Solution HW4 Dr. Parker EE477

Size: px
Start display at page:

Download "Solution HW4 Dr. Parker EE477"

Transcription

1 Solution HW4 Dr. Parker EE477 Assume for the problems below that V dd = 1.8 v, V tp0 is -.7 v. and V tn0 is.7 V. V tpbodyeffect is -.9 v. and V tnbodyeffect is.9 V. Assume ß n (k n )= W/L µ A(microamps)/V 2 and ß p (k p )= 51 W/L µ A/V 2 1.a (10%) Sketch the voltage input/output transfer curve of an inverter for the case at which kn=kp. Label the 5 segments A, B, C, D, and E, the negative slopes of -1, VIL and VIH, and the input voltage at point C on the curve. 1.b (5%) What are the regions of operation of the transistors on each segment? This is answered in the above sketch.

2 2.a (2.5%) Which transistor changes its region of operation when the inverter moves from segment B to C. PMOS moves from linear to saturation 2.b (2.5%) Which transistor changes its region of operation when the inverter moves from segment C to D. NMOS moves from saturation to linear 3.a (2.5%) If Kn>Kp which transistor stays ON over more of the input/output transfer curve? the NMOS transistor stays active for a wider range of input voltages as the C region moves to the left. 3.b (5%) Is NML greater/less than or equal to NMH? Assume VOH = Vdd and VOL= 0V. NML is defined as VIL-VOL and since VOL=0, the NML=VIL. Because the transfer curve moves to the left when kn>kp, VIL decreases and so that decreases NML. In contrast, NMH is defined as VOH-VIH. Beacause VOH=Vdd, NMH=Vdd-VIH. VIH moves to a lower input voltage when kn>kp because the transfer curve moves to the left, so NMH increases. We can thus conclude that NML<NMH when Kn>kp. 3.c (5%) For Kn>Kp, if we connect the output of an inverter to the input of another inverter through a long wire that introduces noise, what should the range of input voltages at the input of the second inverter be to guarantee the output of the second inverter has a valid logic 1? To have a valid logic output of 1 at the output of the second inverter we need to guarantee that the voltage that arrives to the input of the second inverter is less than VIL. 4. (2.5%) What does it mean to have a noise margin NML of.2 in terms of the amount of noise that can be added to the signal and still have correct results? A NML=.2 means that the difference between VIL and VOL is.2 and thus as long as the noise added to VOL is less than.2 V we can guarantee to have a valid output of logic 1. 5.a (5%) Why do we typically want the inverter to be sized so that we can meet the condition kn=kp? We want to guarantee noise immunity, so we can maximize NML and NMH.

3 Vgsn 5.b (5%) If we want to have a fast inverter, is it a good idea to have a wider range of inputs between VIL and VIH? If not, explain in terms of VIL and VIH how can we have a faster inverter. No, it is not a good idea to increase the range of inputs between VIL and VIH. This would not allow the inverter to switch from either high to low or low to high at maximum speed, as the inverter needs to perform more computations during the transition before it finally reaches its steady state voltage. 6. (10%) Sketch Vgsn (Y-axis) as a function of kn/kp (x-axis) for the given formula in lecture notes for the C region. At least 3 points should be recorded, one for the condition Kn=Kp, Kp>Kn, and Kp<Kn. Vgsn =.92 Kp/Kn =.22^2/.18^2= 1.49 kp > Kn Kn/Kp =.669 Vgsn = Vdd/2 =.9 Kn=kp = 1 Vgsn =.88 Kp/Kn =.18^2/.22^2 ~=.669 kp < Kn Kn/Kp = 1.49 kn/kp Vgsn kn/kp

4 7. (5%) Do we have any current flow through either pmos and/or nmos transistor(s) in region A and E? Is this current comparable in magnitude with the current in region C? If Vin is near to 0.0 V, the current flow is negligible because the NMOS would be considered to be OFF. As we increase Vin reaching near Vtn0, then there would be some small current flow (subthreshold current) because the NMOS is not completely OFF. Similarly, when Vin is near to 1.8 V, the current flow is negligible because the PMOS would be considered to be OFF. As we decrease Vin below 1.8 and approach to 1.8+Vtp0 then there would be some small current flow (subthreshold current) because the PMOS is not completely OFF. The current in region A and E are not comparable in magnitude with the current in region C where both transistors are in saturation and a current spike is generated. 8. (10%) Assume an inverter is on segment D of the input/output transfer curve. What is the range of V in that would allow the inverter to remain in segment D? In segment D, NMOS is in linear region and PMOS in Saturation. To remain in this segment we need to guarantee this condition for the range of input voltages. By inspection from the voltage transfer curve we know that if the inverter moves from D to C the only transistor that change its operation is the NMOS (from LINEAR SAT). We can prevent this by Vds< Vgsn Vtn0 Vgsn>Vdsn+Vtn0 Vin> Vdsn+Vtn0 Similarly, by inspection from the voltage transfer curve we know that if the inverter moves from D to E region the only transistor that changes its operation is the PMOS transistor (from SAT Cut off). We can prevent this by Vgsp Vtp0 Vgsp = Vgsn Vdd Vgsn Vdd Vtp0 Vgsn Vdd +Vtp0 Thus, both conditions are satisfied for input voltages in the range of Vdsn+Vtn0 < Vin Vdd + Vtp0

5 9. (10 %) An inverter has the transistors sized so that as the output falls from V dd to G nd., a current spike occurs at V in =.75v. What does that tell us about the ratio kp/kn? Vdd/2 = 1.8/2 =.9 We have current spike when both transistor are in saturation and that occurs in region C. The spike ocurrs before Vdd/2 because Vin <.9. The voltage transfer curve moves to the left and Kp/Kn < (10%) An inverter has the transistors sized so that the ratio of k p to k n = 1.2. Does this ratio imply that the transistor switches from high to low with a larger or smaller input voltage? What regions are the transistors in when Vin is equal to Vdd/2? It switches from high to low with a larger input voltage because Kp > Kn. Since Kp > Kn, region C happens with a voltage greater than Vdd/2, so the inverter is not in region C. It is not in region A because Vin > Vtn0, therefore the inverter is in region B. NMOS is in SAT and PMOS in LINEAR. 11. (10 %) If an inverter is on segment B of the input/output transfer curve, V out = 1.7v and V in =.8v, prove that the PMOS transistor is in the linear region. Vgsp Vtp Vgsp = Vgsn Vdd = = - 1 V -1 V Vtp -1 V -.7 (This is true, PMOS ON) Vdsp> Vgsp Vtp0 (condition for PMOS LINEAR) Vdsp = Vout Vdd = = -.1 V Vgsp = -1 V -.1 > -1 - (-.7) -.1 > > -.3 (This is true, PMOS LINEAR)

HW#3 Solution. Dr. Parker. Fall 2015

HW#3 Solution. Dr. Parker. Fall 2015 HW#3 Solution Dr. Parker Fall 2015 Assume for the problems below that V dd = 1.8 V, V tp0 is -.7 V. and V tn0 is.7 V. V tpbodyeffect is -.9 V. and V tnbodyeffect is.9 V. Assume ß n (k n )= 219.4 W/L µ

More information

HW#3 Solution. Dr. Parker. Spring 2014

HW#3 Solution. Dr. Parker. Spring 2014 HW#3 olution r. Parker pring 2014 Assume for the problems below that V dd = 1.8 V, V tp0 is -.7 V. and V tn0 is.7 V. V tpbodyeffect is -.9 V. and V tnbodyeffect is.9 V. Assume ß n (k n )= 219.4 W/L µ A(microamps)/V

More information

HW#3 Solution. Dr. Parker. Fall 2014

HW#3 Solution. Dr. Parker. Fall 2014 HW#3 Solution Dr. Parker Fall 2014 Assume for the problems below that V dd = 1.8 V, V tp0 is -.7 V. and V tn0 is.7 V. V tpbodyeffect is -.9 V. and V tnbodyeffect is.9 V. lambda=100 nm. Assume ß n (k n

More information

A COMPARATIVE ANALYSIS OF 180 NM PROCESS CMOS INVERTER

A COMPARATIVE ANALYSIS OF 180 NM PROCESS CMOS INVERTER A COMPARATIVE ANALYSIS OF 180 NM PROCESS CMOS INVERTER Amresh Kumar Lenka Department of Electronics and Communication Engineering Centre for Advance Post Graduate Studies, Rourkela Ananya Dastidar Biju

More information

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic CMOS Inverter: A First Look C L 9/11/26 VLSI

More information

DIGITAL VLSI LAB ASSIGNMENT 1

DIGITAL VLSI LAB ASSIGNMENT 1 DIGITAL VLSI LAB ASSIGNMENT 1 Problem 1: NMOS and PMOS plots using Cadence. In this exercise, you are required to generate both NMOS and PMOS I-V device characteristics (I/P and O/P) using Cadence (Use

More information

The CMOS Inverter. Lecture 3a Static properties (VTC and noise margins)

The CMOS Inverter. Lecture 3a Static properties (VTC and noise margins) The CMOS Inverter Lecture 3a Static properties (VTC and noise margins) Why so much about inverters? The current that any CMOS logic gate can deliver or sink can be calculated from equivalent inverter!

More information

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 5: Basic CMOS Inverter Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

Lecture 11 Circuits numériques (I) L'inverseur

Lecture 11 Circuits numériques (I) L'inverseur Lecture 11 Circuits numériques (I) L'inverseur Outline Introduction to digital circuits The inverter NMOS inverter with resistor pull-up 6.12 Spring 24 Lecture 11 1 1. Introduction to digital circuits:

More information

ECE315 / ECE515 Lecture 8 Date:

ECE315 / ECE515 Lecture 8 Date: ECE35 / ECE55 Lecture 8 Date: 05.09.06 CS Amplifier with Constant Current Source Current Steering Circuits CS Stage Followed by CG Stage Cascode as Current Source Cascode as Amplifier ECE35 / ECE55 CS

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor Neamen Microelectronics, 4e Chapter 3-1 In this chapter, we will: Study and understand the operation

More information

MOS TRANSISTOR THEORY

MOS TRANSISTOR THEORY MOS TRANSISTOR THEORY Introduction A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the

More information

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. October 25, 2005

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. October 25, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 13-1 Lecture 13 - Digital Circuits (II) MOS Inverter Circuits October 25, 25 Contents: 1. NMOS inverter with resistor pull-up (cont.) 2. NMOS

More information

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III Lecture 3 Biasing and Loading Single Stage FET Amplifiers The Building Blocks of Analog Circuits III In this lecture you will learn: Current biasing of circuits Current sources and sinks for CS, CG, and

More information

Lecture 11 Digital Circuits (I) THE INVERTER

Lecture 11 Digital Circuits (I) THE INVERTER Lecture 11 Digital Circuits (I) THE INVERTER Outline Introduction to digital circuits The inverter NMOS inverter with resistor pull-up Reading Assignment: Howe and Sodini; Chapter 5, Sections 5.1-5.3 6.12

More information

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor In this chapter, we will: Study and understand the operation and characteristics of the various types

More information

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Objectives In this lecture you will learn the following Ratioed Logic Pass Transistor Logic Dynamic Logic Circuits

More information

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 12-1 Lecture 12 - Digital Circuits (I) The inverter October 2, 25 Contents: 1. Introduction to digital electronics: the inverter 2. NMOS inverter

More information

MOS Inverters Dr. Lynn Fuller Webpage:

MOS Inverters Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MOS Inverters Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Email: Lynn.Fuller@rit.edu

More information

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Homework 5 this week Lab

More information

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 22, 2001

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 22, 2001 6.12 - Microelectronic Devices and Circuits - Spring 21 Lecture 13-1 Lecture 13 - Digital Circuits (II) MOS Inverter Circuits March 22, 21 Contents: 1. NMOS inverter with resistor pull-up (cont.) 2. NMOS

More information

ELEC 2210 EXPERIMENT 12 NMOS Logic

ELEC 2210 EXPERIMENT 12 NMOS Logic ELEC 2210 EXPERIMENT 12 NMOS Logic Objectives: The experiments in this laboratory exercise will provide an introduction to NMOS logic. You will use the Bit Bucket breadboarding system to build and test

More information

ECEN3250 Lab 9 CMOS Logic Inverter

ECEN3250 Lab 9 CMOS Logic Inverter Lab 9 CMOS Logic Inverter ECE Department University of Colorado, Boulder 1 Prelab Read Section 4.10 (4th edition Section 5.8), and the Lab procedure Do and turn in Exercise 4.41 (page 342) Do PSpice (.dc)

More information

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 23 p. 1/16 EE 42/100 Lecture 23: CMOS Transistors and Logic Gates ELECTRONICS Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad University

More information

EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits

EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits Objective This experiment is designed for students to get familiar with the basic properties

More information

UNIT-III GATE LEVEL DESIGN

UNIT-III GATE LEVEL DESIGN UNIT-III GATE LEVEL DESIGN LOGIC GATES AND OTHER COMPLEX GATES: Invert(nmos, cmos, Bicmos) NAND Gate(nmos, cmos, Bicmos) NOR Gate(nmos, cmos, Bicmos) The module (integrated circuit) is implemented in terms

More information

PSPICE tutorial: MOSFETs

PSPICE tutorial: MOSFETs PSPICE tutorial: MOSFETs In this tutorial, we will examine MOSFETs using a simple DC circuit and a CMOS inverter with DC sweep analysis. This tutorial is written with the assumption that you know how to

More information

Lecture # 16 Logic with a State Dependent Device. Logic Gates How are they built in practice?

Lecture # 16 Logic with a State Dependent Device. Logic Gates How are they built in practice? EECS 42 Introduction to Digital Electronics Andrew R. Neureuther These viewgraphs will be handed out in class 1/21/ Lecture # 16 Logic with a State Dependent Device S&O pp. 9-9, 4-6 (read for graphs and

More information

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic.

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic. Digital Electronics Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region Positive Logic Logic 1 Negative Logic Logic 0 Voltage Transition Region Transition

More information

University of Toronto Faculty of Applied Science and Engineering. Digital Electronics. Winter Final Exam. Instructor: R.

University of Toronto Faculty of Applied Science and Engineering. Digital Electronics. Winter Final Exam. Instructor: R. University of Toronto Faculty of Applied Science and Engineering ECE 334 - Digital Electronics Winter 2017 Final Exam Instructor: R. Genov Duration: 150 minutes Closed book; A hand-written 8.5"xl1"one-page

More information

Lecture 4. The CMOS Inverter. DC Transfer Curve: Load line. DC Operation: Voltage Transfer Characteristic. Noise in Digital Integrated Circuits

Lecture 4. The CMOS Inverter. DC Transfer Curve: Load line. DC Operation: Voltage Transfer Characteristic. Noise in Digital Integrated Circuits Noise in Digital Integrated Circuits Lecture 4 The CMOS Inverter i(t) v(t) V DD Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail:

More information

Designing Of A New Low Voltage CMOS Schmitt Trigger Circuit And Its Applications on Reduce Power Dissipation

Designing Of A New Low Voltage CMOS Schmitt Trigger Circuit And Its Applications on Reduce Power Dissipation IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. Issue 1, December 015. www.ijiset.com ISSN 348 7968 Designing Of A New Low Voltage CMOS Schmitt Trigger Circuit And

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 9 MOS Logic and Gate Circuits B B Y Wired OR dib brishamifar EE Department IUST Contents Introduction NMOS Logic Resistive Load Saturated Enhancement Load Linear

More information

Chapter 6 Combinational CMOS Circuit and Logic Design. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 6 Combinational CMOS Circuit and Logic Design. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 6 Combinational CMOS Circuit and Logic Design Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Advanced Reliable Systems (ARES) Lab. Jin-Fu Li,

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

ECEG 350L Electronics I Laboratory Fall 2017

ECEG 350L Electronics I Laboratory Fall 2017 ECEG 350L Electronics I Laboratory Fall 2017 Introduction Lab #6: CMOS Logic Gates [revised 11/30/2017] Digital circuitry forms the foundation of the modern technical, information-centric world. All digital

More information

Today's Goals. Finish MOS transistor Finish NMOS logic Start CMOS logic

Today's Goals. Finish MOS transistor Finish NMOS logic Start CMOS logic Bi Today's Goals Finish MOS transistor Finish Start Bi MOS Capacitor Equations Threshold voltage Gate capacitance V T = ms Q i C i Q II C i Q d C i 2 F n-channel - - p-channel ± ± + + - - Contributions

More information

Lab 3: Circuit Simulation with PSPICE

Lab 3: Circuit Simulation with PSPICE Page 1 of 11 Laboratory Goals Introduce text-based PSPICE as a design tool Create transistor circuits using PSPICE Simulate output response for the designed circuits Introduce the Curve Tracer functionality.

More information

EE 40. Midterm 3. November 14, 2002

EE 40. Midterm 3. November 14, 2002 Lab TA: Dan Bart Nir Konrad Yu Ching EE 40 Midterm 3 November 14, 2002 PLEASE WRITE YOUR NAME ON EACH ATTACHED PAGE PLEASE SHOW YOUR WORK TO RECEIVE PARTIAL CREDIT Problem 1: 10 Points Possible Problem

More information

Power dissipation in CMOS

Power dissipation in CMOS DC Current in For V IN < V TN, N O is cut off and I DD = 0. For V TN < V IN < V DD /2, N O is saturated. For V DD /2 < V IN < V DD +V TP, P O is saturated. For V IN > V DD + V TP, P O is cut off and I

More information

EXPERIMENT 4 CMOS Inverter and Logic Gates

EXPERIMENT 4 CMOS Inverter and Logic Gates İzmir University of Economics EEE 332 Digital Electronics Lab A. Background EXPERIMENT 4 CMOS Inverter and Logic Gates CMOS (Complementary MOS) technology uses tarnsistors together with transistors to

More information

Index terms: Analog to digital converter, Flash ADC, Pseudo NMOS logic, Pseudo Dynamic CMOS logic multi threshold voltage CMOS inverters.

Index terms: Analog to digital converter, Flash ADC, Pseudo NMOS logic, Pseudo Dynamic CMOS logic multi threshold voltage CMOS inverters. Low Power CMOS Flash ADC C Mohan, T Ravisekhar Abstract The present investigation proposes an efficient low power encoding scheme intended for a flash analog to digital converter. The designing of a thermometer

More information

3. COMPARING STRUCTURE OF SINGLE GATE AND DOUBLE GATE MOSFET WITH DESIGN AND CURVE

3. COMPARING STRUCTURE OF SINGLE GATE AND DOUBLE GATE MOSFET WITH DESIGN AND CURVE P a g e 80 Available online at http://arjournal.org APPLIED RESEARCH JOURNAL RESEARCH ARTICLE ISSN: 2423-4796 Applied Research Journal Vol. 3, Issue, 2, pp.80-86, February, 2017 COMPARATIVE STUDY ON SINGLE

More information

CS and CE amplifiers with loads:

CS and CE amplifiers with loads: CS and CE amplifiers with loads: The Common-Source Circuit The most basic IC MOS amplifier is shown in fig.(1). The source of MOS transistor is grounded, also the drain resistor RD replaced by a constant-current

More information

Microelectronics, BSc course

Microelectronics, BSc course Microelectronics, BSc course MOS circuits: CMOS circuits, construction http://www.eet.bme.hu/~poppe/miel/en/14-cmos.pptx http://www.eet.bme.hu The abstraction level of our study: SYSTEM + MODULE GATE CIRCUIT

More information

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Device Structure N-Channel MOSFET Providing electrons Pulling electrons (makes current flow) + + + Apply positive voltage to gate: Drives away

More information

EE 435. Lecture 6: Current Mirrors Signal Swing

EE 435. Lecture 6: Current Mirrors Signal Swing EE 435 ecture 6: Current Mirrors Signal Swing 1 Review from last lecture: Where we are at: Basic Op Amp Design Fundamental Amplifier Design Issues Single-Stage ow Gain Op Amps Single-Stage High Gain Op

More information

Embedded Systems. Oscillator and I/O Hardware. Eng. Anis Nazer First Semester

Embedded Systems. Oscillator and I/O Hardware. Eng. Anis Nazer First Semester Embedded Systems Oscillator and I/O Hardware Eng. Anis Nazer First Semester 2016-2017 Oscillator configurations Three possible configurations for Oscillator (a) using a crystal oscillator (b) using an

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Two Problems. Outline. Output not go to Rail

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Two Problems. Outline. Output not go to Rail ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 6: September 19, 2011 Restoration Today How do we make sure logic is robust Can assemble into any (feed forward) graph Can

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Two Problems. Outline. Output not go to Rail

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Two Problems. Outline. Output not go to Rail ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 6: September 17, 2012 Restoration Today How do we make sure logic is robust Can assemble into any (feed forward) graph Can

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Submission date: Wednesday 21/3/2018

Submission date: Wednesday 21/3/2018 Faculty of Information Engineering & Technology Electrical & Electronics Department Course: Microelectronics Lab ELCT605 Spring 2018 Dr. Eman Azab Eng. Samar Shukry Analog Report 1, 2 DC, TRANSIENT, AND

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

EE 140 HW7 SOLUTION 1. OPA334. a. From the data sheet, we see that. Vss 0.1V Vcm Vdd 1.5V

EE 140 HW7 SOLUTION 1. OPA334. a. From the data sheet, we see that. Vss 0.1V Vcm Vdd 1.5V EE 140 HW7 SOLUTION 1. OPA334 a. From the data sheet, we see that Vss 0.1V Vcm Vdd 1.5V The input common mode voltage must remain at least 1.5V below vdd. The input common mode voltage can be below Vss.

More information

d. Why do circuit designers like to use feedback when they make amplifiers? Give at least two reasons.

d. Why do circuit designers like to use feedback when they make amplifiers? Give at least two reasons. EECS105 Final 5/12/10 Name SID 1 /20 2 /30 3 /20 4 /20 5 /30 6 /40 7 /20 8 /20 Total 1. Give a short answer to each question a. Your friend from Stanford says that he has designed a three-stage high gain

More information

MOS Logic and Gate Circuits. Wired OR

MOS Logic and Gate Circuits. Wired OR MOS Logic and Gate Circuits A A A B A AB Y Wired OR Contents Introduction NMOS Logic Resistive Load Saturated Enhancement Load Linear Enhancement Load Depletion Load Some Gates Transient in NMOS Circuit

More information

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits In this lab, we will be looking at ac signals with MOSFET circuits and digital electronics. The experiments will be performed

More information

Integrated, Low Voltage, Dynamically Adaptive Buck-Boost Boost Converter A Top-Down Design Approach

Integrated, Low Voltage, Dynamically Adaptive Buck-Boost Boost Converter A Top-Down Design Approach Integrated, Low Voltage, Dynamically Adaptive Buck-Boost Boost Converter A Top-Down Design Approach Georgia Tech Analog Consortium Biranchinath Sahu Advisor: Prof. Gabriel A. Rincón-Mora Analog Integrated

More information

Novel Buffer Design for Low Power and Less Delay in 45nm and 90nm Technology

Novel Buffer Design for Low Power and Less Delay in 45nm and 90nm Technology Novel Buffer Design for Low Power and Less Delay in 45nm and 90nm Technology 1 Mahesha NB #1 #1 Lecturer Department of Electronics & Communication Engineering, Rai Technology University nbmahesh512@gmail.com

More information

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 6: CMOS Digital Logic 1 Last Lectures The CMOS Inverter CMOS Capacitance Driving a Load 2 This Lecture Now that we know all

More information

EE434 ASIC & Digital Systems

EE434 ASIC & Digital Systems EE434 ASIC & Digital Systems Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Spring 2015 Dae Hyun Kim daehyun@eecs.wsu.edu 1 Lecture 4 More on CMOS Gates Ref: Textbook chapter

More information

German- Jordanian University

German- Jordanian University German- Jordanian University School of Electrical Engineering and Information Technology Digital Electronics Laboratory ECE 5420 Updated version of Dr. Mansour Abbadi manual Prepared by Eng. Samira Khraiwesh

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 2018 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

CMOS VLSI Design (A3425)

CMOS VLSI Design (A3425) CMOS VLSI Design (A3425) Unit III Static Logic Gates Introduction A static logic gate is one that has a well defined output once the inputs are stabilized and the switching transients have decayed away.

More information

5. CMOS Gates: DC and Transient Behavior

5. CMOS Gates: DC and Transient Behavior 5. CMOS Gates: DC and Transient Behavior Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 September 18, 2017 ECE Department, University

More information

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 Objective: The objective of this laboratory experiment is to become more familiar with the operation of

More information

ECE 2274 MOSFET Voltmeter. Richard Cooper

ECE 2274 MOSFET Voltmeter. Richard Cooper ECE 2274 MOSFET Voltmeter Richard Cooper Pre-Lab for MOSFET Voltmeter Voltmeter design: Build a MOSFET (2N7000) voltmeter in LTspice. The MOSFETs in the voltmeter act as switches. To turn on the MOSFET.

More information

I D1 I D2 V X D 1 D 2 EE 330. Homework Assignment 6 Spring 2017 (Due Friday Feb 17)

I D1 I D2 V X D 1 D 2 EE 330. Homework Assignment 6 Spring 2017 (Due Friday Feb 17) EE 330 Homework Assignment 6 Spring 2017 (Due Friday Feb 17) Unless specified to the contrary, assume all n-channel MOS transistors have model parameters μncox = 100μA/V 2 and VTn = 1V, all p-channel transistors

More information

Reducing the area of Multi-Valued NOT with FG-MOS

Reducing the area of Multi-Valued NOT with FG-MOS Reducing the area of Multi-Valued NOT with FG-MOS Shodai Morita Department of Electrical Engineering National Institute of Technology Ariake College, Omuta-shi, Fukuoka, Japan Akio Shimizu Department of

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 11 BiCMOS PMOS rray Q1 NMOS rray Y NMOS rray Q2 dib brishamifar EE Department IUST Contents Introduction BiCMOS Devices BiCMOS Inverters BiCMOS Gates BiCMOS Drivers

More information

Combinational Logic Gates in CMOS

Combinational Logic Gates in CMOS Combinational Logic Gates in CMOS References: dapted from: Digital Integrated Circuits: Design Perspective, J. Rabaey UC Principles of CMOS VLSI Design: Systems Perspective, 2nd Ed., N. H. E. Weste and

More information

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1 Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog

More information

Short-Circuit Power Reduction by Using High-Threshold Transistors

Short-Circuit Power Reduction by Using High-Threshold Transistors J. Low Power Electron. Appl. 2012, 2, 69-78; doi:10.3390/jlpea2010069 OPEN ACCESS Journal of Low Power Electronics and Applications ISSN 2079-9268 www.mdpi.com/journal/jlpea/ Article Short-Circuit Power

More information

ECE2274 Pre-Lab for MOSFET logic LTspice NAND Gate, NOR Gate, and CMOS Inverter

ECE2274 Pre-Lab for MOSFET logic LTspice NAND Gate, NOR Gate, and CMOS Inverter ECE2274 Pre-Lab for MOFET logic LTspice NAN ate, NOR ate, and CMO Inverter 1. NMO NAN ate Use Vdd = 9.. For the NMO NAN gate shown below gate, using the 2N7000 MOFET LTspice model such that Vto = 2.0.

More information

CD4028. CMOS BCD-To-Decimal Decoder. Pinout. Features. Functional Diagram. Applications. Description.

CD4028. CMOS BCD-To-Decimal Decoder. Pinout. Features. Functional Diagram. Applications. Description. CD CMOS BCD-To-Decimal Decoder Features Pinout High Voltage Type (V Rating) BCD-to-Decimal Decoding or Binary-to-Octal Decoding TOP VIEW High Decoded Output Drive Capability Positive Logic Inputs and Outputs

More information

CD4585BMS. CMOS 4-Bit Magnitude Comparator. Features. Pinout. Functional Diagram. Applications. Description. December 1992

CD4585BMS. CMOS 4-Bit Magnitude Comparator. Features. Pinout. Functional Diagram. Applications. Description. December 1992 CD55BMS December 199 Features High Voltage Type (V Rating) Expansion to, 1, 1...N Bits by Cascading Units Medium Speed Operation - Compares Two -Bit Words in 1ns (Typ.) at 1% Tested for Quiescent Current

More information

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits Faculty of Engineering ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits CMOS Technology Complementary MOS, or CMOS, needs both PMOS and NMOS FET devices for their logic gates to be realized

More information

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring 2017

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring 2017 Department of Electrical and Computer Engineering, Cornell University ECE 3150: Microelectronics Spring 017 Final Exam ` May, 017 INSTRUCTIONS: Every problem must be done in the separate booklet Only work

More information

EECS 141: SPRING 98 FINAL

EECS 141: SPRING 98 FINAL University of California College of Engineering Department of Electrical Engineering and Computer Science J. M. Rabaey 511 Cory Hall TuTh3:3-5pm e141@eecs EECS 141: SPRING 98 FINAL For all problems, you

More information

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas NAME: Show your work to get credit. Open book and closed notes. Unless otherwise

More information

Output Waveform Evaluation of Basic Pass Transistor Structure*

Output Waveform Evaluation of Basic Pass Transistor Structure* Output Waveform Evaluation of Basic Pass Transistor Structure* S. Nikolaidis, H. Pournara, and A. Chatzigeorgiou Department of Physics, Aristotle University of Thessaloniki Department of Applied Informatics,

More information

Lecture Integrated circuits era

Lecture Integrated circuits era Lecture 1 1.1 Integrated circuits era Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell laboratories. In 1961, first IC was introduced. Levels of Integration:-

More information

Lecture 14. FET Current and Voltage Sources and Current Mirrors. The Building Blocks of Analog Circuits - IV

Lecture 14. FET Current and Voltage Sources and Current Mirrors. The Building Blocks of Analog Circuits - IV Lecture 4 FET Current and oltage s and Current Mirrors The Building Blocks of Analog Circuits n this lecture you will learn: Current and voltage sources using FETs FET current mirrors Cascode current mirror

More information

CMOS Circuits CONCORDIA VLSI DESIGN LAB

CMOS Circuits CONCORDIA VLSI DESIGN LAB CMOS Circuits 1 Combination and Sequential 2 Static Combinational Network CMOS Circuits Pull-up network-pmos Pull-down network-nmos Networks are complementary to each other When the circuit is dormant,

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

CHAPTER-2 BASICS. The Basics chapter emphasizes upon the various concepts that are

CHAPTER-2 BASICS. The Basics chapter emphasizes upon the various concepts that are 8 CHAPTER-2 BASICS The Basics chapter emphasizes upon the various concepts that are involved in the functioning of MOS devices, effect of threshold voltage on characteristics, sub threshold conduction,

More information

1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6)

1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6) CSE 493/593 Test 2 Fall 2011 Solution 1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6) Decreasing of W to make the gate slower,

More information

Module-1: Logic Families Characteristics and Types. Table of Content

Module-1: Logic Families Characteristics and Types. Table of Content 1 Module-1: Logic Families Characteristics and Types Table of Content 1.1 Introduction 1.2 Logic families 1.3 Positive and Negative logic 1.4 Types of logic families 1.5 Characteristics of logic families

More information

EE 2274 MOSFET BASICS

EE 2274 MOSFET BASICS Pre Lab: Include your CN with prelab. EE 2274 MOSFET BASICS 1. Simulate in LTspice a family of output characteristic curves (cutve tracer) for the 2N7000 NMOS You will need to add the 2N7000 model to LTspice

More information

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN Name: EXAM #3 Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit. Data: Use the following data in all

More information

Experiment 5 Single-Stage MOS Amplifiers

Experiment 5 Single-Stage MOS Amplifiers Experiment 5 Single-Stage MOS Amplifiers B. Cagdaser, H. Chong, R. Lu, and R. T. Howe UC Berkeley EE 105 Fall 2005 1 Objective This is the first lab dealing with the use of transistors in amplifiers. We

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Note that none of the above MAY be a VALID ANSWER.

Note that none of the above MAY be a VALID ANSWER. ECE 270 Learning Outcome 1-1 - Practice Exam / Solution LEARNING OUTCOME #1: an ability to analyze and design CMOS logic gates. Multiple Choice select the single most appropriate response for each question.

More information

Learning Outcomes. Spiral 2-6. Current, Voltage, & Resistors DIODES

Learning Outcomes. Spiral 2-6. Current, Voltage, & Resistors DIODES 26.1 26.2 Learning Outcomes Spiral 26 Semiconductor Material MOS Theory I underst why a diode conducts current under forward bias but does not under reverse bias I underst the three modes of operation

More information

DESIGN OF 16 TO 1 MULTIPLEXER IC USING HIGH SPEED CMOS TECHNOLOGY

DESIGN OF 16 TO 1 MULTIPLEXER IC USING HIGH SPEED CMOS TECHNOLOGY DESIGN OF 16 TO 1 MUTIPEXER IC USING IG SPEED CMOS TECNOOGY Eka Maulana a, M Julius St b, R Arief Setyawan c, Ceri A d, Tito Panca N e, abc ecturer, Department of Electrical Engineering, Brawijaya University,

More information

EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold Circuit Design. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold Circuit Design. Rajeevan Amirtharajah University of California, Davis EEC 216 Lecture #1: Ultra Low Voltage and Subthreshold Circuit Design Rajeevan Amirtharajah University of California, Davis Opportunities for Ultra Low Voltage Battery Operated and Mobile Systems Wireless

More information

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals.

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. MOSFET Terminals The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. For an n-channel MOSFET, the SOURCE is biased at a lower potential (often

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers 6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication

More information