Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Size: px
Start display at page:

Download "Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo"

Transcription

1 Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC

2 Ratioed Logic Introduction Digital IC EE141 2

3 Ratioed Logic design Basic concept Resistive load Depletion NMOS Pseudo NMOS DCVSL logic Pseudo NMOS logic effort Digital IC 3

4 Ratioed Logic design Basic concept Resistive load Depletion NMOS Pseudo NMOS DCVSL logic Pseudo NMOS logic effort Digital IC 4

5 Ratioed Logic V DD V DD V DD Resistive Load R L Depletion Load V T < 0 PMOS Load F F V SS F In 1 In 2 In 3 PDN In 1 In 2 In 3 PDN In 1 In 2 In 3 PDN V SS V SS V SS (a) resistive load (b) depletion load NMOS (c) pseudo-nmos Goal: to reduce the number of devices over complementary CMOS Goal: to reduce the number of devices over complementary CMOS Digital IC 5

6 How to obtain a good load a good load Low power V OL tend to zero Charge time short (large charge current) Memory address decoder match the structure Low power when address hold the line Change quickly when address content changed Digital IC 6

7 Ratioed Logic design Basic concept Resistive load Depletion NMOS Pseudo NMOS DCVSL logic Pseudo NMOS logic effort Digital IC 7

8 Ratioed Logic-resistive load V DD N transistor + Load Resistive Load R L V OH =V DD In 1 In 2 In 3 PDN F V OL = RPN R PN +R L ssymetrical response Static power consumption V SS t pl =0.69 R L C L Digital IC 8

9 Resistive load R L not be to low V OL R R PDN PDN R L V DD For wide range low noise margin,r L >>R PDN R L not be to high enough large current could give quick switch time, because t plh 0.69RLC L t 0.69( R R ) C phl PDN Decrease power consumption SP L L Digital IC 9

10 Ratioed Logic design Basic concept Resistive load Depletion NMOS Pseudo NMOS DCVSL logic Pseudo NMOS logic effort Digital IC 10

11 ctive Loads V DD V DD Depletion Load V T < 0 PMOS Load F V SS F In 1 In 2 In 3 PDN In 1 In 2 In 3 PDN V SS V SS depletion load NMOS pseudo-nmos Depletion load has negative threshold voltage Digital IC 11

12 Depletion nmos load assume the load tran.works at saturate state, just like a current source I L Practically, the load curve slant down k n, load 2 Load transistor s source is connect with output, which V SB will effect threshold voltage Compared with resistive load, depletion load has smaller area 40k resistive load need 3200m 2 (0.5um) which could occupy 1000 unit transistor V Tn 2 Digital IC 12

13 Depletion NMOS ratios computing t least, V OL should close next stage MOS transistor: V R R W out PDN R V PDN NMOSload NMOSsload W t PDN Inverter: nmos Vdd R R 0.3V PDN NMOSsload dd 0.3V dd Digital IC 13

14 Ratioed Logic design Basic concept Resistive load Depletion NMOS Pseudo NMOS DCVSL logic Pseudo NMOS logic effort Digital IC 14

15 Pseudo-NMOS ratios PMOS s source and substrate voltage is always zero,no body effect Load transistor s saturate current is I L k p 2 ( V DD V Tp 2 ) pmos load current is larger than that of nmos Digital IC 15

16 Pseudo-NMOS ratios computing k n (( V DD V Tn ) V OL 2 V 2 OL ) k p (( V DD V Tp ) V DST p V 2 DST 2 p ) 0 V OL W W p n k p μ ( V n k DD n ( V V DD Tp ) V V Tn DST ) 2 = 3800cm /v.s,μ VOLn V p DSTp p p W p W n p n V DSTp 2 = 1800cm /v.s pmos load for 1/5, always 1/3-1/6 Digital IC 16

17 Pseudo NMOS logic design rule Static power Constrains should be regarded P average V I L should be lower in order to decrease power V OL =I L R PDN should be lower in order to obtain effective low voltage I L should high in order to decrease t plh =(C L V dd )/(2I L ) R PDN should be small in order to decrease t phl =0.69R PDN C L, dd I low k p 2 V ( V Digital IC 17 dd dd V Pull-down transistors should be wider, not benefit from both power and delay T 2 )

18 V ou t [V] Pseudo-NMOS VTC W/L p = W/L p = W/L p = 0.5 W/L p = 0.25 W/L p = V in [V] Digital IC 18

19 Load curve analysis Resistive load I L V DD V R More output voltage, lower charge current, more time Ideally, constant current source Charge current does not be decreased by output voltage L out Digital IC 19

20 Pseudo-NMOS ratioed logic Pseudo-NMOS ratioed logic merits N-fan-in needs N+1 transistors,with smaller area and parasitic cap. Every input only connects with one transistor, which load cap. is smaller as front stage logic. shortcoming Static power,1mw per logic,50w consumption if chip has 100,000 such logic structure! application Not fit for large scale circuit Only apply on high speed circuit Only apply on 1-state on most output(etc. decoder) Large fan-in Digital IC 20

21 Improved Loads V DD Enable M1 M2 M1 >> M2 F B C D C L daptive Load Digital IC 21

22 Improved Loads (2) V DD V DD M1 M2 Out Out B B PDN1 PDN2 V SS V SS Differential Cascode Voltage Switch Logic (DCVSL) Digital IC 22

23 Ratioed Logic design Basic concept Resistive load Depletion NMOS Pseudo NMOS DCVSL logic Pseudo NMOS logic effort Digital IC 23

24 V oltage [V] DCVSL Example Out 2.5 B Out B B B ,B,B B B XOR-NXOR gate Time [ns] Digital IC 24

25 Pseudo-nMOS Power Pseudo-nMOS draws power whenever Y = 0 Called static power P = I V DD few m / gate * 1M gates would be a problem This is why nmos went extinct! Use pseudo-nmos sparingly for wide NORs Turn off pmos when not in use en B C Y Digital IC 25

26 Pass-Transistor Logic Introduction Digital IC 26 EE141

27 Pass- transistor logic outline Pass-transistor principle Pass-transistor VTC How to solve pass-transistor threshold drop issue Transmission gate principle Some issues of transmission gate Digital IC 27

28 Pass-Transistor Logic B Inputs Switch Network Out B B Out N transistors No static consumption Pass-transistor logic is a path, not a road connected with rail directly! Digital IC 28

29 Example: ND Gate B B F = B 0 Digital IC 29

30 Pass Transistors Transistors can be used as switches g s d g s d 1: Circuits & Layout Digital IC Slide 30

31 Pass Transistors Transistors can be used as switches s g d s s g = 0 g = 1 d d Input g = 1 Output 0 strong 0 g = 1 1 degraded 1 s g d s s g = 0 g = 1 d d Input g = 0 Output 0 degraded 0 g = 0 strong 1 Digital IC Slide 31

32 Voltage [V] NMOS-Only Logic In V DD x 1.5m/0.25m 0.5m/0.25m 0.5m/0.25m Out 3.0 In NMOS keep on,then 2.0 Out x V GS >V t 1.0 V DG =0,which means NMOS always works in Time [ns] the saturation state Digital IC 32

33 NMOS-only Switch C = 2.5 V C = 2.5 V = 2.5 V = 2.5 V B M 2 B M n C L M 1 V B does not pull up to 2.5V, but 2.5V V TN Threshold voltage loss causes static power consumption NMOS has higher threshold (body effect) Digital IC 33

34 The proper way of cascading pass gates Weak for passing high voltage V min V V, V s G T D Proper way of cascading pass transistors,which will not accumulate threshold drop Digital IC 34

35 Output of passing-transistor should not be connected with the gate of next stage Digital IC 35

36 Transmission Gates Pass transistors produce degraded outputs Transmission gates pass both 0 and 1 well Digital IC Slide 36

37 Transmission Gates Pass transistors produce degraded outputs Transmission gates pass both 0 and 1 well a g gb b g = 0, gb = 1 a b g = 1, gb = 0 a b Input Output g = 1, gb = 0 0 strong 0 g = 1, gb = 0 1 strong 1 a g b a g b a g b gb gb gb Digital IC Slide 37

38 Tristates Tristate buffer produces Z when not enabled EN Y EN 0 0 Y EN Y EN Digital IC Slide 38

39 Tristates Tristate buffer produces Z when not enabled EN Y EN 0 0 Z Y 0 1 Z EN Y EN Digital IC Slide 39

40 Nonrestoring Tristate Transmission gate acts as tristate buffer Only two transistors But nonrestoring Noise on is passed on to Y EN Y EN Digital IC Slide 40

41 Tristate Inverter Tristate inverter produces restored output Violates conduction complement rule Because we want a Z output EN EN Y Digital IC Slide 41

42 Tristate Inverter Tristate inverter produces restored output Violates conduction complement rule Because we want a Z output EN EN Y Y Y EN = 0 Y = 'Z' EN = 1 Y = Digital IC Slide 42

43 Multiplexers 2:1 multiplexer chooses between two inputs S D1 D0 Y S 0 X 0 0 X X D0 D1 0 1 Y 1 1 X Digital IC Slide 43

44 Multiplexers 2:1 multiplexer chooses between two inputs S D1 D0 Y S 0 X X X 0 D0 D1 0 1 Y 1 1 X 1 Digital IC Slide 44

45 Gate-Level Mux Design Y SD SD 1 0 (too many transistors) How many transistors are needed? Digital IC Slide 45

46 Gate-Level Mux Design Y SD SD 1 0 (too many transistors) How many transistors are needed? 20 D1 S D0 Y D1 S D Y Digital IC Slide 46

47 Transmission Gate Mux Nonrestoring mux uses two transmission gates Digital IC Slide 47

48 Transmission Gate Mux Nonrestoring mux uses two transmission gates Only 4 transistors S D0 S Y D1 S Digital IC Slide 48

49 Inverting Mux Inverting multiplexer Use compound OI22 Or pair of tristate inverters Essentially the same thing Noninverting multiplexer adds an inverter D0 S S S D1 S Y D0 S S D1 S S Y D0 D1 0 1 S Y Digital IC Slide 49

50 4:1 Multiplexer 4:1 mux chooses one of 4 inputs using two selects 1: Circuits & Layout Digital IC Slide 50

51 4:1 Multiplexer 4:1 mux chooses one of 4 inputs using two selects Two levels of 2:1 muxes Or four tristates S1S0 S1S0 S1S0 S1S0 D0 S0 S1 D0 D1 D Y D1 D2 Y D3 1 D3 Digital IC Slide 51

52 Pass- transistor logic outline Pass-transistor principle Pass-transistor VTC How to solve pass-transistor threshold drop issue Transmission gate principle Some issues of transmission gate Digital IC 52

53 Pass-transistor s VTC Digital IC 53

54 Complementary Pass Transistor Logic B B Pass-Transistor Network F (a) B B Inverse Pass-Transistor Network F B B B B B B B F=B B F=+B F=Ý (b) B F=B B F=+B F=Ý ND/NND OR/NOR EXOR/NEXOR Digital IC 54

55 Pass- transistor logic outline Pass-transistor principle Pass-transistor VTC How to solve pass-transistor threshold drop issue Solution 1:Level Restoring Transistor Resistive issue Digital IC 55

56 Solution 1:Level Restoring Transistor Level Restorer V DD V DD B M r M 2 M n X Out M 1 dvantage: Full Swing Restorer adds capacitance, takes away pull down current at X Ratio problem Digital IC 56

57 Voltage [V] Restorer Sizing W/L r =1.75/0.25 W/L r =1.50/ W/L r =1.0/0.25 W/L r =1.25/ Time [ps] Upper limit on restorer size Pass-transistor pull-down can have several transistors in stack Digital IC 57

58 pass- transistor logic outline Pass-transistor principle Pass-transistor VTC How to solve pass-transistor threshold drop issue Solution 1:Level Restoring Transistor Resistive issue Solution 2: Single Transistor Pass Gate with V T =0 Digital IC 58

59 Solution 2: Single Transistor Pass Gate with V T =0 V DD 0V 2.5V V DD V DD 0V Out 2.5V WTCH OUT FOR LEKGE CURRENTS Digital IC 59

60 pass- transistor logic outline Pass-transistor principle Pass-transistor VTC How to solve pass-transistor threshold drop issue Solution 3: Transmission Gate Complementary Pass-Transistor Logic Transmission gate principle Some issues of transmission gate Digital IC 60

61 Solution 3: Transmission Gate C C B B C C C = 2.5 V = 2.5 V B C L C = 0 V Digital IC 61

62 pass- transistor logic outline Pass-transistor principle Pass-transistor VTC How to solve pass-transistor threshold drop issue Transmission gate principle Some issues of transmission gate Digital IC 62

63 Pass-Transistor Based Multiplexer S VDD V DD S S M2 S F M1 B S GND In 1 S S In 2 Digital IC 63

64 Transmission Gate XOR B M2 B M1 B F B M3/M4 Digital IC 64

65 Transmission Gate Full dder P V DD V DD P C i C i P S Sum Generation V DD B P B P P V DD C o Carry Generation C i C i Setup C i P Similar delays for sum and carry Digital IC 65

66 pass- transistor logic outline Pass-transistor principle Pass-transistor VTC How to solve pass-transistor threshold drop issue Transmission gate principle Some issues of transmission gate Resistive issue Delay issue Digital IC 66

67 More detail about a processing of low-to-high Two transistors stories NMOS, For V GS =V DS, V GD =0<V t,then NMOS always works in the saturation or off state PMOS, For V GS =-2.5V, transistor turn from saturation to linear state More detail V V V out tp dd V V V tn tp out : V V NMOS out dd : V and tn : PMOS are in saturation NMOS in satur. PMOS in linear NMOS cut off PMOS in linear Digital IC 67

68 Transmission gate effective resistance of low-to-high Relatively constant R eq =R p R n R n k V n ( V DD DD V I Dn V V DD out V V out k out ' n Tn W ( ) L ) V N DSTn (( V DD V V DD out V V out Tn ) V DSTn V 2 2 DSTn ) R p V k p out 1 ( V V I DD Dp DD V Tp ) k ' p W ( ) L P (( V DD V V Tp DD )( V V out out V DD ( V ) out V 2 DD ) 2 ) Digital IC 68

69 pass- transistor logic outline Pass-transistor principle Pass-transistor VTC How to solve pass-transistor threshold drop issue Transmission gate principle Some issues of transmission gate Resistive issue Delay issue Complementary Pass-Transistor Logic Digital IC 69

70 Delay in Transmission Gate Networks Many applications use transmission like that Replaced by their equivalent resistances Digital IC 70

71 Digital IC How to do Solving the differential equation It is too complex to find precise solution,we have to find some approximate solution 71 Computing delay time )) ( ( i i i i eq i V V V V C R t V ) ( 1,, 1 1 i i i C i i C I I C t V dt CdV dt dq I I I I

72 Delay time is τ ( V close solution n ) CR k0 Break chain and Insert buffer n eq k CR eq n( n 1) 2 Digital IC 72

73 Transmission gate delay optimization Total delay time ssume all has n transmission gate,break chain every m switchs,buffer delay time is t buf t p 0.69[ 0.69CR n m eq m( m 1) CReq ] ( 2 n( m 1) n ( 1) t 2 m n m buf 1) t buf Digital IC 73

74 Optimal number of switch m optimal m optimal t p m t p 0 m n ntbuf 0.69CReq 2 2 m tbuf CR eq It is independent with n 0 Digital IC 74

VLSI Logic Structures

VLSI Logic Structures VLSI Logic Structures Ratioed Logic Pass-Transistor Logic Dynamic CMOS Domino Logic Zipper CMOS Spring 25 John. Chandy inary Multiplication + x Multiplicand Multiplier Partial products Result Spring 25

More information

Combinational Logic Gates in CMOS

Combinational Logic Gates in CMOS Combinational Logic Gates in CMOS References: dapted from: Digital Integrated Circuits: Design Perspective, J. Rabaey UC Principles of CMOS VLSI Design: Systems Perspective, 2nd Ed., N. H. E. Weste and

More information

CMOS Transistor and Circuits. Jan 2015 CMOS Transistor 1

CMOS Transistor and Circuits. Jan 2015 CMOS Transistor 1 CMOS Transistor and Circuits Jan 2015 CMOS Transistor 1 Latchup in CMOS Circuits Jan 2015 CMOS Transistor 2 Parasitic bipolar transistors are formed by substrate and source / drain devices Latchup occurs

More information

EE241 - Spring 2002 Advanced Digital Integrated Circuits

EE241 - Spring 2002 Advanced Digital Integrated Circuits EE241 - Spring 2002 dvanced Digital Integrated Circuits Lecture 7 MOS Logic Styles nnouncements Homework #1 due 2/19 1 Reading Chapter 7 in the text by K. ernstein ackground material from Rabaey References»

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 9 MOS Logic and Gate Circuits B B Y Wired OR dib brishamifar EE Department IUST Contents Introduction NMOS Logic Resistive Load Saturated Enhancement Load Linear

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Homework 5 this week Lab

More information

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 9: Pass Transistor Logic 1 Motivation In the previous lectures, we learned about Standard CMOS Digital Logic design. CMOS

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit

More information

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 6: CMOS Digital Logic 1 Last Lectures The CMOS Inverter CMOS Capacitance Driving a Load 2 This Lecture Now that we know all

More information

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic CMOS Inverter: A First Look C L 9/11/26 VLSI

More information

Chapter 6 Combinational CMOS Circuit and Logic Design. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 6 Combinational CMOS Circuit and Logic Design. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 6 Combinational CMOS Circuit and Logic Design Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Advanced Reliable Systems (ARES) Lab. Jin-Fu Li,

More information

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection NMOS Transistors in Series/Parallel Connection Topic 6 CMOS Static & Dynamic Logic Gates Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Transistors can be thought

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa atarina enter for Technology omputer Science & Electronics Engineering Integrated ircuits & Systems INE 5442 Lecture 16 MOS ombinational ircuits - 2 guntzel@inf.ufsc.br Pass

More information

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 5: Basic CMOS Inverter Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture

More information

CMOS Circuits CONCORDIA VLSI DESIGN LAB

CMOS Circuits CONCORDIA VLSI DESIGN LAB CMOS Circuits 1 Combination and Sequential 2 Static Combinational Network CMOS Circuits Pull-up network-pmos Pull-down network-nmos Networks are complementary to each other When the circuit is dormant,

More information

EE241 - Spring 2006 Advanced Digital Integrated Circuits. Notes. Lecture 7: Logic Families for Performance

EE241 - Spring 2006 Advanced Digital Integrated Circuits. Notes. Lecture 7: Logic Families for Performance EE241 - Spring 2006 dvanced Digital Integrated Circuits Lecture 7: Logic Families for Performance Notes Hw 1 due tomorrow Feedback on projects will be sent out by the end of the weekend Some thoughts on

More information

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. October 25, 2005

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. October 25, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 13-1 Lecture 13 - Digital Circuits (II) MOS Inverter Circuits October 25, 25 Contents: 1. NMOS inverter with resistor pull-up (cont.) 2. NMOS

More information

8. Combinational MOS Logic Circuits

8. Combinational MOS Logic Circuits 8. Combinational MOS Introduction Combinational logic circuits, or gates, witch perform Boolean operations on multiple input variables and determine the output as Boolean functions of the inputs, are the

More information

MOS Logic and Gate Circuits. Wired OR

MOS Logic and Gate Circuits. Wired OR MOS Logic and Gate Circuits A A A B A AB Y Wired OR Contents Introduction NMOS Logic Resistive Load Saturated Enhancement Load Linear Enhancement Load Depletion Load Some Gates Transient in NMOS Circuit

More information

Announcements. Advanced Digital Integrated Circuits. Quiz #3 today Homework #4 posted This lecture until 4pm

Announcements. Advanced Digital Integrated Circuits. Quiz #3 today Homework #4 posted This lecture until 4pm EE241 - Spring 2011 dvanced Digital Integrated Circuits Lecture 20: High-Performance Logic Styles nnouncements Quiz #3 today Homework #4 posted This lecture until 4pm Reading: Chapter 8 in the owhill text

More information

EE434 ASIC & Digital Systems

EE434 ASIC & Digital Systems EE434 ASIC & Digital Systems Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Spring 2015 Dae Hyun Kim daehyun@eecs.wsu.edu 1 Lecture 4 More on CMOS Gates Ref: Textbook chapter

More information

Lecture 11 Digital Circuits (I) THE INVERTER

Lecture 11 Digital Circuits (I) THE INVERTER Lecture 11 Digital Circuits (I) THE INVERTER Outline Introduction to digital circuits The inverter NMOS inverter with resistor pull-up Reading Assignment: Howe and Sodini; Chapter 5, Sections 5.1-5.3 6.12

More information

Introduction to Electronic Devices

Introduction to Electronic Devices Introduction to Electronic Devices (Course Number 300331) Fall 2006 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.:

More information

Lecture 11 Circuits numériques (I) L'inverseur

Lecture 11 Circuits numériques (I) L'inverseur Lecture 11 Circuits numériques (I) L'inverseur Outline Introduction to digital circuits The inverter NMOS inverter with resistor pull-up 6.12 Spring 24 Lecture 11 1 1. Introduction to digital circuits:

More information

Written Examination on. Wednesday October 17, 2007,

Written Examination on. Wednesday October 17, 2007, Written Examination on Wednesday October 17, 2007, 08.00-12.00 The textbook and a calculator are allowed on the examination 1. The following logical function is given Q= AB( CD+ CE) + F a. Draw the schematic

More information

Shorthand Notation for NMOS and PMOS Transistors

Shorthand Notation for NMOS and PMOS Transistors Shorthand Notation for NMOS and PMOS Transistors Terminal Voltages Mode of operation depends on V g, V d, V s V gs = V g V s V gd = V g V d V ds = V d V s = V gs - V gd Source and drain are symmetric diffusion

More information

MOS TRANSISTOR THEORY

MOS TRANSISTOR THEORY MOS TRANSISTOR THEORY Introduction A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Objectives In this lecture you will learn the following Ratioed Logic Pass Transistor Logic Dynamic Logic Circuits

More information

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph ENG2410 Digital Design CMOS Technology Fall 2017 S. reibi School of Engineering University of Guelph The Transistor Revolution First transistor Bell Labs, 1948 Bipolar logic 1960 s Intel 4004 processor

More information

UNIT-III GATE LEVEL DESIGN

UNIT-III GATE LEVEL DESIGN UNIT-III GATE LEVEL DESIGN LOGIC GATES AND OTHER COMPLEX GATES: Invert(nmos, cmos, Bicmos) NAND Gate(nmos, cmos, Bicmos) NOR Gate(nmos, cmos, Bicmos) The module (integrated circuit) is implemented in terms

More information

VLSI Design. Static CMOS Logic

VLSI Design. Static CMOS Logic VLSI esign Static MOS Logic [dapted from Rabaey s igital Integrated ircuits, 2002, J. Rabaey et al.] EE4121 Static MOS Logic.1 ZLM Review: MOS Process at a Glance efine active areas Etch and fill trenches

More information

Near-threshold Computing of Single-rail MOS Current Mode Logic Circuits

Near-threshold Computing of Single-rail MOS Current Mode Logic Circuits Research Journal of Applied Sciences, Engineering and Technology 5(10): 2991-2996, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: September 16, 2012 Accepted:

More information

CMOS VLSI Design (A3425)

CMOS VLSI Design (A3425) CMOS VLSI Design (A3425) Unit III Static Logic Gates Introduction A static logic gate is one that has a well defined output once the inputs are stabilized and the switching transients have decayed away.

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 11 BiCMOS PMOS rray Q1 NMOS rray Y NMOS rray Q2 dib brishamifar EE Department IUST Contents Introduction BiCMOS Devices BiCMOS Inverters BiCMOS Gates BiCMOS Drivers

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 8 NMOS gates Ch06L8-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline NMOS (n-channel based MOSFETs based circuit) NMOS Features

More information

ECE380 Digital Logic. Logic values as voltage levels

ECE380 Digital Logic. Logic values as voltage levels ECE380 Digital Logic Implementation Technology: NMOS and PMOS Transistors, CMOS logic gates Dr. D. J. Jackson Lecture 13-1 Logic values as voltage levels V ss is the minimum voltage that can exist in the

More information

CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design CMOS Digital Integrated Circuits Analysis and Design Chapter 8 Sequential MOS Logic Circuits 1 Introduction Combinational logic circuit Lack the capability of storing any previous events Non-regenerative

More information

General Structure of MOS Inverter

General Structure of MOS Inverter General Structure of MOS Inverter Load V i Drive Department of Microelectronics and omputer Science, TUL Digital MOS ircuits Families Digital MOS ircuits PMOS NMOS MOS BiMOS Depletion mode load Enhancement

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 9 CMOS gates Ch06L9-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline CMOS (n-channel based MOSFETs based circuit) CMOS Features

More information

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits Faculty of Engineering ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits CMOS Technology Complementary MOS, or CMOS, needs both PMOS and NMOS FET devices for their logic gates to be realized

More information

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD?

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD? Improved Inverter: Current-Source Pull-Up MOS Inverter with Current-Source Pull-Up What else could be connected between the drain and? Replace resistor with current source I SUP roc i D v IN v OUT Find

More information

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4 CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4 1 2 3 4 5 6 7 8 9 10 Sum 30 10 25 10 30 40 10 15 15 15 200 1. (30 points) Misc, Short questions (a) (2 points) Postponing the introduction of signals

More information

A Study on Super Threshold FinFET Current Mode Logic Circuits

A Study on Super Threshold FinFET Current Mode Logic Circuits XUQING ZHNG et al: STUDY ON SUPER THRESHOLD FINFET CURRENT MODE LOGIC CIRCUITS Study on Super Threshold FinFET Current Mode Logic rcuits Xuqiang ZHNG, Jianping HU *, Xia ZHNG Faculty of Information Science

More information

ECE 471/571 Combinatorial Circuits Lecture-7. Gurjeet Singh

ECE 471/571 Combinatorial Circuits Lecture-7. Gurjeet Singh ECE 471/571 Combinatorial Circuits Lecture-7 Gurjeet Singh Propagation Delay of CMOS Gates Propagation delay of Four input NAND Gate Disadvantages of Complementary CMOS Design Increase in complexity Larger

More information

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 12-1 Lecture 12 - Digital Circuits (I) The inverter October 2, 25 Contents: 1. Introduction to digital electronics: the inverter 2. NMOS inverter

More information

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits EE 330 Lecture 43 Digital Circuits Other Logic Styles Dynamic Logic Circuits Review from Last Time Elmore Delay Calculations W M 5 V OUT x 20C RE V IN 0 L R L 1 L R R 6 W 1 C C 3 D R t 1 R R t 2 R R t

More information

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1 Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1. Introduction 2. Metal Oxide Semiconductor (MOS) logic 2.1. Enhancement and depletion mode 2.2. NMOS and PMOS inverter

More information

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 23 p. 1/16 EE 42/100 Lecture 23: CMOS Transistors and Logic Gates ELECTRONICS Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad University

More information

EE 330 Lecture 42. Other Logic Styles Digital Building Blocks

EE 330 Lecture 42. Other Logic Styles Digital Building Blocks EE 330 Lecture 42 Other Logic Styles Digital Building Blocks Logic Styles Static CMOS Complex Logic Gates Pass Transistor Logic (PTL) Pseudo NMOS Dynamic Logic Domino Zipper Static CMOS Widely used Attractive

More information

Power dissipation in CMOS

Power dissipation in CMOS DC Current in For V IN < V TN, N O is cut off and I DD = 0. For V TN < V IN < V DD /2, N O is saturated. For V DD /2 < V IN < V DD +V TP, P O is saturated. For V IN > V DD + V TP, P O is cut off and I

More information

ELEC451 Integrated Circuit Engineering Fall 2009 Solution to CAD Assignment 2 Inverter Voltage Transfer Characteristic (VTC)

ELEC451 Integrated Circuit Engineering Fall 2009 Solution to CAD Assignment 2 Inverter Voltage Transfer Characteristic (VTC) ELEC451 Integrated Circuit Engineering Fall 2009 Solution to CAD Assignment 2 Inverter Voltage Transfer Characteristic (VTC) The plot below shows how the inverter's threshold voltage changes with the relative

More information

Microelectronics, BSc course

Microelectronics, BSc course Microelectronics, BSc course MOS circuits: CMOS circuits, construction http://www.eet.bme.hu/~poppe/miel/en/14-cmos.pptx http://www.eet.bme.hu The abstraction level of our study: SYSTEM + MODULE GATE CIRCUIT

More information

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2)

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2) 1 CHAPTER 3: IMPLEMENTATION TECHNOLOGY (PART 2) Whatwillwelearninthischapter? we learn in this 2 How transistors operate and form simple switches CMOS logic gates IC technology FPGAs and other PLDs Basic

More information

Digital CMOS Logic Circuits

Digital CMOS Logic Circuits Digital CMOS Logic Circuits In summary, this chapter provides a reasonably comprehensive and in-depth of CMOS digital integrated-circuit design, perhaps the most significant area (at least in terms of

More information

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS 70 CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS A novel approach of full adder and multipliers circuits using Complementary Pass Transistor

More information

EE 330 Lecture 5. Other Logic Styles Improved Device Models Stick Diagrams

EE 330 Lecture 5. Other Logic Styles Improved Device Models Stick Diagrams EE 330 Lecture 5 Other Logic Styles Improved evice Models Stick iagrams Review from Last Time MOS Transistor Qualitative iscussion of n-channel Operation ulk Source Gate rain rain Gate n-channel MOSFET

More information

MOS Field Effect Transistors

MOS Field Effect Transistors MOS Field Effect Transistors A gate contact gate interconnect n polysilicon gate source contacts W active area (thin oxide area) polysilicon gate contact metal interconnect drain contacts A bulk contact

More information

電子電路. Memory and Advanced Digital Circuits

電子電路. Memory and Advanced Digital Circuits 電子電路 Memory and Advanced Digital Circuits Hsun-Hsiang Chen ( 陳勛祥 ) Department of Electronic Engineering National Changhua University of Education Email: chenhh@cc.ncue.edu.tw Spring 2010 2 Reference Microelectronic

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 MOS Transistor Theory Study conducting channel between

More information

Power-Area trade-off for Different CMOS Design Technologies

Power-Area trade-off for Different CMOS Design Technologies Power-Area trade-off for Different CMOS Design Technologies Priyadarshini.V Department of ECE Sri Vishnu Engineering College for Women, Bhimavaram dpriya69@gmail.com Prof.G.R.L.V.N.Srinivasa Raju Head

More information

3.CMOS Inverter-homework

3.CMOS Inverter-homework 3.CMOS Inverter-homework 1. for a CMOS inverter, when the pmos and nmos are long-channel devices,or when the supply voltage is low, velocity does not occur, under these circumstances,vm(vin=vout)=? 2.

More information

Chapter 2 Combinational Circuits

Chapter 2 Combinational Circuits Chapter 2 Combinational Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 23, 26 Why CMOS? Most logic design today is done on CMOS circuits

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor Neamen Microelectronics, 4e Chapter 3-1 In this chapter, we will: Study and understand the operation

More information

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits EE 330 Lecture 43 Digital Circuits Other Logic Styles Dynamic Logic Circuits Review from Last Time Elmore Delay Calculations W M 5 V OUT x 20C RE V IN 0 L R L 1 L R RW 6 W 1 C C 3 D R t 1 R R t 2 R R t

More information

EE141-Spring 2007 Digital Integrated Circuits

EE141-Spring 2007 Digital Integrated Circuits EE141-Spring 2007 Digital Integrated Circuits Lecture 22 I/O, Power Distribution dders 1 nnouncements Homework 9 has been posted Due Tu. pr. 24, 5pm Project Phase 4 (Final) Report due Mo. pr. 30, noon

More information

ECE 471/571 The CMOS Inverter Lecture-6. Gurjeet Singh

ECE 471/571 The CMOS Inverter Lecture-6. Gurjeet Singh ECE 471/571 The CMOS Inverter Lecture-6 Gurjeet Singh NMOS-to-PMOS ratio,pmos are made β times larger than NMOS Sizing Inverters for Performance Conclusions: Intrinsic delay tp0 is independent of sizing

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

The CMOS Inverter. Lecture 3a Static properties (VTC and noise margins)

The CMOS Inverter. Lecture 3a Static properties (VTC and noise margins) The CMOS Inverter Lecture 3a Static properties (VTC and noise margins) Why so much about inverters? The current that any CMOS logic gate can deliver or sink can be calculated from equivalent inverter!

More information

A new 6-T multiplexer based full-adder for low power and leakage current optimization

A new 6-T multiplexer based full-adder for low power and leakage current optimization A new 6-T multiplexer based full-adder for low power and leakage current optimization G. Ramana Murthy a), C. Senthilpari, P. Velrajkumar, and T. S. Lim Faculty of Engineering and Technology, Multimedia

More information

ECE520 VLSI Design. Lecture 11: Combinational Static Logic. Prof. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 11: Combinational Static Logic. Prof. Payman Zarkesh-Ha EE520 VLSI esign Lecture 11: ombinational Static Logic Prof. Payman Zarkesh-Ha Office: EE ldg. 230 Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 eview of Last

More information

Preface to Third Edition Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate

Preface to Third Edition Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate Preface to Third Edition p. xiii Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate Design p. 6 Basic Logic Functions p. 6 Implementation

More information

Electronics Basic CMOS digital circuits

Electronics Basic CMOS digital circuits Electronics Basic CMOS digital circuits Prof. Márta Rencz, Gábor Takács, Dr. György Bognár, Dr. Péter G. Szabó BME DED October 21, 2014 1 / 30 Introduction The topics covered today: The inverter: the simplest

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 0 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL QUESTION BANK Name : VLSI Design Code : A0 Regulation : R5 Structure :

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic EE 330 Lecture 5 asic Logic Circuits Complete Logic Family Other Logic Styles complex logic gates pass transistor logic Improved Device Models Review from Last Time The key patents that revolutionized

More information

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 22, 2001

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 22, 2001 6.12 - Microelectronic Devices and Circuits - Spring 21 Lecture 13-1 Lecture 13 - Digital Circuits (II) MOS Inverter Circuits March 22, 21 Contents: 1. NMOS inverter with resistor pull-up (cont.) 2. NMOS

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

More information

I. Digital Integrated Circuits - Logic Concepts

I. Digital Integrated Circuits - Logic Concepts I. Digital Integrated Circuits - Logic Concepts. Logic Fundamentals: binary mathematics: only operate on and (oolean algebra) simplest function -- inversion = symbol for the inverter INPUT OUTPUT EECS

More information

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits In this lab, we will be looking at ac signals with MOSFET circuits and digital electronics. The experiments will be performed

More information

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits Lec Sequential CMOS Logic Circuits Sequential Logic In Combinational Logic circuit Out Memory Sequential The output is determined by Current inputs Previous inputs Output = f(in, Previous In) The regenerative

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

2-Bit Magnitude Comparator Design Using Different Logic Styles

2-Bit Magnitude Comparator Design Using Different Logic Styles International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 1 ǁ January. 2013 ǁ PP.13-24 2-Bit Magnitude Comparator Design Using Different Logic

More information

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic.

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic. Digital Electronics Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region Positive Logic Logic 1 Negative Logic Logic 0 Voltage Transition Region Transition

More information

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 16, 8:00-10:00am. Name: (78 points total)

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 16, 8:00-10:00am. Name: (78 points total) Final Exam Dec. 16, 8:00-10:00am Name: (78 points total) Problem 1: Consider the emitter follower in Fig. 7, which is being used as an output stage. For Q 1, assume β = and initally assume that V BE =

More information

Digital Circuits Introduction

Digital Circuits Introduction Lecture #6 OUTLINE Logic inary representations Combinatorial logic circuits Chap 7-7.5 Reading EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu Digital Circuits Introduction nalog: signal amplitude

More information

Today's Goals. Finish MOS transistor Finish NMOS logic Start CMOS logic

Today's Goals. Finish MOS transistor Finish NMOS logic Start CMOS logic Bi Today's Goals Finish MOS transistor Finish Start Bi MOS Capacitor Equations Threshold voltage Gate capacitance V T = ms Q i C i Q II C i Q d C i 2 F n-channel - - p-channel ± ± + + - - Contributions

More information

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN Name: EXAM #3 Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit. Data: Use the following data in all

More information

Basic Fabrication Steps

Basic Fabrication Steps Basic Fabrication Steps and Layout Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author Outline Fabrication steps Transistor structures Transistor

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

More information

EE 330 Lecture 44. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

EE 330 Lecture 44. Digital Circuits. Other Logic Styles Dynamic Logic Circuits EE 330 Lecture 44 Digital Circuits Other Logic Styles Dynamic Logic Circuits Course Evaluation Reminder - ll Electronic http://bit.ly/isustudentevals Review from Last Time Power Dissipation in Logic Circuits

More information

Lecture 26 - Design Problems & Wrap-Up. May 15, 2003

Lecture 26 - Design Problems & Wrap-Up. May 15, 2003 6.012 Microelectronic Devices and Circuits - Spring 2003 Lecture 26-1 Lecture 26 - Design Problems & 6.012 Wrap-Up May 15, 2003 Contents: 1. Design process 2. Design project pitfalls 3. Lessons learned

More information