EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7

Size: px
Start display at page:

Download "EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7"

Transcription

1 Issued: Friday, Oct. 16, 2015 PROBLEM SET #7 Due (at 8 a.m.): Monday, Oct. 26, 2015, in the EE 140/240A HW box near 125 Cory. 1. A design error has resulted in a mismatch in the circuit of Fig. PS7-1. Specifically, M 2 has twice the W/L ratiio of M 1. If V id is a small sine-wave signal, find an expression for (a) I D1 and I D2. (b) V OV for each of M 1 and M 2. (c) The differential gain A dm in terms of R D, I, and V OV. Fig. PS7-1 (a) I D1 = 1 2 Kn W L (V GS1 V t ) 2 ; I D2 = 1 2 Kn (2 W L )(V GS2 V t ) 2 Since V GS V t is equal for both transistors: => I D1 I D2 = 1 2 But I = I D1 + I D2 => 2I D1 = I I D2, I D1 = I/3, I D2 = 2I/3 (b) V OV = V GS V t, V OV1 = V OV2 = V OV For Q 1 : I 3 = 1 2 Kn ( W L ) V ov 2 => V OV = 2 3 I Kn W/L (c) g m = 2ID g V m1 = 2I, g OV 3V m2 = 4 I = 2g OV 3 V m1 OV Current flows through the 2 transistors M1 and M2 is: i D1 = i D2 = V id = g m1 g m2 2 3 g m1v id

2 V o+ V o = 2i D1 R D = 4 3 g m1v id R D = => V O2 V O1 V id = 8 9 I V OV R D 8 9 I V OV R D V id

3 2. The differential amplifier in Fig. PS7-2 utilizes a resistor R SS to esiablish a 1-mA dc bias current. Note that this amplifier uses a single 5-V supply and thus needs a dc common-mode voltage V CM. Transistors M 1 and M 2 have k W/L= 2.5mA/V 2, V t =0.7V, and λ=0. (a) Find the required value of V CM. (b) Find the value of R D that results in a differential gain A dm of 8 V/V. (c) Determine the dc voltage at the drains (d) Determine the common-mode gain v D /v CM and CMRR for this amplifier. (Hint: You need to take 1/g m into account.) (e) Use the common-mode gain found in (d) to determine the change in V CM that results in M 1 and M 2 entering the triode region. Fig. PS7-2

4 (a) I D1 = I D2 = 1mA 2 = 0.5mA ; I D = 1 2 Kn W L. V ov 2 => 0.5m = m V ov 2 V ov = 0.632V V ov = V GS V t = V GS 0.7 V GS = = 1.332V To obtain 1mA over R SS = 1kΩ V S = 1m 1K = 1V V CM = V S + V GS = = 2.332V (b) g m = I = 1mA ma = 1.6 ; E V OV 0.632V V fn. (7.45): A d = g m. R D ; For A d = 8 v ; R v D = 8 = 5kΩ 1.6m (c) At the drains: V D1 = V D2 = 5V 1mA 5kΩ = +2.5V (d) V o1 V icm = R D 1 = A cm = ΔV D = gm +2R SS ΔV cm 2 5k 1 1.6m +2 1K = 1.9 v v (e) On the edge of the triode region: V G V D = V t If: V G V D = V t => V CM + ΔV CM V D + ΔV CM A CM = V t ΔV CM ΔV CM. 1.9 = ΔV CM = ΔV CM = 0.3V

5 3. Fig. PS7-3 shows a high-gain op amp design with cascade devices. Let I SS = 1mA, V B1 = 1.7V and V B2 = 1.6V. Assuming γ = 0, find the mid-band gain v out /v in, input commonmode range, and the output swing. MOS Parameters: μ n C ox = 135μA V 2, μ p C ox = 38μA V 2 V Tn = 0.7 V, V Tp = 0.8 V, λ n = λ p = 0.1, ( W L ) 1,2,3,4 = 100μm 0.34μm, (W L ) = 100μm 5,6,7,8 0.32μm Fig. PS7-3

6 ( W L ) 1 8 = , I ss = 1mA, V B1 = 1.7V, γ = 0 (a) V in,cm,min = V ISS + V Gs1 = V ISS + V THN + V OD1 where V ISS is the vottage across I SS. V in,cm,max = V Y + V TH1 ; V Y = V B1 V GS3 = V B1 V TH3 V OD3 V in,cm,max = V B1 V TH3 V OD3 + V TH1 ; assume V TH3 = V TH1, V in,cm,max = V B1 V OD3 To calculate V OD3, I D3 = 1 2 μ nc ox ( W L ) 3 (V GS V TH ) 2 (1 + λv DS ), assume λ 0 V OV3 = V GS3 V TH = [ 2I D3 μ n C ox ( W L eff ) V in,cm,max = = 1.541V (b) V o,max = V b2 V THp = 2.4V ] 1 2 = [ 2(0.5mA) 350( )( 100 )] = 0.159V V o,min = V b1 V THn = 1V (c) r op = r on = 1 λi D = 20k, g m1 = 2k n I d = 2(3.97e 2 )0.5e 3 = 6.3mS, g m2 = 2k p I d = 2(1.19e 2 )0.5e 3 = 3.44mS. use G m model: G m = g m1, R out = g mn r o 2 //g mp r o 2 =2.5M//1.37M = 0.88M Gain = G m R out = 5.57k

7 4. Fig. PS7-4 shows a two-stage CMOS op amp. Let I REF = 90μA, V DD = V SS = 2.5V, and C C = 0. Find the mid-band gain v O /(v + v ), input common-mode range, and the output swing. MOS Parameters: μ n C ox = 160μA V 2, μ p C ox = 40μA V 2, V Tn = 0.7 V, V Tp = 0.8 V, λ n = λ p = 0.1, ( W L ) 1,2 = 20μm 0.8μm, (W L ) 3,4 = 5μm 0.8μm, (W L ) 5,7,8 = 40μm 0.8μm, (W L ) 6 = 10μm 0.8μm Fig. PS7-4

8 Since Q 8 and Q 5 are matched, I = I REF. Thus Q 1, Q 2, Q 3, and Q 4 each conducts a current equal to I/2 = 45μA. Since Q 7 is matched to Q 5 and Q 8, the current in Q 7 is equal to I REF = 90μA. Finally, Q 6 conducts an equal current of 90μA. The voltage gain of the first stage is determined from: A 1 = g m2 (r 02 r o4 ) = 0.3( ) = 33.3V/V. The voltage gain of the second stage is determined from A 2 = g m6 (r 06 r o7 ) = 0.6( ) = 33.3V/V. Thus the overall dc open-loop gain is A O = A 1 A 2 = ( 33.3) ( 33.3) = 1109V/V or 20 log1109=61 db. The lower limit of the input common-mode range is the value of input voltage at which Q 1 and Q 2 leave the saturation region. This occurs when the input voltage falls below the voltage at the drain of Q 1 by V IP volts. Since the drain if Q 1 is at =-1.5 V, then the lower limit of the input common-mode range is -2.3 V. The upper limit of the input common-mode range is the value of input voltage at which Q 5 leaves the saturation region. Since for Q 5 to operate in saturation the voltage across it (i.e., V SD5 ) should at least be equal to the overdrive voltage at which it is operating (i.e., 0.3V), the highest voltage permitted at the drain of Q5 should be +2.2 V. It follows that the highest value of v ICM should be v ICMmax = = 1.1 V. The highest allowable output voltage is the value at which Q 7 leaves the saturation region, which is V DD V OV7 = = 2.2V. The lowest allowable output voltage is the value at which Q6 leaves saturation, which is V SS + V OV6 = = 2.2 V. Thus, the output voltage range is -2.2 V to +2.2 V.

9 5. Fig. PS7-5 shows a multi-stage BJT OPAmp design. BJTs Q 1 Q 9 have the same size except for Q 6, which is 4x larger than Q 9. Ignore Early effect. (a) Assuming β 1 and V BE = 0.7V, calculate the DC currents flowing through Q 1 Q 9. (b) Calculate the static power dissipation of this op amp. (c) If transistors Q 1 and Q 2 have β = 100, what is the input bias current of this op amp? (d) If V CE(sat) = 0.4V, determine the input common-mode range of this op amp. (e) Calculate the input resistance, mid-band gain v o /v id, and the output resistance of this op amp. Fig. PS7-5

10 (a) (b) To calculate the power dissipated in the circuit in the quiescent state (i.e., with zero input signal) we simply evaluate the dc current that the circuit draws from each of the two power supplies. From the +15-V supply the dc current is I + = = 8.5 ma. Thus the power supplied by the positive power supply is P + = 15 X 8.5 = mw. The 15-V supply provides a current I - given by I - = =9mA. Thus the power provided by the negative supply is P - =15X9=135mW. Adding P + and P - provides the total power dissipated in the circuit P D : P D = P + + P - =262.5mW. (c) The input bias current of the op amp is the average of the dc currents that flow in the two input terminals (i.e., in the bases of Q 1 and Q 2 ). These two currents are equal (because we have assumed matched devices); thus the bias current is given by I B = I E1 β+1 2.5μA. (d) The upper limit on the input common-mode voltage is determined by the voltage at which Q 1 and Q 2 leave the active mode and enter saturation. This will happen if the input voltage exceeds the collector voltage, which is +10 V, by about 0.4 V. Thus the upper limit of the common-mode range is V. The lower limit of the input commom-mode range is determined by the voltage at which Q 3 leaves the active mode and thus ceases to act as a constant-current source. This will happen if the collector voltage of Q 3 goes below the voltage at its base, which

11 is 14.3 V, by more than 0.4V. It follows that the input common-mode voltage should not go lower than =-14V. Thus the common-mode range is -14V to +10.4V. (e) The input differential resistance R id is given by R id = r π1 + r π2. Since Q1 and Q2 are each operating at an emitter current of 0.25 ma, it follows that r e1 = r e2 = 25 = 100Ω. Assume β = 100; then r 0.25 π1 = r π2 = = 10.1 kω. Thus R id = 20.2 kω. To evaluate the gain of the first stage we first find the input resistance of the second stage, R i2, R i2 = r π4 + r π5. Q 4 and Q 5 are each operating at an emitter current of 1 ma; thus r e4 = r e5 = 25Ω, r π4 = r π5 = = 2.525kΩ. Thus R i2 = 5.05 kω. This resistance appears between the collectors of Q 1 and Q 2, as shown in Fig Thus the gain of the first stage will be A 1 = v o1 [R i2 (R 1 +R 2 )] r e1 +r e2 = (5.05 kω 40 kω) 200 Ω v id = = 22.4V/V. Total resistance in collector circuit Total resistance in emitter circuit = Fig. 2 shows an equivalent circuit for calculating the gain of the second stage. As indicated, the input voltage to the second stage is the output voltage of the first stage. Also shown is the resistance R i3, which is the input resistance of the third stage formed by Q 7. The value of R i3 can be found by multiplying the total resistance in the emitter of Q 7 by (β+1): R i3 = (β + 1)(R 4 + r e7 ). Since Q 7 is operating at an emitter current of 1 ma, r e7 = 25 1 = 25 Ω, R i3 = = kω. Fig. 2 We can now find the gain A 2 of the second stage as the ratio of the total resistance in the collector circuit to the total resistance in the emitter circuit: A 2 = v o1 (R 3 R i3 ) r e4 +r e5 (3 kω kω) = = 59.2 V/V. 50 Ω v o2 = To obtain the gain of the third stage we refer to the equivalent circuit shown in Fig. 3, where R i4 is the input resistance of the output stage formed by Q 8. Using the resistance-reflection rule, we calculate the value of R i4 as R i4 = (β + I)(r e8 + R 6 ) where r e8 = 25 5 = 5 Ω, R i4 = 101( ) = kω..

12 Fig. 3 Fig. 4. The gain of the third stage is given by A 3 = v o3 = (R 5 R i4 ) = v o2 r e7 +R 4 (15.7 kω kω) kω 6.42 V/V. Finally, to obtain the gain A 4 of the output stage we refer to the equivalent circuit in Fig. 4 and write A 4 = v o v o3 = R 6 R 6 +r e8 = = The overall voltage gain of the amplifier can then be obtained as follows: v o v id = A 1 A 2 A 3 A 4 = 8513V/V or 78.6 db. To obtain the output resistance R o we grab hold of the output terminal in Fig. 4 and look back into the circuit. By inspection we find R o = R 6 [r e8 + R 5/ (β + 1)] which gives R o =152 Ω. =

Solid State Devices & Circuits. 18. Advanced Techniques

Solid State Devices & Circuits. 18. Advanced Techniques ECE 442 Solid State Devices & Circuits 18. Advanced Techniques Jose E. Schutt-Aine Electrical l&c Computer Engineering i University of Illinois jschutt@emlab.uiuc.edu 1 Darlington Configuration - Popular

More information

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

More information

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers ECE 442 Solid State Devices & Circuits 15. Differential Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 442 Jose Schutt Aine 1 Background

More information

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 11-1 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of

More information

ECE 546 Lecture 12 Integrated Circuits

ECE 546 Lecture 12 Integrated Circuits ECE 546 Lecture 12 Integrated Circuits Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Integrated Circuits IC Requirements

More information

EECE2412 Final Exam. with Solutions

EECE2412 Final Exam. with Solutions EECE2412 Final Exam with Solutions Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University Fall Semester 2010 My file 11480/exams/final General Instructions:

More information

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN Name: EXAM #3 Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit. Data: Use the following data in all

More information

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Problem 1. Consider the following circuit, where a saw-tooth voltage is applied

More information

CHAPTER 8 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

CHAPTER 8 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS CHAPTER 8 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS Chapter Outline 8.1 The CMOS Differential Pair 8. Small-Signal Operations of the MOS Differential Pair 8.3 The BJT Differential Pair 8.4 Other Non-ideal

More information

QUESTION BANK for Analog Electronics 4EC111 *

QUESTION BANK for Analog Electronics 4EC111 * OpenStax-CNX module: m54983 1 QUESTION BANK for Analog Electronics 4EC111 * Bijay_Kumar Sharma This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract

More information

Analysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications

Analysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications Analysis and Design of Analog Integrated Circuits Lecture 8 Key Opamp Specifications Michael H. Perrott April 8, 0 Copyright 0 by Michael H. Perrott All rights reserved. Recall: Key Specifications of Opamps

More information

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Device Structure N-Channel MOSFET Providing electrons Pulling electrons (makes current flow) + + + Apply positive voltage to gate: Drives away

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12 1 MOSFET vs. BJT current-voltage characteristic 1.5 10 3 i C ( v) i D ( v) 1 10 3 500 0 2 4 6 8 10 v The drain current

More information

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits Microelectronic Circuits II Ch 0 : Operational-Amplifier Circuits 0. The Two-stage CMOS Op Amp 0.2 The Folded-Cascode CMOS Op Amp CNU EE 0.- Operational-Amplifier Introduction - Analog ICs : operational

More information

SAMPLE FINAL EXAMINATION FALL TERM

SAMPLE FINAL EXAMINATION FALL TERM ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM 2001-2002 NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need

More information

HOME ASSIGNMENT. Figure.Q3

HOME ASSIGNMENT. Figure.Q3 HOME ASSIGNMENT 1. For the differential amplifier circuit shown below in figure.q1, let I=1 ma, V CC =5V, v CM = -2V, R C =3kΩ and β=100. Assume that the BJTs have v BE =0.7 V at i C =1 ma. Find the voltage

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

Current Mirrors. Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4-1

Current Mirrors. Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4-1 Current Mirrors Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4- 郭泰豪, Analog C Design, 08 { Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4- 郭泰豪, Analog C Design, 08 { Current Source and Sink Symbol

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

Applied Electronics II

Applied Electronics II Applied Electronics II Chapter 2: Differential Amplifier School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa University Daniel D./Abel G. April 4, 2016 Chapter

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

ECEN 5008: Analog IC Design. Final Exam

ECEN 5008: Analog IC Design. Final Exam ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Time-limited, 150-minute exam. When the time is called, all work must stop. Put your initials on

More information

Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

More information

F9 Differential and Multistage Amplifiers

F9 Differential and Multistage Amplifiers Lars Ohlsson 018-10-0 F9 Differential and Multistage Amplifiers Outline MOS differential pair Common mode signal operation Differential mode signal operation Large signal operation Small signal operation

More information

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs Integrated Circuit Amplifiers Comparison of MOSFETs and BJTs 17 Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 )

More information

LECTURE 19 DIFFERENTIAL AMPLIFIER

LECTURE 19 DIFFERENTIAL AMPLIFIER Lecture 19 Differential Amplifier (6/4/14) Page 191 LECTURE 19 DIFFERENTIAL AMPLIFIER LECTURE ORGANIZATION Outline Characterization of a differential amplifier Differential amplifier with a current mirror

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1 Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog

More information

Building Blocks of Integrated-Circuit Amplifiers

Building Blocks of Integrated-Circuit Amplifiers Building Blocks of ntegrated-circuit Amplifiers 1 The Basic Gain Cell CS and CE Amplifiers with Current Source Loads Current-source- or active-loaded CS amplifier Rin A o R A o g r r o g r 0 m o m o Current-source-

More information

Output Stages and Power Amplifiers

Output Stages and Power Amplifiers CHAPTER 11 Output Stages and Power Amplifiers Introduction 11.7 Power BJTs 911 11.1 Classification of Output Stages 11. Class A Output Stage 913 11.3 Class B Output Stage 918 11.4 Class AB Output Stage

More information

Chapter 8 Differential and Multistage Amplifiers

Chapter 8 Differential and Multistage Amplifiers 1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.

More information

Lecture 34: Designing amplifiers, biasing, frequency response. Context

Lecture 34: Designing amplifiers, biasing, frequency response. Context Lecture 34: Designing amplifiers, biasing, frequency response Prof J. S. Smith Context We will figure out more of the design parameters for the amplifier we looked at in the last lecture, and then we will

More information

6.012 Microelectronic Devices and Circuits

6.012 Microelectronic Devices and Circuits Page 1 of 13 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Microelectronic Devices and Circuits Final Eam Closed Book: Formula sheet provided;

More information

The Differential Amplifier. BJT Differential Pair

The Differential Amplifier. BJT Differential Pair 1 The Differential Amplifier Asst. Prof. MONTREE SRPRUCHYANUN, D. Eng. Dept. of Teacher Training in Electrical Engineering, Faculty of Technical Education King Mongkut s nstitute of Technology North Bangkok

More information

V o. ECE2280 Homework #1 Fall Use: ignore r o, V BE =0.7, β=100 V I = sin(20t) For DC analysis, assume that the capacitors are open

V o. ECE2280 Homework #1 Fall Use: ignore r o, V BE =0.7, β=100 V I = sin(20t) For DC analysis, assume that the capacitors are open ECE2280 Homework #1 Fall 2011 1. Use: ignore r o, V BE =0.7, β=100 V I = 200.001sin(20t) For DC analysis, assume that the capacitors are open (a) Solve for the DC currents: a. I B b. I E c. I C (b) Solve

More information

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor Course Number Section Electronics ELEC 311 BB Examination Date Time # of pages Final August 12, 2005 Three hours 3 nstructor Dr. R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

More information

Building Blocks of Integrated-Circuit Amplifiers

Building Blocks of Integrated-Circuit Amplifiers CHAPTER 7 Building Blocks of Integrated-Circuit Amplifiers Introduction 7. 493 IC Design Philosophy 7. The Basic Gain Cell 494 495 7.3 The Cascode Amplifier 506 7.4 IC Biasing Current Sources, Current

More information

Voltage Biasing Considerations (From the CS atom toward the differential pair atom) Claudio Talarico, Gonzaga University

Voltage Biasing Considerations (From the CS atom toward the differential pair atom) Claudio Talarico, Gonzaga University Voltage Biasing Considerations (From the CS atom toward the differential pair atom) Claudio Talarico, Gonzaga University Voltage Biasing Considerations In addition to bias currents, building a complete

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

Microelectronics Part 2: Basic analog CMOS circuits

Microelectronics Part 2: Basic analog CMOS circuits GBM830 Dispositifs Médicaux Intelligents Microelectronics Part : Basic analog CMOS circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim!! http://www.cours.polymtl.ca/gbm830/! mohamad.sawan@polymtl.ca!

More information

Analog Integrated Circuit Design Exercise 1

Analog Integrated Circuit Design Exercise 1 Analog Integrated Circuit Design Exercise 1 Integrated Electronic Systems Lab Prof. Dr.-Ing. Klaus Hofmann M.Sc. Katrin Hirmer, M.Sc. Sreekesh Lakshminarayanan Status: 21.10.2015 Pre-Assignments The lecture

More information

Lecture 030 ECE4430 Review III (1/9/04) Page 030-1

Lecture 030 ECE4430 Review III (1/9/04) Page 030-1 Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material

More information

Lecture 350 Low Voltage Op Amps (3/26/02) Page 350-1

Lecture 350 Low Voltage Op Amps (3/26/02) Page 350-1 Lecture 350 Low Voltage Op Amps (3/26/02) Page 3501 LECTURE 350 LOW VOLTAGE OP AMPS (READING: AH 415432) Objective The objective of this presentation is: 1.) How to design standard circuit blocks with

More information

Chapter 11. Differential Amplifier Circuits

Chapter 11. Differential Amplifier Circuits Chapter 11 Differential Amplifier Circuits 11.0 ntroduction Differential amplifier or diff-amp is a multi-transistor amplifier. t is the fundamental building block of analog circuit. t is virtually formed

More information

Week 12: Output Stages, Frequency Response

Week 12: Output Stages, Frequency Response ELE 2110A Electronic Circuits Week 12: Output Stages, Frequency esponse (2 hours only) Lecture 12-1 Output Stages Topics to cover Amplifier Frequency esponse eading Assignment: Chap 15.3, 16.1 of Jaeger

More information

ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

Common mode rejection ratio

Common mode rejection ratio Common mode rejection ratio Definition: Common mode rejection ratio represents the ratio of the differential voltage gaina d tothecommonmodevoltagegain,a cm : Common mode rejection ratio Definition: Common

More information

MICROELECTRONIC CIRCUIT DESIGN Third Edition

MICROELECTRONIC CIRCUIT DESIGN Third Edition MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

EE5310/EE3002: Analog Circuits. on 18th Sep. 2014

EE5310/EE3002: Analog Circuits. on 18th Sep. 2014 EE5310/EE3002: Analog Circuits EC201-ANALOG CIRCUITS Tutorial 3 : PROBLEM SET 3 Due shanthi@ee.iitm.ac.in on 18th Sep. 2014 Problem 1 The MOSFET in Fig. 1 has V T = 0.7 V, and μ n C ox = 500 μa/v 2. The

More information

CMOS Cascode Transconductance Amplifier

CMOS Cascode Transconductance Amplifier CMOS Cascode Transconductance Amplifier Basic topology. 5 V I SUP v s V G2 M 2 iout C L v OUT Device Data V Tn = 1 V V Tp = 1 V µ n C ox = 50 µa/v 2 µ p C ox = 25 µa/v 2 λ n = 0.05 V 1 λ p = 0.02 V 1 @

More information

Unit 3: Integrated-circuit amplifiers (contd.)

Unit 3: Integrated-circuit amplifiers (contd.) Unit 3: Integrated-circuit amplifiers (contd.) COMMON-SOURCE AND COMMON-EMITTER AMPLIFIERS The Common-Source Circuit The most basic IC MOS amplifier is shown in fig.(1). The source of MOS transistor is

More information

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers Chapter 4 CMOS Cascode Amplifiers 4.1 Introduction A single stage CMOS amplifier cannot give desired dc voltage gain, output resistance and transconductance. The voltage gain can be made to attain higher

More information

Chapter 10 Differential Amplifiers

Chapter 10 Differential Amplifiers Chapter 10 Differential Amplifiers 10.1 General Considerations 10.2 Bipolar Differential Pair 10.3 MOS Differential Pair 10.4 Cascode Differential Amplifiers 10.5 Common-Mode Rejection 10.6 Differential

More information

TWO AND ONE STAGES OTA

TWO AND ONE STAGES OTA TWO AND ONE STAGES OTA F. Maloberti Department of Electronics Integrated Microsystem Group University of Pavia, 7100 Pavia, Italy franco@ele.unipv.it tel. +39-38-50505; fax. +39-038-505677 474 EE Department

More information

EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices

EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices EE 230 Fall 2006 Experiment 11 Small Signal Linear Operation of Nonlinear Devices Purpose: The purpose of this laboratory experiment is to investigate the use of small signal concepts for designing and

More information

SKEL 4283 Analog CMOS IC Design Current Mirrors

SKEL 4283 Analog CMOS IC Design Current Mirrors SKEL 4283 Analog CMOS IC Design Current Mirrors Dr. Nasir Shaikh Husin Faculty of Electrical Engineering Universiti Teknologi Malaysia Current Mirrors 1 Objectives Introduce and characterize the current

More information

Operational Amplifiers

Operational Amplifiers CHAPTER 9 Operational Amplifiers Analog IC Analysis and Design 9- Chih-Cheng Hsieh Outline. General Consideration. One-Stage Op Amps / Two-Stage Op Amps 3. Gain Boosting 4. Common-Mode Feedback 5. Input

More information

EE 482 Electronics II

EE 482 Electronics II EE 482 Electronics II Lab #4: BJT Differential Pair with Resistive Load Overview The objectives of this lab are (1) to design and analyze the performance of a differential amplifier, and (2) to measure

More information

Analysis and Design of Analog Integrated Circuits Lecture 8. Cascode Techniques

Analysis and Design of Analog Integrated Circuits Lecture 8. Cascode Techniques Analysis and Design of Analog Integrated Circuits Lecture 8 Cascode Techniques Michael H. Perrott February 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Review of Large Signal Analysis

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial :. ND_NW_EC_Analog Electronics_658 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: -4546 CLASS TEST 8-9 ELECTONICS ENGINEEING

More information

Multistage Amplifiers

Multistage Amplifiers Multistage Amplifiers Single-stage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)

More information

Differential Amplifier Design

Differential Amplifier Design Differential Amplifier Design Design with ideal current source bias. Differential and common mode gain results Add finite output resistance to current source. Replace ideal current source with current

More information

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT) Course Outline 1. Chapter 1: Signals and Amplifiers 1 2. Chapter 3: Semiconductors 3. Chapter 4: Diodes 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

More information

Metal-Oxide-Silicon (MOS) devices PMOS. n-type

Metal-Oxide-Silicon (MOS) devices PMOS. n-type Metal-Oxide-Silicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.

More information

EECS3611 Analog Integrated Circuit Design. Lecture 3. Current Source and Current Mirror

EECS3611 Analog Integrated Circuit Design. Lecture 3. Current Source and Current Mirror EECS3611 Analog ntegrated Circuit Design Lecture 3 Current Source and Current Mirror ntroduction Before any device can be used in any application, it has to be properly biased so that small signal AC parameters

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Current Mirrors and Ac0ve Loads

Current Mirrors and Ac0ve Loads Current Mirrors and Ac0ve Loads Simple Bipolar Current Mirror The two V BE s are equal. The currents are equal to a first approxima0on. However There is a systema0c error due to base current. The two V

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

More information

Analog Integrated Circuits. Lecture 4: Differential Amplifiers

Analog Integrated Circuits. Lecture 4: Differential Amplifiers Analog Integrated Circuits Lecture 4: Differential Amplifiers ELC 601 Fall 2013 Dr. Ahmed Nader Dr. Mohamed M. Aboudina anader@ieee.org maboudina@gmail.com Department of Electronics and Communications

More information

MICROELECTRONIC CIRCUIT DESIGN Fifth Edition

MICROELECTRONIC CIRCUIT DESIGN Fifth Edition MICROELECTRONIC CIRCUIT DESIGN Fifth Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 07/05/15 Chapter 1 1.5 1.52 years, 5.06 years 1.6 1.95 years, 6.52 years 1.9 402

More information

IOWA STATE UNIVERSITY. EE501 Project. Fully Differential Multi-Stage Op-Amp Design. Ryan Boesch 11/12/2008

IOWA STATE UNIVERSITY. EE501 Project. Fully Differential Multi-Stage Op-Amp Design. Ryan Boesch 11/12/2008 IOWA STATE UNIVERSITY EE501 Project Fully Differential Multi-Stage Op-Amp Design Ryan Boesch 11/12/2008 This report documents the design, simulation, layout, and post-layout simulation of a fully differential

More information

COMPARISON OF THE MOSFET AND THE BJT:

COMPARISON OF THE MOSFET AND THE BJT: COMPARISON OF THE MOSFET AND THE BJT: In this section we present a comparison of the characteristics of the two major electronic devices: the MOSFET and the BJT. To facilitate this comparison, typical

More information

Each question is worth 4 points. ST07 One-hour Quiz #2 1 3/20/2007

Each question is worth 4 points. ST07 One-hour Quiz #2 1 3/20/2007 Name: Date: DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Spring Term 2007 Quiz 2 6.101 Introductory Analog Electronics

More information

Operational Amplifier (OPAMP)

Operational Amplifier (OPAMP) Operational Amplifier (OPAMP) Analog Cs nclude Operational Amplifier Filters Analog-to-Digital Converter (ADC) Digital-to-Analog Converter (DAC) Analog Modulator Phase-Locked Loop Analog Multiplier Others

More information

12/01/2009. Practice with past exams

12/01/2009. Practice with past exams EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams http://hkn.eecs.berkeley.edu/exam/list/?examcourse=ee%2040 Slide 1 Overview of Course Circuit components: R, C, L, sources

More information

4. Differential Amplifiers. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

4. Differential Amplifiers. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory 4. Differential Amplifiers Electronic Circuits Prof. Dr. Qiuting Huang Integrated Systems Laboratory Differential Signaling Basics and Motivation Transmitting information with two complementary signals

More information

Lecture 200 Cascode Op Amps - II (2/18/02) Page 200-1

Lecture 200 Cascode Op Amps - II (2/18/02) Page 200-1 Lecture 200 Cascode Op Amps II (2/18/02) Page 2001 LECTURE 200 CASCODE OP AMPS II (READING: GHLM 443453, AH 293309) Objective The objective of this presentation is: 1.) Develop cascode op amp architectures

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

2.5 V, k' n. W/L = 3 maa^2, V tn. and V as. = 0, find v s. = +1 V. (d) Repeat (b) for v c u. = -1 V. (e) What is the highest value of v CM

2.5 V, k' n. W/L = 3 maa^2, V tn. and V as. = 0, find v s. = +1 V. (d) Repeat (b) for v c u. = -1 V. (e) What is the highest value of v CM 774 CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS PROBLEMS 775 S With the two input terminals connected to a suitable dc voltage V cu, the bias current 7 of a perfectly symmetrical differential pair

More information

EE105 Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE105 Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) Differential & Common Mode Signals Why Differential? Differential

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2018 Contents Objective:...2 Discussion:...2 Components Needed:...2 Part 1 Voltage Controlled Amplifier...2 Part 2 A Nonlinear Application...3

More information

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

More information

ES 330 Electronics II Homework # 6 Soltuions (Fall 2016 Due Wednesday, October 26, 2016)

ES 330 Electronics II Homework # 6 Soltuions (Fall 2016 Due Wednesday, October 26, 2016) Page1 Name Solutions ES 330 Electronics Homework # 6 Soltuions (Fall 016 ue Wednesday, October 6, 016) Problem 1 (18 points) You are given a common-emitter BJT and a common-source MOSFET (n-channel). Fill

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Microelectronic Devices and Circuits Fall 2009

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Microelectronic Devices and Circuits Fall 2009 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.012 Microelectronic Devices and Circuits Fall 2009 SPECIAL PROBLEM ON CIRCUIT DESIGN 12/1/09 edition

More information

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016)

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Page1 Name ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Problem 1 (15 points) You are given an NMOS amplifier with drain load resistor R D = 20 k. The DC voltage (V RD

More information

Lab Project EE348L. Spring 2005

Lab Project EE348L. Spring 2005 Lab Project EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 7 EE348L, Spring 2005 1 Lab Project 1.1 Introduction Based on your understanding of band pass filters and single transistor

More information

CMOS Analog Circuits

CMOS Analog Circuits CMOS Analog Circuits L8B: Common Source Amplifier with Actie Load- (9.8.3) B. Mazhari Dept. of EE, IIT Kanpur Problems with current design -.586 in 65k 50/ O -3.3 DD = 3.3 DD f 3dB. Although sufficient

More information

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Prema Kumar. G Shravan Kudikala Casest, School Of Physics Casest, School Of Physics University Of Hyderabad

More information

Lecture 4: Voltage References

Lecture 4: Voltage References EE6378 Power Management Circuits Lecture 4: oltage References Instructor: t Prof. Hoi Lee Mixed-Signal & Power IC Laboratory Department of Electrical Engineering The University of Texas at Dallas Introduction

More information

Lecture 330 Low Power Op Amps (3/27/02) Page 330-1

Lecture 330 Low Power Op Amps (3/27/02) Page 330-1 Lecture 33 Low Power Op Amps (3/27/2) Page 33 LECTURE 33 LOW POWER OP AMPS (READING: AH 39342) Objective The objective of this presentation is:.) Examine op amps that have minimum static power Minimize

More information

Class-AB Low-Voltage CMOS Unity-Gain Buffers

Class-AB Low-Voltage CMOS Unity-Gain Buffers Class-AB Low-Voltage CMOS Unity-Gain Buffers Mariano Jimenez, Antonio Torralba, Ramón G. Carvajal and J. Ramírez-Angulo Abstract Class-AB circuits, which are able to deal with currents several orders of

More information

Lecture 26 Differential Amplifiers (I) DIFFERENTIAL AMPLIFIERS

Lecture 26 Differential Amplifiers (I) DIFFERENTIAL AMPLIFIERS Lecture 6 Differential Amplifiers (I) DIFFERENTIAL AMPLIFIERS Outline 1. Introduction. Incremental analysis of differential amplifier 3. Common-source differential amplifier Reading Assignment: Howe and

More information

EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits

EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits Objective This experiment is designed for students to get familiar with the basic properties

More information

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor EE 2110A Electronic Circuits Week 7: Common-Collector Amplifier, MOS Field Effect Transistor ecture 07-1 Topics to coer Common-Collector Amplifier MOS Field Effect Transistor Physical Operation and I-V

More information

Chapter 4: Differential Amplifiers

Chapter 4: Differential Amplifiers Chapter 4: Differential Amplifiers 4.1 Single-Ended and Differential Operation 4.2 Basic Differential Pair 4.3 Common-Mode Response 4.4 Differential Pair with MOS Loads 4.5 Gilbert Cell Single-Ended and

More information