Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 22, 2001

Size: px
Start display at page:

Download "Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 22, 2001"

Transcription

1 Microelectronic Devices and Circuits - Spring 21 Lecture 13-1 Lecture 13 - Digital Circuits (II) MOS Inverter Circuits March 22, 21 Contents: 1. NMOS inverter with resistor pull-up (cont.) 2. NMOS inverter with current-source pull-up 3. ComplementaryMOS (CMOS) Inverter Reading assignment: Howe and Sodini, Ch. 5, 5.3

2 Microelectronic Devices and Circuits - Spring 21 Lecture 13-2 Key questions What are the keydesign trade-offs of the NMOS inverter with resistor pull-up? How can one improve upon these trade-offs? What is special about a CMOS inverter?

3 Microelectronic Devices and Circuits - Spring 21 Lecture NMOS inverter with resistor pull-up (cont.) Dynamics pull-down limited bycurrent through transistor [will studyin detail with CMOS] pull-up limited byresistor (t PLH R ) pull-up slowest V IN : LO HI R V OUT : HI LO V IN : HI LO R V OUT : LO HI pull-down pull-up

4 Microelectronic Devices and Circuits - Spring 21 Lecture 13-4 Inverter design issues: noise margins A v R R slow switching g m W big transistor (slow switching at input) Trade-off between speed and noise margin. During pull-up, need: high current for fast switching, but also high resistance for high noise margin. use current source as pull-up.

5 Microelectronic Devices and Circuits - Spring 21 Lecture NMOS inverter with current-source pull-up I-V characteristics of current source: i SUP v SUP i SUP I SUP 1 r oc _ v SUP Equivalent circuit models: i SUP v SUP I SUP roc r oc _ large-signal model small-signal model high current throughout voltage range: i SUP I SUP high small-signal resistance, r oc.

6 Microelectronic Devices and Circuits - Spring 21 Lecture 13-6 NMOS inverter with current-source pull-up: i SUP =I D load line i SUP I SUP V GS = V OUT V GS =V IN V IN V DS V GS =V T Transfer characteristics: V OUT VDD V T V IN High r oc high noise margin

7 Microelectronic Devices and Circuits - Spring 21 Lecture 13-7 Dynamics: i SUP i SUP V IN : LO HI V OUT : HI LO V IN : HI LO V OUT : LO HI pull-down pull-up Faster pull-up because capacitor charged at constant current.

8 Microelectronic Devices and Circuits - Spring 21 Lecture 13-8 PMOS as current-source pull-up I-V characteristics of PMOS: S G IDp D -IDp -IDp saturation VSGp VSGp=-VTp VSDp -VTp VSGp Note: enhancement-mode PMOS has V Tp <. In saturation: I Dp (V SG V Tp ) 2

9 Microelectronic Devices and Circuits - Spring 21 Lecture 13-9 Circuit and load-line diagram of inverter with PMOS current source pull-up: -I Dp =I Dn PMOS load line for V SG = -V B V B V OUT V IN V IN V OUT Transfer function: V OUT NMOS cutoff PMOS triode NMOS saturation PMOS triode NMOS saturation PMOS saturation NMOS triode PMOS saturation VDD V Tn V IN

10 Microelectronic Devices and Circuits - Spring 21 Lecture 13-1 Noise margin: compute V M = V IN = V OUT compute A v (V M ) At V M both transistors saturated: I Dn = W n 2L n µ n C ox (V M V Tn ) 2 And: I Dp = W p 2L p µ p C ox ( V B V Tp ) 2 Then: I Dn = I Dp V M = V Tn µ p W p L p µ n W n L n ( V B V Tp )

11 Microelectronic Devices and Circuits - Spring 21 Lecture Small-signal equivalent circuit model at V M : S2 v sg2 = g mp v sg2 r op - G2 D2 D1 G1 v in v gs1 g mn v gs1 r on v out S1 v in gmn v in r on //r op v out - - A v = g mn (r on //r op )

12 Microelectronic Devices and Circuits - Spring 21 Lecture NMOS inverter with current-source pull-up allows fast switching with high noise margins. But... when V IN =, there is a direct current path between supplyand ground power consumption even if inverter is idling. -I Dp =I Dn PMOS load line for V SG = -V B V B V OUT :LO V IN V IN :HI V OUT Would like to have current source that is itself switchable, i.e., it shuts off when input is high CMOS!

13 Microelectronic Devices and Circuits - Spring 21 Lecture Complementary MOS (CMOS) Inverter Circuit schematic: V IN V OUT Basic operation: V IN = V OUT = V GSn =<V Tn NMOS OFF V SGp = > V Tp PMOS ON V IN = V OUT = V GSn = >V Tn NMOS ON V SGp =< V Tp PMOS OFF No power consumption while idling in anylogic state.

14 Microelectronic Devices and Circuits - Spring 21 Lecture Key conclusions In NMOS inverter with resistor pull-up: trade-off between noise margin and speed. Trade-off resolved using current-source pull-up: use PMOS as current source. In NMOS inverter with current-source pull-up: if V IN = HI, power consumption even if inverter is idling. ComplementaryMOS: NMOS and PMOS switch alternatively no power consumption while idling.

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. October 25, 2005

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. October 25, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 13-1 Lecture 13 - Digital Circuits (II) MOS Inverter Circuits October 25, 25 Contents: 1. NMOS inverter with resistor pull-up (cont.) 2. NMOS

More information

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD?

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD? Improved Inverter: Current-Source Pull-Up MOS Inverter with Current-Source Pull-Up What else could be connected between the drain and? Replace resistor with current source I SUP roc i D v IN v OUT Find

More information

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic.

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic. Digital Electronics Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region Positive Logic Logic 1 Negative Logic Logic 0 Voltage Transition Region Transition

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor Neamen Microelectronics, 4e Chapter 3-1 In this chapter, we will: Study and understand the operation

More information

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor In this chapter, we will: Study and understand the operation and characteristics of the various types

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Device Structure N-Channel MOSFET Providing electrons Pulling electrons (makes current flow) + + + Apply positive voltage to gate: Drives away

More information

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN Name: EXAM #3 Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit. Data: Use the following data in all

More information

Lecture 11 Digital Circuits (I) THE INVERTER

Lecture 11 Digital Circuits (I) THE INVERTER Lecture 11 Digital Circuits (I) THE INVERTER Outline Introduction to digital circuits The inverter NMOS inverter with resistor pull-up Reading Assignment: Howe and Sodini; Chapter 5, Sections 5.1-5.3 6.12

More information

Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

More information

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 12-1 Lecture 12 - Digital Circuits (I) The inverter October 2, 25 Contents: 1. Introduction to digital electronics: the inverter 2. NMOS inverter

More information

CMOS VLSI Design (A3425)

CMOS VLSI Design (A3425) CMOS VLSI Design (A3425) Unit III Static Logic Gates Introduction A static logic gate is one that has a well defined output once the inputs are stabilized and the switching transients have decayed away.

More information

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 16, 8:00-10:00am. Name: (78 points total)

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 16, 8:00-10:00am. Name: (78 points total) Final Exam Dec. 16, 8:00-10:00am Name: (78 points total) Problem 1: Consider the emitter follower in Fig. 7, which is being used as an output stage. For Q 1, assume β = and initally assume that V BE =

More information

DIGITAL VLSI LAB ASSIGNMENT 1

DIGITAL VLSI LAB ASSIGNMENT 1 DIGITAL VLSI LAB ASSIGNMENT 1 Problem 1: NMOS and PMOS plots using Cadence. In this exercise, you are required to generate both NMOS and PMOS I-V device characteristics (I/P and O/P) using Cadence (Use

More information

Lecture 19 - Transistor Amplifiers (I) Common-Source Amplifier. April 24, 2001

Lecture 19 - Transistor Amplifiers (I) Common-Source Amplifier. April 24, 2001 6.012 Microelectronic Devices and Circuits Spring 2001 Lecture 191 Lecture 19 Transistor Amplifiers (I) CommonSource Amplifier April 24, 2001 Contents: 1. Amplifier fundamentals 2. Commonsource amplifier

More information

MOS Field Effect Transistors

MOS Field Effect Transistors MOS Field Effect Transistors A gate contact gate interconnect n polysilicon gate source contacts W active area (thin oxide area) polysilicon gate contact metal interconnect drain contacts A bulk contact

More information

Lecture 26 - Design Problems & Wrap-Up. May 15, 2003

Lecture 26 - Design Problems & Wrap-Up. May 15, 2003 6.012 Microelectronic Devices and Circuits - Spring 2003 Lecture 26-1 Lecture 26 - Design Problems & 6.012 Wrap-Up May 15, 2003 Contents: 1. Design process 2. Design project pitfalls 3. Lessons learned

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages. November 17, 2005

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages. November 17, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 20 1 Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages November 17, 2005 Contents: 1. Common source amplifier (cont.) 2. Common drain

More information

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

More information

Shorthand Notation for NMOS and PMOS Transistors

Shorthand Notation for NMOS and PMOS Transistors Shorthand Notation for NMOS and PMOS Transistors Terminal Voltages Mode of operation depends on V g, V d, V s V gs = V g V s V gd = V g V d V ds = V d V s = V gs - V gd Source and drain are symmetric diffusion

More information

Lecture 34: Designing amplifiers, biasing, frequency response. Context

Lecture 34: Designing amplifiers, biasing, frequency response. Context Lecture 34: Designing amplifiers, biasing, frequency response Prof J. S. Smith Context We will figure out more of the design parameters for the amplifier we looked at in the last lecture, and then we will

More information

General Structure of MOS Inverter

General Structure of MOS Inverter General Structure of MOS Inverter Load V i Drive Department of Microelectronics and omputer Science, TUL Digital MOS ircuits Families Digital MOS ircuits PMOS NMOS MOS BiMOS Depletion mode load Enhancement

More information

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 6: CMOS Digital Logic 1 Last Lectures The CMOS Inverter CMOS Capacitance Driving a Load 2 This Lecture Now that we know all

More information

Lecture 19 Transistor Amplifiers (I) Common Source Amplifier. November 15, 2005

Lecture 19 Transistor Amplifiers (I) Common Source Amplifier. November 15, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 19 1 Lecture 19 Transistor Amplifiers (I) Common Source Amplifier November 15, 2005 Contents: 1. Amplifier fundamentals 2. Common source amplifier

More information

CMOS Analog Circuits

CMOS Analog Circuits CMOS Analog Circuits L8B: Common Source Amplifier with Actie Load- (9.8.3) B. Mazhari Dept. of EE, IIT Kanpur Problems with current design -.586 in 65k 50/ O -3.3 DD = 3.3 DD f 3dB. Although sufficient

More information

Digital circuits. Bởi: Sy Hien Dinh

Digital circuits. Bởi: Sy Hien Dinh Digital circuits Bởi: Sy Hien Dinh This module presents the basic concepts of MOSFET digital logic circuits. We will examine NMOS logic circuits, which contain only n-channel transistors, and complementary

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic CMOS Inverter: A First Look C L 9/11/26 VLSI

More information

Microelectronics, BSc course

Microelectronics, BSc course Microelectronics, BSc course MOS inverters http://www.eet.bme.hu/~poppe/miel/en/13-mosfet2.pptx http://www.eet.bme.hu Overview of MSOFET types 13-11-2014 Microelectronics BSc course, MOS inverters András

More information

DIGITAL ELECTRONICS. A2: logic circuits parameters. Politecnico di Torino - ICT school

DIGITAL ELECTRONICS. A2: logic circuits parameters. Politecnico di Torino - ICT school Politecnico di Torino - ICT school A2: logic circuits parameters DIGITAL ELECTRONICS A INTRODUCTION A.2 Logic circuits parameters» Static parameters» Interfacing and compatibility» Output stages» Dynamic

More information

DIGITAL ELECTRONICS. Digital Electronics - A2 28/04/ DDC Storey 1. Politecnico di Torino - ICT school. A2: logic circuits parameters

DIGITAL ELECTRONICS. Digital Electronics - A2 28/04/ DDC Storey 1. Politecnico di Torino - ICT school. A2: logic circuits parameters Politecnico di Torino - ICT school A2: logic circuits parameters DIGITAL ELECTRONICS A INTRODUCTION A.2 Logic circuits parameters» Static parameters» Interfacing and compatibility» Output stages» Dynamic

More information

5. CMOS Gates: DC and Transient Behavior

5. CMOS Gates: DC and Transient Behavior 5. CMOS Gates: DC and Transient Behavior Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 September 18, 2017 ECE Department, University

More information

ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

More information

電子電路. Memory and Advanced Digital Circuits

電子電路. Memory and Advanced Digital Circuits 電子電路 Memory and Advanced Digital Circuits Hsun-Hsiang Chen ( 陳勛祥 ) Department of Electronic Engineering National Changhua University of Education Email: chenhh@cc.ncue.edu.tw Spring 2010 2 Reference Microelectronic

More information

Microelectronic Devices and Circuits Lecture 22 - Diff-Amp Anal. III: Cascode, µa Outline Announcements DP:

Microelectronic Devices and Circuits Lecture 22 - Diff-Amp Anal. III: Cascode, µa Outline Announcements DP: 6.012 Microelectronic Devices and Circuits Lecture 22 DiffAmp Anal. III: Cascode, µa741 Outline Announcements DP: Discussion of Q13, Q13' impact. Gain expressions. Review Output Stages DC Offset of an

More information

Lecture 11 Circuits numériques (I) L'inverseur

Lecture 11 Circuits numériques (I) L'inverseur Lecture 11 Circuits numériques (I) L'inverseur Outline Introduction to digital circuits The inverter NMOS inverter with resistor pull-up 6.12 Spring 24 Lecture 11 1 1. Introduction to digital circuits:

More information

ECEN 5008: Analog IC Design. Final Exam

ECEN 5008: Analog IC Design. Final Exam ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Time-limited, 150-minute exam. When the time is called, all work must stop. Put your initials on

More information

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages Outline Common drain amplifier Common gate amplifier Reading Assignment: Howe and Sodini; Chapter 8, Sections 8.78.9 6.02 Spring 2009 . Common

More information

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Homework 5 this week Lab

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

ECE 546 Lecture 12 Integrated Circuits

ECE 546 Lecture 12 Integrated Circuits ECE 546 Lecture 12 Integrated Circuits Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Integrated Circuits IC Requirements

More information

ECEN325: Electronics Summer 2018

ECEN325: Electronics Summer 2018 ECEN325: Electronics Summer 2018 Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements & Reading H5 due today Exam 2 on

More information

EE 40. Midterm 3. November 14, 2002

EE 40. Midterm 3. November 14, 2002 Lab TA: Dan Bart Nir Konrad Yu Ching EE 40 Midterm 3 November 14, 2002 PLEASE WRITE YOUR NAME ON EACH ATTACHED PAGE PLEASE SHOW YOUR WORK TO RECEIVE PARTIAL CREDIT Problem 1: 10 Points Possible Problem

More information

Lecture 21 - Multistage Amplifiers (I) Multistage Amplifiers. November 22, 2005

Lecture 21 - Multistage Amplifiers (I) Multistage Amplifiers. November 22, 2005 6.02 Microelectronic Devices and Circuits Fall 2005 Lecture 2 Lecture 2 Multistage Amplifiers (I) Multistage Amplifiers November 22, 2005 Contents:. Introduction 2. CMOS multistage voltage amplifier 3.

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Ratioed Logic Introduction Digital IC EE141 2 Ratioed Logic design Basic concept Resistive load Depletion

More information

Lecture 14. FET Current and Voltage Sources and Current Mirrors. The Building Blocks of Analog Circuits - IV

Lecture 14. FET Current and Voltage Sources and Current Mirrors. The Building Blocks of Analog Circuits - IV Lecture 4 FET Current and oltage s and Current Mirrors The Building Blocks of Analog Circuits n this lecture you will learn: Current and voltage sources using FETs FET current mirrors Cascode current mirror

More information

STATISTICAL DESIGN AND YIELD ENHANCEMENT OF LOW VOLTAGE CMOS ANALOG VLSI CIRCUITS

STATISTICAL DESIGN AND YIELD ENHANCEMENT OF LOW VOLTAGE CMOS ANALOG VLSI CIRCUITS STATISTICAL DESIGN AND YIELD ENHANCEMENT OF LOW VOLTAGE CMOS ANALOG VLSI CIRCUITS Istanbul Technical University Electronics and Communications Engineering Department Tuna B. Tarim Prof. Dr. Hakan Kuntman

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 6: MOS-FET Transistor

Electronic Circuits for Mechatronics ELCT 609 Lecture 6: MOS-FET Transistor Electronic Circuits for Mechatronics ELCT 609 Lecture 6: MOS-FET Transistor Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Introduction Why we call it Transistor? The name came as an

More information

CMOS Circuits CONCORDIA VLSI DESIGN LAB

CMOS Circuits CONCORDIA VLSI DESIGN LAB CMOS Circuits 1 Combination and Sequential 2 Static Combinational Network CMOS Circuits Pull-up network-pmos Pull-down network-nmos Networks are complementary to each other When the circuit is dormant,

More information

Solution HW4 Dr. Parker EE477

Solution HW4 Dr. Parker EE477 Solution HW4 Dr. Parker EE477 Assume for the problems below that V dd = 1.8 v, V tp0 is -.7 v. and V tn0 is.7 V. V tpbodyeffect is -.9 v. and V tnbodyeffect is.9 V. Assume ß n (k n )= 219.4 W/L µ A(microamps)/V

More information

Chapter 13: Introduction to Switched- Capacitor Circuits

Chapter 13: Introduction to Switched- Capacitor Circuits Chapter 13: Introduction to Switched- Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4 Switched-Capacitor Integrator 13.5 Switched-Capacitor

More information

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits Faculty of Engineering ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits CMOS Technology Complementary MOS, or CMOS, needs both PMOS and NMOS FET devices for their logic gates to be realized

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 7: MOS-FET Amplifiers

Electronic Circuits for Mechatronics ELCT 609 Lecture 7: MOS-FET Amplifiers Electronic Circuits for Mechatronics ELCT 609 Lecture 7: MOS-FET Amplifiers Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Enhancement N-MOS Modes of Operation Mode V GS I DS V DS Cutoff

More information

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs Integrated Circuit Amplifiers Comparison of MOSFETs and BJTs 17 Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 )

More information

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 9: Pass Transistor Logic 1 Motivation In the previous lectures, we learned about Standard CMOS Digital Logic design. CMOS

More information

PAPER A Large-Swing High-Driving Low-Power Class-AB Buffer Amplifier with Low Variation of Quiescent Current

PAPER A Large-Swing High-Driving Low-Power Class-AB Buffer Amplifier with Low Variation of Quiescent Current 1730 IEICE TRANS. EECTRON., VO.E87 C, NO.10 OCTOBER 2004 PAPER A arge-swing High-Driving ow-power Class-AB Buffer Amplifier with ow Variation of Quiescent Current Chih-en U a, Nonmember SUMMARY A large-swing,

More information

Microelectronics, BSc course

Microelectronics, BSc course Microelectronics, BSc course MOS circuits: CMOS circuits, construction http://www.eet.bme.hu/~poppe/miel/en/14-cmos.pptx http://www.eet.bme.hu The abstraction level of our study: SYSTEM + MODULE GATE CIRCUIT

More information

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 5: Basic CMOS Inverter Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture

More information

EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7

EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7 Issued: Friday, Oct. 16, 2015 PROBLEM SET #7 Due (at 8 a.m.): Monday, Oct. 26, 2015, in the EE 140/240A HW box near 125 Cory. 1. A design error has resulted in a mismatch in the circuit of Fig. PS7-1.

More information

Part II: The MOS Transistor Technology. J. SÉE 2004/2005

Part II: The MOS Transistor Technology. J. SÉE 2004/2005 Part II: The MOS Transistor Technology J. SÉE johann.see@ief.u-psud.fr 2004/2005 Lecture plan Towards the nanotechnologies... data storage The data processing through the ages MOS transistor in logic-gates

More information

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and Lecture 16: MOS Transistor models: Linear models, SPICE models Context In the last lecture, we discussed the MOS transistor, and added a correction due to the changing depletion region, called the body

More information

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Objectives In this lecture you will learn the following Ratioed Logic Pass Transistor Logic Dynamic Logic Circuits

More information

Combinational Logic Gates in CMOS

Combinational Logic Gates in CMOS Combinational Logic Gates in CMOS References: dapted from: Digital Integrated Circuits: Design Perspective, J. Rabaey UC Principles of CMOS VLSI Design: Systems Perspective, 2nd Ed., N. H. E. Weste and

More information

2. Introduction to MOS Amplifiers: Transfer Function Biasing & Small-Signal-Model Concepts

2. Introduction to MOS Amplifiers: Transfer Function Biasing & Small-Signal-Model Concepts 2. Introduction to MOS Amplifiers: Transfer Function Biasing & Small-Signal-Model Concepts Reading: Sedra & Smith Sec. 5.4 (S&S 5 th Ed: Sec. 4.4) ECE 102, Fall 2011, F. Najmabadi NMOS Transfer Function

More information

MOS IC Amplifiers. Token Ring LAN JSSC 12/89

MOS IC Amplifiers. Token Ring LAN JSSC 12/89 MO IC Amplifiers MOFETs are inferior to BJTs for analog design in terms of quality per silicon area But MO is the technology of choice for digital applications Therefore, most analog portions of mixed-signal

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Review Sheet for Midterm #2

Review Sheet for Midterm #2 Review Sheet for Midterm #2 Brian Bircumshaw brianb@eecs.berkeley.edu 1 Miterm #1 Review See Table 1 on the following page for a list of the most important equations you should know from Midterm #1. 2

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Neamen Microelectronics Chapter 4-1 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 4 Basic FET Amplifiers Neamen Microelectronics Chapter 4-2 In this chapter, we will: Investigate

More information

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph ENG2410 Digital Design CMOS Technology Fall 2017 S. reibi School of Engineering University of Guelph The Transistor Revolution First transistor Bell Labs, 1948 Bipolar logic 1960 s Intel 4004 processor

More information

CMOS Transistor and Circuits. Jan 2015 CMOS Transistor 1

CMOS Transistor and Circuits. Jan 2015 CMOS Transistor 1 CMOS Transistor and Circuits Jan 2015 CMOS Transistor 1 Latchup in CMOS Circuits Jan 2015 CMOS Transistor 2 Parasitic bipolar transistors are formed by substrate and source / drain devices Latchup occurs

More information

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection NMOS Transistors in Series/Parallel Connection Topic 6 CMOS Static & Dynamic Logic Gates Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Transistors can be thought

More information

ECE 340 Lecture 40 : MOSFET I

ECE 340 Lecture 40 : MOSFET I ECE 340 Lecture 40 : MOSFET I Class Outline: MOS Capacitance-Voltage Analysis MOSFET - Output Characteristics MOSFET - Transfer Characteristics Things you should know when you leave Key Questions How do

More information

Chapter 6 Combinational CMOS Circuit and Logic Design. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 6 Combinational CMOS Circuit and Logic Design. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 6 Combinational CMOS Circuit and Logic Design Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Advanced Reliable Systems (ARES) Lab. Jin-Fu Li,

More information

ECEN474: (Analog) VLSI Circuit Design Fall 2011

ECEN474: (Analog) VLSI Circuit Design Fall 2011 ECEN474: (Analog) VLSI Circuit Design Fall 20 Lecture 22: Output Stages Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M University Agenda Output Stages Source Follower (Class A) Push-Pull (Class

More information

ECE315 / ECE515 Lecture 9 Date:

ECE315 / ECE515 Lecture 9 Date: Lecture 9 Date: 03.09.2015 Biasing in MOS Amplifier Circuits Biasing using Single Power Supply The general form of a single-supply MOSFET amplifier biasing circuit is: We typically attempt to satisfy three

More information

MOS Field-Effect Transistors (MOSFETs)

MOS Field-Effect Transistors (MOSFETs) 6 MOS Field-Effect Transistors (MOSFETs) A three-terminal device that uses the voltages of the two terminals to control the current flowing in the third terminal. The basis for amplifier design. The basis

More information

HW#3 Solution. Dr. Parker. Fall 2014

HW#3 Solution. Dr. Parker. Fall 2014 HW#3 Solution Dr. Parker Fall 2014 Assume for the problems below that V dd = 1.8 V, V tp0 is -.7 V. and V tn0 is.7 V. V tpbodyeffect is -.9 V. and V tnbodyeffect is.9 V. lambda=100 nm. Assume ß n (k n

More information

Amplifiers Frequency Response Examples

Amplifiers Frequency Response Examples ECE 5/45 Analog IC Design We will use the following MOSFET parameters for hand-calculations and the µm CMOS models for corresponding simulations. Table : Long-channel MOSFET parameters. Parameter NMOS

More information

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I MEASUREMENT AND INSTRUMENTATION STUDY NOTES The MOSFET The MOSFET Metal Oxide FET UNIT-I As well as the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available

More information

Introduction to Electronic Devices

Introduction to Electronic Devices Introduction to Electronic Devices (Course Number 300331) Fall 2006 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.:

More information

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Topic 2. Basic MOS theory & SPICE simulation

Topic 2. Basic MOS theory & SPICE simulation Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

More information

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Written Examination on. Wednesday October 17, 2007,

Written Examination on. Wednesday October 17, 2007, Written Examination on Wednesday October 17, 2007, 08.00-12.00 The textbook and a calculator are allowed on the examination 1. The following logical function is given Q= AB( CD+ CE) + F a. Draw the schematic

More information

CMOS LOGIC Inside the CMOS inverter, no I D current flows through transistors when input is logic 1 or logic 0, because

CMOS LOGIC Inside the CMOS inverter, no I D current flows through transistors when input is logic 1 or logic 0, because EEC 40 pring 2003 Lecture 22. Ross EEC 40 pring 2003 Lecture 22. Ross CMO LOGIC Inside the CMO inverter, no I current flows through transistors when input is logic 1 or logic 0, because the NMO transistor

More information

EE5320: Analog IC Design

EE5320: Analog IC Design EE5320: Analog IC Design Handout 3: MOSFETs Saurabh Saxena & Qadeer Khan Indian Institute of Technology Madras Copyright 2018 by EE6:Integrated Circuits & Systems roup @ IIT Madras Overview Transistors

More information

MOS TRANSISTOR THEORY

MOS TRANSISTOR THEORY MOS TRANSISTOR THEORY Introduction A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the

More information

Microelectronics Part 2: Basic analog CMOS circuits

Microelectronics Part 2: Basic analog CMOS circuits GBM830 Dispositifs Médicaux Intelligents Microelectronics Part : Basic analog CMOS circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim!! http://www.cours.polymtl.ca/gbm830/! mohamad.sawan@polymtl.ca!

More information

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT) Course Outline 1. Chapter 1: Signals and Amplifiers 1 2. Chapter 3: Semiconductors 3. Chapter 4: Diodes 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

More information

Introduction to MOSFET MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

Introduction to MOSFET MOSFET (Metal Oxide Semiconductor Field Effect Transistor) Microelectronic Circuits Introduction to MOSFET MOSFET (Metal Oxide Semiconductor Field Effect Transistor) Slide 1 MOSFET Construction MOSFET (Metal Oxide Semiconductor Field Effect Transistor) Slide 2

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 11 BiCMOS PMOS rray Q1 NMOS rray Y NMOS rray Q2 dib brishamifar EE Department IUST Contents Introduction BiCMOS Devices BiCMOS Inverters BiCMOS Gates BiCMOS Drivers

More information

HW#3 Solution. Dr. Parker. Spring 2014

HW#3 Solution. Dr. Parker. Spring 2014 HW#3 olution r. Parker pring 2014 Assume for the problems below that V dd = 1.8 V, V tp0 is -.7 V. and V tn0 is.7 V. V tpbodyeffect is -.9 V. and V tnbodyeffect is.9 V. Assume ß n (k n )= 219.4 W/L µ A(microamps)/V

More information

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 23 p. 1/16 EE 42/100 Lecture 23: CMOS Transistors and Logic Gates ELECTRONICS Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad University

More information

ECE315 / ECE515 Lecture 7 Date:

ECE315 / ECE515 Lecture 7 Date: Lecture 7 ate: 01.09.2016 CG Amplifier Examples Biasing in MOS Amplifier Circuits Common Gate (CG) Amplifier CG Amplifier- nput is applied at the Source and the output is sensed at the rain. The Gate terminal

More information