Lecture 030 ECE4430 Review III (1/9/04) Page 030-1

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lecture 030 ECE4430 Review III (1/9/04) Page 030-1"

Transcription

1 Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught in ECE ) Insure that the students of ECE 6412 are adequately prepared Outline Models for IntegratedCircuit Active Devices Bipolar, MOS, and BiCMOS IC Technology SingleTransistor and MultipleTransistor Amplifiers Transistor Current Sources and Active Loads

2 Lecture 030 ECE4430 Review III (1/9/04) Page 0302 SINGLETRANSISTOR AND MULTIPLETRANSISTOR AMPLIFIERS Characterization of Amplifiers Amplifiers will be characterized by the following properties: Largesignal voltage transfer characteristics (.DC) Largesignal voltage swing limitations (.DC and.tran) Smallsignal, frequency independent performance (.TF) Gain (.TF) Input resistance (.TF) Output resistance (.TF) Smallsignal, frequency response (.AC) Other properties (.TEMP,.FOUR, etc.) Noise (.NOISE) Power dissipation (.OP) Slew rate (.TRAN) Etc.

3 Lecture 030 ECE4430 Review III (1/9/04) Page 0303 Types of Single Transistor Amplifiers R C R C v IN R C v OUT v OUT v OUT v OUT v IN v IN R E v IN R E Common Emitter Common Base Common Collector Emitter Degeneration R D R D v IN R D v OUT v OUT v OUT vout v IN v IN v IN R S R S Common Source Common Gate Common Drain Source Degeneration Fig

4 Lecture 030 ECE4430 Review III (1/9/04) Page 0304 Signal Flow in Transistors It is important to recognize that ac signals can only flow into and out of certain transistor terminals. Illustration: C D B 0 G E S Fig Rules: The collector or drain can never be an input terminal. The base or gate can never be an output terminal. In addition it is important to note polarity reversals on these signal paths. The basecollector or gatedrain path inverts. All other paths are noninverting. (This of course assumes that there are no reactive elements causing phase shifts)

5 Lecture 030 ECE4430 Review III (1/9/04) Page 0305 Common Emitter Amplifer LargeSignal: i C v OUT v IN R C v OUT R C V IN, I B v CE (sat) Forward Active Region Saturation Region Common Emitter 0 0 v CE V 1.0V v IN Fig SmallSignal: = I C Vt and r o = V A IC R in i in i out R out B C v in r π v in ro R C v out E E Fig R in = r π = β ο, R out = r or C v out r o R C, v in = r o R C r o R C and i out i in = β o r o r o R C (One should also consider the case of a source resistance, R S, in series with the input)

6 Lecture 030 ECE4430 Review III (1/9/04) Page 0306 Common Source Amplifier LargeSignal: v IN R D v OUT R D i D v DS = V GS V T V IN v OUT Cutoff Region Saturation Region Triode Region v OUT = v IN V T Fig SmallSignal: 0 0 v DS 0 V T 0 V IN R in =, R in i in i out R out G D v in v in rds R D v out S S Fig R out = r dsr D r ds R D, v out v in = r ds R D r ds R D and i out i in =

7 Lecture 030 ECE4430 Review III (1/9/04) Page 0307 Summary of Single BJT Transistor Amplifiers SmallSignal Common Common Common Collector Performance Emitter Base Input Resistance r π r π r (Medium) 1β o (Low) π (1β o )R E (High) Output Resistance r o r o (1β o ) r π R S (High) (Very high) 1β o (Very low) Voltage Gain R L R L 1 Current Gain β o α (1β o )

8 Lecture 030 ECE4430 Review III (1/9/04) Page 0308 Summary of Single MOSFET Transistor Amplifiers SmallSignal Performance Input Resistance Output Resistance Voltage Gain Common Source Common Gate r ds R D 1 r ds r ds R D r ds R D Common Drain r ds R D r ds R D r ds R D r ds R D R D 0.8 R S 1 R S Current Gain 1

9 Lecture 030 ECE4430 Review III (1/9/04) Page 0309 BJT Cascode Amplifer Circuit and smallsignal model: v in v a Q1 Q2 R L V Bias v out B1 C1 = E2 r o2 C2 r π1 r o1 v a v π2 v out 1 v π1 r π2 gm2 v π2 v in i in i out E1=B2 Fig If β 1 β 2 and r o can be neglected, then: R in = r π1 R out β 2 r o2 (not including R L ) v out v in = v out v a v a v in = (g m2 R L ) r π2 o2 β o1 1β r π1 (2 R L ) (1) = 2 R L i out i in = α 2 β 1 The advantage of the cascode is that the gain of Q1 is 1 and therefore the Miller capacitor, C µ, is not translated to the baseemitter as a large capacitor. R L

10 Lecture 030 ECE4430 Review III (1/9/04) Page MOS Cascode Amplifier Circuit and smallsignal model: Smallsignal v in performance (assuming a load resistance in the drain of R L ): M1 M2 V Bias v out 2 v gs2 = 2 v 1 G1 D1=S2 D2=D3 r ds2 v in = v v gs1 1 v 1 R gs1 rds1 L S1=G2=G3 R in = Using nodal analysis, we can write, [g ds1 g ds2 2 ]v 1 g ds2 v out = 1 v in and [g ds2 2 ]v 1 (g ds2 G L )v out = 0 Solving for v out /v in yields, v out 1 (g ds2 2 ) v in = g ds1 g ds2 g ds1 G L g ds2 G L G L 2 1 G L = 1 R L Note that unlike the BJT cascode, the voltage gain, v 1 /v in is greater than 1. v 1 v in = 1 r ds2 R L r ds1 12 r ds2 r ds2r L r ds2 = 1 R L r ds2 (R L < r ds2 for the gain to be 1) The smallsignal output resistance is, r out = [r ds1 r ds2 2 r ds1 r ds2 ] R L R L, assuming that R L is small. v out Fig

11 Lecture 030 ECE4430 Review III (1/9/04) Page Transconductance Characteristic of the BJT Differential Amplifier Consider the following NPNBJT differential amplifier (sometimes called an emittercoupled pair): i C1 i C2 LargeSignal Analysis: Q1 Q2 1.) Input loop eq.: v v BE1 I1 v BE2 v I1 v BE1 v BE2 v I2 = v I1 v I2 v BE1 v BE2 I EE = v ID v BE1 v BE2 = 0 v I2 2.) Forwardactive region: i C1 v BE1 = V t ln I S1 and v BE2 = V t ln i C2 I S2 i C1 3.) If I S1 = I S2 then i C2 = exp v I1 v I2 V t = exp v ID Vt V EE Fig ) Nodal current equation at the emitters: (i E1 i E2 ) = I EE = α 1 F (i C1 i C2 ) α F I EE α F I EE 5.) Combining the above equations gives: i C1 = v ID and i C2 = v ID 1 exp V t 1 exp Vt

12 Lecture 030 ECE4430 Review III (1/9/04) Page Differential and Commonmode SmallSignal BJT Amplifier Performance The smallsignal performance of a differential amplifier can be separated into a differential mode and common mode analysis. This separation allows us to take advantage of the following simplifications. HalfCircuit Concept: R C RC v i1 R C V EE v od i c1 ic2 v o1 v o2 Q1 Q2 v be1 v be2 I EE V EE R EE RC Differential Mode Analysis vi2 Common Mode Analysis v od i c1 ic2 v o1 v o2 Q1 Q2 v id v be1 vid v be2 2 2 Fig v ic R C V EE RC v od i c1 ic2 v o1 v o2 Q1 Q2 v be1 v be2 I EE I EE 2 2 2R EE 2R EE V EE V EE Note: The halfcircuit concept is valid as long as the resistance seen looking into each emitter is approximately the same. V EE v ic

13 Lecture 030 ECE4430 Review III (1/9/04) Page Transconductance Performance of the Differential Amplifier Consider the following nchannel differential amplifier: I Bias M4 v ID v G1 M1 i D1 i D2 M3 M2 v GS1 v GS2 I SS V Bulk v G2 Fig Where should bulk be connected? Consider a pwell, CMOS technology, D1 G1 S1 S2 G2 D2 n n p n n n pwell nsubstrate Fig ) Bulks connected to the well: No modulation of V T but large common mode parasitic capacitance. 2.) Bulks connected to ground: Smaller common mode parasitic capacitors, but modulation of V T. If the technology is nwell CMOS, the bulks must be connected to ground.

14 Lecture 030 ECE4430 Review III (1/9/04) Page Transconductance Performance of the Differential Amplifier Continued Defining equations (Assume that the MOSFETs are in saturation): v ID = v GS1 v GS2 = Solution: 2i D1 2i D2 β 1/2 β 1/2 and I SS = i D1 i D2 βv 2 ID I SS i D1 = I SS 2 I SS 2 β2 v 4 ID 4I 2 SS 1/2 which are valid for v ID < (2I SS /β)1/2. Illustration of the result: and βv 2 ID I SS i D2 = I SS 2 I SS 2 β2 v 4 ID 4I 2 SS 1/2 i D /I SS i D i D v ID (I SS /ß)0.5 Fig

15 Lecture 030 ECE4430 Review III (1/9/04) Page Differential and Commonmode SmallSignal Performance The smallsignal performance of a differential amplifier can be separated into a differential mode and common mode analysis. This separation allows us to take advantage of the following simplifications. HalfCircuit Concept: R D RD v i1 R D V SS v od i d1 id2 v o1 v o2 M1 M2 v gs1 v gs2 I SS V SS R SS RD Differential Mode Analysis vi2 Common Mode Analysis v od i d1 id2 v o1 v o2 M1 M2 v id v gs1 vid v gs2 2 2 Fig v ic R D V SS RD v od i d1 id2 v o1 v o2 M1 M2 v gs1 v gs2 I SS I SS 2 2 2R SS 2R SS V SS V SS Note: The halfcircuit concept is valid as long as the resistance seen looking into each source is approximately the same. V SS v ic

16 Lecture 030 ECE4430 Review III (1/9/04) Page Other Characteristics of the Differential Amplifier Commonmode rejection ratio Input commonmode range Slew rate BJT: ICMR: The maximum and minimum input common mode range is: v ic (max) = 0.5I EE R C v CE1 (sat)v BE1 v ic (min) = V EE v CE3 (sat)v BE1 SR: The differential amplifier has a slew rate limit of I EE /C eq where C eq is the capacitance seen to ground from either collector. MOSFET: ICMR: The maximum and minimum input common mode range is: v ic (max) = 0.5I SS R D V T1 v ic (min) = V SS v DS3 (sat)v GS1 SR: The differential amplifier has a slew rate limit of I SS /C eq where C eq is the equivalent capacitance seen from either of the drains to ground.

17 Lecture 030 ECE4430 Review III (1/9/04) Page TRANSISTOR CURRENT SOURCES AND ACTIVE LOADS Summary of Current Sinks and Sources Current Sink/Source r OUT V MIN Simple MOS Current Sink r ds = λι 1 D V DS (sat) = V ON Simple BJT Current Sink r o = V A ΙC V CE (sat) 0.2V Cascode MOS 2 r ds2 r ds1 V T 2V ON Cascode BJT β F r o 2V CE (sat) Minimum V MIN Cascode 2 r ds2 r ds1 2V ON Current Sink Regulated Cascode Current Sink r ds3 3 r ds2 4 (r ds4 r ds5 ) V T V ON Minimum V MIN Regulated Cascode Current Sink r ds3 3 r ds2 4 (r ds4 r ds5 ) V ON

18 Lecture 030 ECE4430 Review III (1/9/04) Page Summary of MOS Current Mirrors Current Mirror Accuracy Output Resistance Input Resistance Minimum Output Voltage Minimum Input Voltage Simple Poor r ds 1 V ON V T V ON Cascode Excellent r ds 2 Wide Output Swing Cascode Selfbiased Cascode Excellent r ds 2 2 V T 2V ON 2(V T V ON ) 1 2V ON V T V ON Excellent r ds 2 R 1 2V ON V T 2V ON Wilson Poor r ds 2 Regulated Cascode Good Excellent 2r ds (V T V ON ) V T 2V ON V T 2V ON (min. is 2V ON ) V T V ON (min. is V ON )

19 Lecture 030 ECE4430 Review III (1/9/04) Page Summary of BJT Current Mirrors Current Mirror Accuracy Output Resistance Input Resistance Minimum Output Voltage Minimum Input Voltage Simple Poor r o 1 V CE (sat) V BE Cascode Excellent β F r o 2 V CE (sat)v BE 2V BE Wide Output Swing Cascode Selfbiased Cascode Excellent β F r o 1 2V CE (sat) V BE Excellent β F r o R 1 2V CE (sat) V CE (sat)v BE Wilson Poor β F r o 2 Regulated Cascode Good Excellent β F r o 1 or less V CE (sat)v BE V CE (sat)v BE V CE (sat)* V CE (sat)* * One can design the regulated cascode so that effectively the minimum value of V MIN (out) is just V CE (sat).

20 Lecture 030 ECE4430 Review III (1/9/04) Page Active Load Amplifiers What is an active load amplifier? V T 2V ON V T V ON V EB V EB V EC (sat) MOS Loads BJT Loads I Bias IBias I Bias I Bias V T 2V ON V BE V CE (sat) V T V ON MOS Transconductors BJT Transconductors Fig It is a combination of any of the above transconductors and loads to form an amplifier. (Remember that the above are only some of the examples of transconductors and loads.) V BE

21 Lecture 030 ECE4430 Review III (1/9/04) Page BJT Differential Amplifier with a Current Mirror Load Design Considerations: Constraints Specifications Q3 Power supply Smallsignal gain i C3 Technology Frequency response (C L ) i C1 Temperature ICMR Q1 Slew rate (C L ) v OS Power dissipation Relationships V Bias A v = 1 R out ω 3dB = 1/R out C L v IC (max) = V BE3 V CE1 (sat) V BE1 V CE1 (sat) v IC (min) = V EE V CE5 (sat) V BE1 SR = I EE /C L P diss = ( V EE ) All dc currents flowing from or to V EE 4.4V 5V Q5 I EE 5V Q4 Q2 ic4 ic2 Fig C L v out

22 Lecture 030 ECE4430 Review III (1/9/04) Page CMOS Differential Amplifier with a Current Mirror Load Design Considerations: Constraints Specifications Power supply Smallsignal gain Technology Frequency response (C L ) Temperature ICMR Slew rate (C L ) Relationships A v = 1 R out ω 3dB = 1/R out C L Power dissipation V IC (max) = V SG3 V TN1 V IC (min) = V DS5 (sat) V GS1 = V DS5 (sat) V GS2 SR = I SS /C L vin M1 M2 P diss = ( V SS ) All dc currents flowing from or to V SS V Bias M3 V SS I 5 M5 M4 C L Fig v out

23 Lecture 030 ECE4430 Review III (1/9/04) Page Summary of Active Load Amplifiers Active load amplifier consists of a transconductor and a load There are a large number of combinations of loads and transconductors possible. We have not considered the many cascoded possibilities and other configurations. The BJT amplifier generally has more gain and wider signal swing than the MOS amplifier The voltage gain of the MOS transconductor with a current source or current mirror load is inversely proportional to the square root of the bias current. The current mirror load differential amplifier is a widely used input stage The frequency response is generally determined by the dominant pole which is found at points in the circuit that are high impedance to ac ground and large capacitance The active load amplifier is the primary gain stage in operational amplifiers and other applications and will be a fundamental building block in more complex circuits Performance not considered include slew rate and noise

24 Lecture 030 ECE4430 Review III (1/9/04) Page SUMMARY Single and Multiple Transistor Amplifiers Characterization BJT: Common emitter, commonbase, commoncollector, general MOSFET: Common source, commongate, commondrain, general Cascode Amplifiers Differential Amplifiers Differential mode analysis (balance requirements) Halfcircuit concept Common mode analysis Halfcircuit concept Input common mode range and slew rate Transistor Current Sources and Current Mirrors Active Load Amplifiers Other Material not Included in this Review Voltage and Current References Bandgap Voltage Reference Simple twostage op amps

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

Chapter 5 Introduction (2/25/03) Page 5.0-1

Chapter 5 Introduction (2/25/03) Page 5.0-1 Chapter 5 Introduction (/5/03) Page 5.0 CHAPTER 5 CMOS AMPLIFIERS Chapter Outline 5. Inverters 5. Differential Amplifiers 5.3 Cascode Amplifiers 5.4 Current Amplifiers 5.5 Output Amplifiers 5.6 HighGain

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1 Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog

More information

Lecture 200 Cascode Op Amps - II (2/18/02) Page 200-1

Lecture 200 Cascode Op Amps - II (2/18/02) Page 200-1 Lecture 200 Cascode Op Amps II (2/18/02) Page 2001 LECTURE 200 CASCODE OP AMPS II (READING: GHLM 443453, AH 293309) Objective The objective of this presentation is: 1.) Develop cascode op amp architectures

More information

CHAPTER 5 - CMOS AMPLIFIERS

CHAPTER 5 - CMOS AMPLIFIERS CMOS Analog Circuit Design Page 5.0 Chapter Outline 5. Inverters 5. Differential Amplifiers 5.3 Cascode Amplifiers 5.4 Current Amplifiers 5.5 Output Amplifiers 5.6 HighGain Architectures Goal CHAPTER 5

More information

Lecture 350 Low Voltage Op Amps (3/26/02) Page 350-1

Lecture 350 Low Voltage Op Amps (3/26/02) Page 350-1 Lecture 350 Low Voltage Op Amps (3/26/02) Page 3501 LECTURE 350 LOW VOLTAGE OP AMPS (READING: AH 415432) Objective The objective of this presentation is: 1.) How to design standard circuit blocks with

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

Chapter 11. Differential Amplifier Circuits

Chapter 11. Differential Amplifier Circuits Chapter 11 Differential Amplifier Circuits 11.0 ntroduction Differential amplifier or diff-amp is a multi-transistor amplifier. t is the fundamental building block of analog circuit. t is virtually formed

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

Single-Stage Integrated- Circuit Amplifiers

Single-Stage Integrated- Circuit Amplifiers Single-Stage Integrated- Circuit Amplifiers Outline Comparison between the MOS and the BJT From discrete circuit to integrated circuit - Philosophy, Biasing, etc. Frequency response The Common-Source and

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

Analysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications

Analysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications Analysis and Design of Analog Integrated Circuits Lecture 8 Key Opamp Specifications Michael H. Perrott April 8, 0 Copyright 0 by Michael H. Perrott All rights reserved. Recall: Key Specifications of Opamps

More information

(a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS (a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

More information

INF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation

INF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation INF3410 Fall 2013 Compensation content Introduction Two Stage Opamps Compensation Slew Rate Systematic Offset Advanced Current Mirrors Operational Transconductance Amplifiers Current Mirror Opamps Folded

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S. CE Frequency Response The exact analysis is worked out on pp. 639-64 of H&S. The Miller Approximation Therefore, we consider the effect of C µ on the input node only V ---------- out V s = r g π m ------------------

More information

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 11-1 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of

More information

ECE315 / ECE515 Lecture 5 Date:

ECE315 / ECE515 Lecture 5 Date: Lecture 5 ate: 20.08.2015 MOSFET Small Signal Models, and Analysis Common Source Amplifier Introduction MOSFET Small Signal Model To determine the small-signal performance of a given MOSFET amplifier circuit,

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam Georgia Institute of Technology School of Electrical and Computer Engineering Midterm Exam ECE-3400 Fall 2013 Tue, September 24, 2013 Duration: 80min First name Solutions Last name Solutions ID number

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

Analog Circuits and Systems

Analog Circuits and Systems Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 10: Electronic Devices for Analog Circuits 1 Multipliers Multipliers provide multiplication of two input voltages or currents Multipliers can

More information

Multistage Amplifiers

Multistage Amplifiers Multistage Amplifiers Single-stage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)

More information

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source Output from Collector Start with bias DC analysis make sure BJT is in FA, then calculate small signal parameters for AC analysis.

More information

Tuesday, February 1st, 9:15 12:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo

Tuesday, February 1st, 9:15 12:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo Bandgap references, sampling switches Tuesday, February 1st, 9:15 12:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Outline Tuesday, February 1st 11.11

More information

ECEN 5008: Analog IC Design. Final Exam

ECEN 5008: Analog IC Design. Final Exam ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Time-limited, 150-minute exam. When the time is called, all work must stop. Put your initials on

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

Unit 3: Integrated-circuit amplifiers (contd.)

Unit 3: Integrated-circuit amplifiers (contd.) Unit 3: Integrated-circuit amplifiers (contd.) COMMON-SOURCE AND COMMON-EMITTER AMPLIFIERS The Common-Source Circuit The most basic IC MOS amplifier is shown in fig.(1). The source of MOS transistor is

More information

Low-Noise Amplifiers

Low-Noise Amplifiers 007/Oct 4, 31 1 General Considerations Noise Figure Low-Noise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input

More information

The Common Source JFET Amplifier

The Common Source JFET Amplifier The Common Source JFET Amplifier Small signal amplifiers can also be made using Field Effect Transistors or FET's for short. These devices have the advantage over bipolar transistors of having an extremely

More information

Current Supply Topology. CMOS Cascode Transconductance Amplifier. Basic topology. p-channel cascode current supply is an obvious solution

Current Supply Topology. CMOS Cascode Transconductance Amplifier. Basic topology. p-channel cascode current supply is an obvious solution CMOS Cascode Transconductance Amplifier Basic topology. Current Supply Topology p-channel cascode current supply is an obvious solution Current supply must have a very high source resistance r oc since

More information

Pg: 1 VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 Department of Electronics & Communication Engineering Regulation: 2013 Acadamic Year : 2015 2016 EC6304 Electronic Circuits I Question

More information

Lecture 16: Small Signal Amplifiers

Lecture 16: Small Signal Amplifiers Lecture 16: Small Signal Amplifiers Prof. Niknejad Lecture Outline Review: Small Signal Analysis Two Port Circuits Voltage Amplifiers Current Amplifiers Transconductance Amps Transresistance Amps Example:

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

More information

EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design

EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design References: Analog Integrated Circuit Design by D. Johns and K. Martin and Design of Analog CMOS Integrated Circuits by B. Razavi All figures

More information

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT) Course Outline 1. Chapter 1: Signals and Amplifiers 1 2. Chapter 3: Semiconductors 3. Chapter 4: Diodes 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

More information

CSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University

CSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University CSE 577 Spring 2011 Basic Amplifiers and Differential Amplifier, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University Don t let the computer

More information

Microelectronic Devices and Circuits Lecture 22 - Diff-Amp Anal. III: Cascode, µa Outline Announcements DP:

Microelectronic Devices and Circuits Lecture 22 - Diff-Amp Anal. III: Cascode, µa Outline Announcements DP: 6.012 Microelectronic Devices and Circuits Lecture 22 DiffAmp Anal. III: Cascode, µa741 Outline Announcements DP: Discussion of Q13, Q13' impact. Gain expressions. Review Output Stages DC Offset of an

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 9 The Common-Source Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has

More information

Lecture 13 Date:

Lecture 13 Date: Lecture 13 Date: 9.09.016 Common Mode Rejection Ratio NonIdealities in Differential mplifier Common Mode Rejection Ratio (CMRR) Differential input amplifiers are devices/circuits that can input and amplify

More information

Experiment #7 MOSFET Dynamic Circuits II

Experiment #7 MOSFET Dynamic Circuits II Experiment #7 MOSFET Dynamic Circuits II Jonathan Roderick Introduction The previous experiment introduced the canonic cells for MOSFETs. The small signal model was presented and was used to discuss the

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

ES 330 Electronics II Homework # 6 Soltuions (Fall 2016 Due Wednesday, October 26, 2016)

ES 330 Electronics II Homework # 6 Soltuions (Fall 2016 Due Wednesday, October 26, 2016) Page1 Name Solutions ES 330 Electronics Homework # 6 Soltuions (Fall 016 ue Wednesday, October 6, 016) Problem 1 (18 points) You are given a common-emitter BJT and a common-source MOSFET (n-channel). Fill

More information

Chapter 13: Introduction to Switched- Capacitor Circuits

Chapter 13: Introduction to Switched- Capacitor Circuits Chapter 13: Introduction to Switched- Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4 Switched-Capacitor Integrator 13.5 Switched-Capacitor

More information

EE 501 Lab 4 Design of two stage op amp with miller compensation

EE 501 Lab 4 Design of two stage op amp with miller compensation EE 501 Lab 4 Design of two stage op amp with miller compensation Objectives: 1. Design a two stage op amp 2. Investigate how to miller compensate a two-stage operational amplifier. Tasks: 1. Build a two-stage

More information

EECE2412 Final Exam. with Solutions

EECE2412 Final Exam. with Solutions EECE2412 Final Exam with Solutions Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University Fall Semester 2010 My file 11480/exams/final General Instructions:

More information

EE 435. Lecture 7: Signal Swing Measurement/Simulation of High Gain Circuits Laboratory Support

EE 435. Lecture 7: Signal Swing Measurement/Simulation of High Gain Circuits Laboratory Support EE 435 Lecture 7: Signal Swing Measurement/Simulation of High Gain Circuits Laboratory Support 1 Review from last lecture: Operation of Op Amp A different perspective D D DD Small signal differential half-circuit

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

Q.1: Power factor of a linear circuit is defined as the:

Q.1: Power factor of a linear circuit is defined as the: Q.1: Power factor of a linear circuit is defined as the: a. Ratio of real power to reactive power b. Ratio of real power to apparent power c. Ratio of reactive power to apparent power d. Ratio of resistance

More information

Metal-Oxide-Silicon (MOS) devices PMOS. n-type

Metal-Oxide-Silicon (MOS) devices PMOS. n-type Metal-Oxide-Silicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices

EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices EE 230 Fall 2006 Experiment 11 Small Signal Linear Operation of Nonlinear Devices Purpose: The purpose of this laboratory experiment is to investigate the use of small signal concepts for designing and

More information

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Phy 335, Unit 4 Transistors and transistor circuits (part one) Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

More information

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers 6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication

More information

Analysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II)

Analysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II) Analysis and Design of Analog Integrated Circuits Lecture 20 Advanced Opamp Topologies (Part II) Michael H. Perrott April 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Outline of Lecture

More information

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre EJECICIOS DE COMPONENTES ELECTÓNICOS. 1 er cuatrimestre 2 o Ingeniería Electrónica Industrial Juan Antonio Jiménez Tejada Índice 1. Basic concepts of Electronics 1 2. Passive components 1 3. Semiconductors.

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 9: FET amplifiers and switching circuits Prof. Manar Mohaisen Department of EEC Engineering Review of the Precedent Lecture Review of basic electronic devices

More information

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

More information

ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

More information

ECE 340 Lecture 40 : MOSFET I

ECE 340 Lecture 40 : MOSFET I ECE 340 Lecture 40 : MOSFET I Class Outline: MOS Capacitance-Voltage Analysis MOSFET - Output Characteristics MOSFET - Transfer Characteristics Things you should know when you leave Key Questions How do

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

IC design for wireless system

IC design for wireless system IC design for wireless system Lecture 6 Dr. Ahmed H. Madian Ahmed.madian@guc.edu.eg 1 outlines Introduction to mixers Mixer metrics Mixer topologies Mixer performance analysis Mixer design issues Dr. Ahmed

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline COE/EE152: Basic Electronics Lecture 5 Andrew Selasi Agbemenu 1 Outline Physical Structure of BJT Two Diode Analogy Modes of Operation Forward Active Mode of BJTs BJT Configurations Early Effect Large

More information

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor Course Number Section Electronics ELEC 311 BB Examination Date Time # of pages Final August 12, 2005 Three hours 3 nstructor Dr. R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

More information

EXP8: AMPLIFIERS II.

EXP8: AMPLIFIERS II. EXP8: AMPLIFIES II. Objectives. The objectives of this lab are:. To analyze the behavior of a class A amplifier. 2. To understand the role the components play in the gain of the circuit. 3. To find the

More information

In a cascade configuration, the overall voltage and current gains are given by:

In a cascade configuration, the overall voltage and current gains are given by: ECE 3274 Two-Stage Amplifier Project 1. Objective The objective of this lab is to design and build a direct coupled two-stage amplifier, including a common-source gain stage and a common-collector buffer

More information

Operational Amplifiers

Operational Amplifiers Monolithic Amplifier Circuits: Operational Amplifiers Chapter Jón Tómas Guðmundsson tumi@hi.is. Week Fall 200 Operational amplifiers (op amps) are an integral part of many analog and mixedsignal systems

More information

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design

More information

Early Effect & BJT Biasing

Early Effect & BJT Biasing Early Effect & BJT Biasing Early Effect DC BJT Behavior DC Biasing the BJT 1 ESE319 Introduction to Microelectronics Early Effect Saturation region Forward-Active region 4 3 Ideal NPN BJT Transfer V Characteristic

More information

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations.

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations. 6.012 ELECTRONIC DEVICES AND CIRCUITS Schedule -- Fall 1995 (8/31/95 version) Recitation 1 -- Wednesday, Sept. 6: Review of 6.002 models for BJT. Discussion of models and modeling; motivate need to go

More information

Technology-Independent CMOS Op Amp in Minimum Channel Length

Technology-Independent CMOS Op Amp in Minimum Channel Length Technology-Independent CMOS Op Amp in Minimum Channel Length A Thesis Presented to The Academic Faculty by Susanta Sengupta In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

More information

Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier

Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier RESEARCH ARTICLE OPEN ACCESS Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier Akshay Kumar Kansal 1, Asst Prof. Gayatri Sakya 2 Electronics and Communication Department, 1,2

More information

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS AV18-AFC ANALOG FUNDAMENTALS C Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS 1 ANALOG FUNDAMENTALS C AV18-AFC Overview This topic identifies the basic FET amplifier configurations and their principles of

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Pre-Report Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

Linear electronic. Lecture No. 1

Linear electronic. Lecture No. 1 1 Lecture No. 1 2 3 4 5 Lecture No. 2 6 7 8 9 10 11 Lecture No. 3 12 13 14 Lecture No. 4 Example: find Frequency response analysis for the circuit shown in figure below. Where R S =4kR B1 =8kR B2 =4k R

More information

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation Rail-To-Rail Op-Amp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a two-stage op-amp design is considered using both Miller

More information

V o2 = V c V d 2. V o1. Sensor circuit. Figure 1: Example of common-mode and difference-mode voltages. V i1 Sensor circuit V o

V o2 = V c V d 2. V o1. Sensor circuit. Figure 1: Example of common-mode and difference-mode voltages. V i1 Sensor circuit V o M.B. Patil, IIT Bombay 1 BJT Differential Amplifier Common-mode and difference-mode voltages A typical sensor circuit produces an output voltage between nodes A and B (see Fig. 1) such that V o1 = V c

More information

Low Dropout Voltage Regulator Operation and Performance Review

Low Dropout Voltage Regulator Operation and Performance Review Low Drop Voltage Regulator peration and Performance Review Eric Chen & Alex Leng ntroduction n today s power management systems, high power efficiency becomes necessary to maximize the lifetime of the

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 11: Voltage and Current Sources Administrativia Lab 3 this week Please make sure to work through the pre-lab

More information

CHAPTER 7 - HIGH-PERFORMANCE CMOS OPERATIONAL AMPLIFIERS SECTION BUFFERED OP AMPS

CHAPTER 7 - HIGH-PERFORMANCE CMOS OPERATIONAL AMPLIFIERS SECTION BUFFERED OP AMPS CMOS Analog Circuit Design Page 7.01 CHAPTER 7 HIGHPERFORMANCE CMOS OPERATIONAL AMPLIFIERS Chapter Outline 7.1 Buffered Op Amps 7.2 HighSpeed/Frequency Op Amps 7.3 Differential Output Op Amps 7.4 Micropower

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Lecture 17: BJT/FET Mixers/Mixer Noise

Lecture 17: BJT/FET Mixers/Mixer Noise EECS 142 Lecture 17: BJT/FET Mixers/Mixer Noise Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture

More information

MICROELECTRONIC CIRCUIT DESIGN Third Edition

MICROELECTRONIC CIRCUIT DESIGN Third Edition MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113

More information

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier Objective Design, simulate and test a two-stage operational amplifier Introduction Operational amplifiers (opamp) are essential components of

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

PHYS225 Lecture 6. Electronic Circuits

PHYS225 Lecture 6. Electronic Circuits PHYS225 Lecture 6 Electronic Circuits Transistors History Basic physics of operation Ebers-Moll model Small signal equivalent Last lecture Introduction to Transistors A transistor is a device with three

More information

Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik

Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik 1 Chapter 10 Feedback Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4. Ch 10: Feedback 5. Ch 11: Output

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information