineering,

More information

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers ECE 442 Solid State Devices & Circuits 15. Differential Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 442 Jose Schutt Aine 1 Background

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

Homework Assignment True or false. For both the inverting and noninverting op-amp configurations, V OS results in

Homework Assignment True or false. For both the inverting and noninverting op-amp configurations, V OS results in Question 1 (Short Takes), 2 points each. Homework Assignment 02 1. An op-amp has input bias current I B = 1 μa. Make an estimate for the input offset current I OS. Answer. I OS is normally an order of

More information

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10 EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10 In this experiment we will measure the characteristics of the standard common emitter amplifier. We will use the 2N3904 npn transistor. If you have

More information

Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product

Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product Physics116A,12/4/06 Draft Rev. 1, 12/12/06 D. Pellett 2 Negative Feedback and Voltage Amplifier AB

More information

Solid State Devices & Circuits. 18. Advanced Techniques

Solid State Devices & Circuits. 18. Advanced Techniques ECE 442 Solid State Devices & Circuits 18. Advanced Techniques Jose E. Schutt-Aine Electrical l&c Computer Engineering i University of Illinois jschutt@emlab.uiuc.edu 1 Darlington Configuration - Popular

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester WK 5 Reg. No. : Question Paper Code : 27184 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Electronics and Communication Engineering EC 6201 ELECTRONIC DEVICES

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Chapter 11. Differential Amplifier Circuits

Chapter 11. Differential Amplifier Circuits Chapter 11 Differential Amplifier Circuits 11.0 ntroduction Differential amplifier or diff-amp is a multi-transistor amplifier. t is the fundamental building block of analog circuit. t is virtually formed

More information

Experiment #8: Designing and Measuring a Common-Collector Amplifier

Experiment #8: Designing and Measuring a Common-Collector Amplifier SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #8: Designing and Measuring a Common-Collector Amplifier

More information

Well we know that the battery Vcc must be 9V, so that is taken care of.

Well we know that the battery Vcc must be 9V, so that is taken care of. HW 4 For the following problems assume a 9Volt battery available. 1. (50 points, BJT CE design) a) Design a common emitter amplifier using a 2N3904 transistor for a voltage gain of Av=-10 with the collector

More information

Transistor fundamentals Nafees Ahamad

Transistor fundamentals Nafees Ahamad Transistor fundamentals Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: www.eedofdit.weebly.com Transistor A transistor consists of two PN junctions formed by sandwiching either

More information

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS AV18-AFC ANALOG FUNDAMENTALS C Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS 1 ANALOG FUNDAMENTALS C AV18-AFC Overview This topic identifies the basic FET amplifier configurations and their principles of

More information

Chapter 3: Bipolar Junction Transistors

Chapter 3: Bipolar Junction Transistors Chapter 3: Bipolar Junction Transistors Transistor Construction There are two types of transistors: pnp npn pnp The terminals are labeled: E - Emitter B - Base C - Collector npn 2 Transistor Operation

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

FET, BJT, OpAmp Guide

FET, BJT, OpAmp Guide FET, BJT, OpAmp Guide Alexandr Newberry UCSD PHYS 120 June 2018 1 FETs 1.1 What is a Field Effect Transistor? Figure 1: FET with all relevant values labelled. FET stands for Field Effect Transistor, it

More information

Lecture 040 CE and CS Output Stages (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Lecture 040 CE and CS Output Stages (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen Lecture 040 CE and CS Output Stages (1/11/04) Page 0401 LECTURE 040 COMMON SOURCE AND EMITTER OUTPUT STAGES (READING: GHLM 8498, AH 181) Objective The objective of this presentation is: Show how to design

More information

.dc Vcc Ib 0 50uA 5uA

.dc Vcc Ib 0 50uA 5uA EE 2274 BJT Biasing PreLab: 1. Common Emitter (CE) Transistor Characteristics curve Generate the characteristics curves for a 2N3904 in LTspice by plotting Ic by sweeping Vce over a set of Ib steps. Label

More information

Building Blocks of Integrated-Circuit Amplifiers

Building Blocks of Integrated-Circuit Amplifiers CHAPTER 7 Building Blocks of Integrated-Circuit Amplifiers Introduction 7. 493 IC Design Philosophy 7. The Basic Gain Cell 494 495 7.3 The Cascode Amplifier 506 7.4 IC Biasing Current Sources, Current

More information

The Differential Amplifier. BJT Differential Pair

The Differential Amplifier. BJT Differential Pair 1 The Differential Amplifier Asst. Prof. MONTREE SRPRUCHYANUN, D. Eng. Dept. of Teacher Training in Electrical Engineering, Faculty of Technical Education King Mongkut s nstitute of Technology North Bangkok

More information

Homework Assignment 06

Homework Assignment 06 Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. True or false: when transforming a circuit s diagram to a diagram of its small-signal model, we replace dc constant current sources

More information

Homework Assignment 06

Homework Assignment 06 Homework Assignment 06 Question 1 (Short Takes) One point each unless otherwise indicated. 1. Consider the current mirror below, and neglect base currents. What is? Answer: 2. In the current mirrors below,

More information

PART-A UNIT I Introduction to DC & AC circuits

PART-A UNIT I Introduction to DC & AC circuits SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Basic Electrical and Electronics Engineering (16EE207)

More information