Introduction to Electronic Devices


 Nora Moody
 9 months ago
 Views:
Transcription
1 Introduction to Electronic Devices (Course Number ) Fall 2006 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: Source: Apple Ref.: Apple Ref.: IBM Critical dimension (m) Ref.: Palo Alto Research Center 1
2 7 7.1 Introduction 7.2 Ideal Inverter Characteristic 7.3 Real Inverter Characteristic 7.4 Noise Margin of inverters 7.5 Classification of inverters Inverter with ohmic load PELS / NELS Inverter PELL / NELL Inverter The CMOS Inverter CMOS Technology Static behavior Static power Dissipation Dynamic behavior of an CMOS inverter Summary of CMOS inverter 7.6 From CMOS inverters to logical gates Complementary Logic Transmission Gate Logic References 2
3 7.1 Introduction In the following we will discuss the electrical characteristic of different MOS inverter circuits. We will discuss the implementation of different types of inverters and its electrical properties. Based on the inverter circuit all other logical gates like OR, AND, NOR, and NAND can be derived. Layout of a CMOS inverter. CMOS inverter and simplified circuit description of a CMOS inverter. Ref.: Hodges & Jackson, Analysis and Design of 3
4 7.2 Ideal Inverter Characteristic Different types of inverters can be distinguished depending on the circuit implementation. In the ideal case the static characteristic of an inverter (Voltage transfer curve, VTC) is described by a sharp transition from one state to second state. Voltage transfer characteristic of an ideal inverter. Ref.: Hodges & Jackson, Analysis and Design of Input range Output range 4
5 7.3 Real Inverter Characteristic However, ideal inverters can not be realized. Voltage transfer characteristic of a real inverter. Ref.: Hodges & Jackson, Analysis and Design of Input range Output range 5
6 7.4 Noise Margin of inverters Ref.: Hodges & Jackson, Analysis and Design of 6
7 7.4 Noise Margin of inverters Voltage transfer characteristic of the second inverter of a chain of inverters. Voltage transfer characteristic of the third inverter of a chain of inverters. Ref.: Hodges & Jackson, Analysis and Design of 7
8 7.4 Noise Margin of inverters The input and output signal of an inverter have to be within the noise margin of an inverter. Otherwise the input or output signal of an inverter is undefined. Ref.: Hodges & Jackson, Analysis and Design of 8
9 7.5 Classification of inverters Inverters can be realized by using different circuit implementations. In the following the different circuit implementations and their advantages and disadvantages will be discussed. The output curve of an inverter (Voltage transfer curve, VTC) is determined by the superposition of the load (pmons, nmos, resistor) and the driver (pmos, nmos) component. Inverter type Driver Load Operation (Load) ER EMOSFET (n or pchannel) Resistor  NELS & NELL EMOSFET (nchannel) EMOSFET (nchannel) Saturation, Linear PELS & PELL EMOSFET (pchannel) EMOSFET (pchannel) Saturation, Linear (p) CMOS EMOSFET (nchannel) EMOSFET (pchannel)  (n) CMOS EMOSFET (pchannel) EMOSFET (nchannel)  9
10 7.5.1 Inverter with ohmic load An inverter can be realized by combining a resistor (load) with an enhancement type transistor (driver). An inverter with an ohmic load is not of relevance for practical applications, but the discussion of the operating principle allows a better understanding of the operating principle of inverters. Inverter with ohmic load and output characteristic. Ref.: Hodges & Jackson, Analysis and Design of 10
11 7.5.1 Inverter with ohmic load The performance of an inverter is described by the voltage transfer curve and the gain of an inverter. The gain, v, is defined as the ratio of the differential input voltage divided by the differential output voltage of the inverter. The gain of an inverter should be maximized. In the case of an inverter with an ohmic load the driver transistor can be described by a current source, so that the gain can be easily derived. V DD V in g m V in V out V th V in V out v v in gain = = vout g m R Inverter with ohmic load. Ref.: Böhm, Lecture on Microelectroics, University Siegen Equivalent circuit of inverter with ohmic load. 11
12 7.5.1 Inverter with ohmic load g m = I V D GS Transconductance in linear region I D g m = µ n VG g m I D = µ n VG C C G G W L Transconductance in saturation region W L V D ( V V ) G T v v = v gain in = out g m R Voltage transfer characteristic of an inverter with resistor load. Ref.: Hodges & Jackson, Analysis and Design of 12
13 7.5.1 Inverter with ohmic load The gain of an inverter with ohmic load can be increased by increasing the load resistance and the W/L ratio of the transistor (driver). The W/L ratio can be increased by choosing a short but wide channel. However, the gain is not the only parameter, which has to be optimized when developing an inverter. In addition to the gain (static behavior) the dynamic behavior has to be taken into account. If we assume that the inverter drives another logic gate like an inverter, and the inverter exhibits an input capacitance it is obvious to see that an increase of the load resistance will increase the time constant (switching speed) of the inverter. A similar behavior is observed if the width of the transistor is increased. The increased width leads to a improved gain, but the input capacitance of the inverter is increased as well, so that the switching speed of the inverter is reduced. An inverter with an ohmic load has an additional disadvantage. It is difficult to realized resistors by using classical semiconductor processes. Therefore, the resistor is usually replaced by a transistor which operates as a load. 13
14 7.5.2 PELS / NELS Inverter P/N Channel Enhancement Load Saturation Mode Inverter The resistor loads is replaced by an enhancement type transistor which operates in saturation mode. In order to operate the load in saturation the gate of the load transistor is connected to V DD. (W/L) L (W/L) D Ref.: Hodges & Jackson, Analysis and Design of 14
15 7.5.2 PELS / NELS Inverter P/N Channel Enhancement Load Saturation Mode Inverter The resistor loads is replaced by an enhancement type transistor operates in saturation mode. In order to operate the load in saturation the gate of the load transistor is connected to V DD. v gain = g g md ml = ( W L) D = K R ( W L) L K = R ( W L) D ( W L) L Voltage transfer characteristic of a NELS inverter. Ref.: Hodges & Jackson, Analysis and Design of 15
16 7.5.2 PELS / NELS Inverter P/N Channel Enhancement Load Saturation Mode Inverter PELS or NELS inverters have the disadvantage that the output voltage in the high state is always smaller that operating voltage V DD. The output voltage is reduced by the effective threshold voltage. The effective threshold voltage is the threshold voltage which is influence by the bulk voltage which applied to the substrate. Furthermore, the PELS / NELS inverters are limited by the differential drain source resistance of the load transistor. As the transistor operates in saturation the differential drain source resistance is rather large, which limits the switching speed of the inverter. The differential drain source resistance can be reduced by operating the load transistor in the linear region. This can be achieved by using an additional voltage supply which provides a gate voltage for the load transistors. The reduced differential drain source resistance leads to an decreased switching speed of the inverter. However, the reduced differential drain source resistance leads to an increased power consumption of the inverter. 16
17 7.5.3 PELL / NELL Inverter P/N Channel Enhancement Load Linear Mode Inverter Therefore, the static, the dynamic behavior and the power consumption has to be considered when designing an inverter. Ref.: Hodges & Jackson, Analysis and Design of 17
18 7.5.4 CMOS Inverter CMOS Technology CMOS technology refers to Complementary MOS technology, which means that transistors always exists as a pair of a pchannel and a nchannel transistor. CMOS technology is the driving force behind most of the electronic applications today. All microprocessors and solid state memories use CMOS technology. The main advantage of CMOS technology is the low power dissipation. As a consequence very high integration densities can be achieved. In the following we will discuss the realization of CMOS circuits and its advantages. We will discuss the implementation of a CMOS inverter which is the bases of all digital gates. All other logical gates like OR, AND, NOR, and NAND can be derived from an inverter structure. 18
19 CMOS Technology In order to realize NMOS and PMOS field effect transistors on the same substrate the individual transistors have to be insulated from each other. Different implementation of CMOS technology. Ref.: M. Shur, Introduction to Electronic Devices 19
20 Static behavior A CMOS inverter circuit consist of two matched enhanced type MOSFETs, one transistor with a n channel and the other transistor with a pchannel. The circuit operation can be discussed based on its extreme cases, meaning V in =0 and V in =V DD is applied to the input of the inverter. V in =0 corresponds to a logic 0, whereas V in =V DD corresponds to a logic 1. As the circuit is symmetric a definition of a load and a driver transistor is not necessary, because the reverse definition would lead to the same results. CMOS inverter and simplified circuit description of a CMOS inverter. 20
21 Static behavior The output curve of an inverter (Voltage transfer curve, VTC) can be derived from the superposition of the output curves of the two (PMOS and NMOS) FETs. The operating point of the inverter corresponds to the interceptions of the two output curves. The interception of the output curves of the two MOSFETs of an inverter represent the output of the inverter. Ref.: M.S. Sze, Semiconductor Devices 21
22 Static behavior The output curve of an inverter (Voltage transfer curve, VTC) can be derived from the superposition of the output curves of the two (PMOS and NMOS) FETs. Voltage transfer curve of an CMOS inverter. The points A, B, C and D correspond to the points A, B, C and D on the previous slide. Ref.: M.S. Sze, Semiconductor Devices 22
23 Static power Dissipation The static power dissipation of a CMOS inverter is negligible as always one of the two transistors is in the off state. The dissipation is independent of the input state of the inverter. The power dissipation of CMOS inverters is distinctly lower than the dissipation of alternative inverter circuits (e.g. NMOS or PMOS FETs in enhanced or depletion mode). However, as the number of gates steadily increases the dynamic power dissipation has become a serious issue Dynamic behavior of an CMOS inverter The dynamic power dissipation can be determined by: P D = f C equi V 2 DD Dynamic power dissipation of an CMOS inverter where f is the switching frequency. C equi is the equivalent input capacitance of a CMOS inverter and V DD is the operating voltage. 23
24 Dynamic behavior of an CMOS inverter As an inverter typically drives another logical gate, the capacitive load of an inverter is determined by the input capacitance of the next inverter stage. The transient response of an inverter is comparable with the transient response of a RC circuit. The capacitance is formed by the input capacitance of an inverter stage. The channel resistance of the transistor in the on state determines the resistor. Schematic illustration of the operation of a CMOS inverter including the voltage transfer curve and the power dissipation. Ref.: M. Shur, Introduction to Electronic Devices 24
25 Summary of CMOS inverter Based on the above described device behavior we can summarize the ideal behavior of an CMOS inverter: The output levels should either be either 0V or V DD. As a consequence the signal swing between the two levels should be maximized. The static power dissipation of an inverter is close to zero, if the leakage current of the transistors can be neglected. As a CMOS inverter is symmetric the power dissipation is independent of the logical output state. A low resistance path exists between the output terminal and ground (in the 0 state) or V DD (in the 1 state). The low resistance path ensures that the output voltage is independent of the transistor dimensions. As we use identical transistors for the driver and the load of the CMOS inverter a change of the dimensions of the FETs has no impact on the output voltage of the inverter. The input resistance of the inverter is infinite, because the input current is close to zero. Thus a large number of similar inverters can be driven with no loss on the signal level. 25
26 7.6 From CMOS inverters to logical gates Inverters are elementary components of digital logic circuits. All circuits can be reduced to inverter circuits. In the following the gained knowledge on CMOS inverters will be used to design simple logical CMOS circuits. We will concentrate here on basic structure, where the output signal is a direct combination of the input signals. Memory elements will not be taken into account. 26
27 7.6.1 Complementary Logic In general, a CMOS inverter can be described by a NMOS pulldown transistor and a PMOS pullup transistor, which operate in a complementary fashion. We will now apply the pullup and pulldown concept to logical gates with more than one input signals. Therefore, we define two networks, a pulldown network (PDN) and a pullup network. The networks operate in a complementary fashion. Let us assume we want to realize a logic gate with three input signals. As a consequence, both networks (pullup and the pulldown network) will have three input signals. Nevertheless the number of output states is still two (0 and 1). The pulldown network is able to pull down the output signal for the possible low ground states. Opposite applies for the pullup network. The network is able to pullup the output signals for all high or positive states. Pullup and pulldown network. Ref.: B. Jacob, University of Maryland 27
28 7.6.1 Complementary Logic Since the PDN comprises of NMOS transistors and the NMOS transistors conduct when the input signals is high, the PDN is active when the input signals are high. In a complementary manner, the PUN comprises PMOS transistors and PMOS transistors conduct when the input signal is low. Therefore the PUN is active for low input signals. Based on this scheme we can deduce the operation of logic gates like NOR, NAND, OR or AND. 28
29 7.6.1 Complementary Logic Implementation of a NOR gate: M2 The output signals get low if one of the input signals gets high. If A or B or both signals gets high one or two of the PMOS transistors pulls the output signal down. At the same time one or both of the NMOS transistors are in their off state, so that the output signal gets low. input A input B A B Out M1 M2 M1 out 0Vdc V Y = A + B = AB Implementation of an NOR logical gate with two inputs based on CMOS technology. 29
30 7.6.2 Transmission gate logic Besides complementary implementations of digital circuits, there is one additional transistor circuit frequently used in CMOS digital electronics. This circuit is called transmission gate (TG). A transmission gate is used as a bidirectional switch. The circuit consists of an nchannel transistor and a pchannel transistor in parallel. The two types of transistor are used as a pchannel FET pass on a 1 and an nchannel FET passes on a 0. Transmission gate. Ref.: Logic and Computer Design Fundamentals, PrenticeHall, Inc. (1997) 30
31 7.6.2 Transmission gate logic Depending on the logic function which has to be implemented it can be advantages to use transmission gate (pass logic) rather than complementray logic. This is particularly true of XOR or multiplexers have to be implemented. Complementary Implementation Implementation of a NOR gate by using a complementary and a transmission gate approach. Ref.: B. Jacob, University of Maryland 31
32 7.6.2 Transmission gate logic Implementation of a XOR gate by using a complementary and a transmission gate approach. Ref.: B. Jacob, University of Maryland 32
33 References Michael Shur, Introduction to Electronic Devices, John Wiley & Sons; (January 1996). (Price: US$100), Audience: under graduate students Simon M. Sze, Semiconductor Devices, Physics and Technology, John Wiley & Sons; 2 nd Edition (2001). (Price: US$115), Audience: under graduate students R.F. Pierret, G.W. Neudeck, Modular Series on Solid State Devices, Volumes in the Series: Semicondcutor Fundamentals, The pn junction diode, The bipolar junction transistor, Field effect devices, (Price: US$25 per book), Audience: under graduate students Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits, Oxford University Press (1998), (Price: Euro). 33
Introduction to Electronic Devices
(Course Number 300331) Fall 2006 Instructor: Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.: Apple Ref.: IBM Critical
More informationECE/CoE 0132: FETs and Gates
ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will
More informationECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman ZarkeshHa
ECE520 VLSI Design Lecture 5: Basic CMOS Inverter Payman ZarkeshHa Office: ECE Bldg. 230B Office hours: Wednesday 2:003:00PM or by appointment Email: pzarkesh@unm.edu Slide: 1 Review of Last Lecture
More informationEEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families
EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Homework 5 this week Lab
More informationELEC 350L Electronics I Laboratory Fall 2012
ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used
More informationDIGITAL VLSI LAB ASSIGNMENT 1
DIGITAL VLSI LAB ASSIGNMENT 1 Problem 1: NMOS and PMOS plots using Cadence. In this exercise, you are required to generate both NMOS and PMOS IV device characteristics (I/P and O/P) using Cadence (Use
More informationMetalOxideSilicon (MOS) devices PMOS. ntype
MetalOxideSilicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.
More informationIntroduction to the Long Channel MOSFET. Dr. Lynn Fuller
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to the Long Channel MOSFET Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial Drive Rochester,
More informationMicroelectronics, BSc course
Microelectronics, BSc course MOS inverters http://www.eet.bme.hu/~poppe/miel/en/13mosfet2.pptx http://www.eet.bme.hu Overview of MSOFET types 13112014 Microelectronics BSc course, MOS inverters András
More informationField Effect Transistors
Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits
More informationLecture 11 Digital Circuits (I) THE INVERTER
Lecture 11 Digital Circuits (I) THE INVERTER Outline Introduction to digital circuits The inverter NMOS inverter with resistor pullup Reading Assignment: Howe and Sodini; Chapter 5, Sections 5.15.3 6.12
More informationMOS TRANSISTOR THEORY
MOS TRANSISTOR THEORY Introduction A MOS transistor is a majoritycarrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the
More informationBJT Amplifier. Superposition principle (linear amplifier)
BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited
More informationLecture 11 Circuits numériques (I) L'inverseur
Lecture 11 Circuits numériques (I) L'inverseur Outline Introduction to digital circuits The inverter NMOS inverter with resistor pullup 6.12 Spring 24 Lecture 11 1 1. Introduction to digital circuits:
More informationMicroelectronics, BSc course
Microelectronics, BSc course MOS circuits: CMOS circuits, construction http://www.eet.bme.hu/~poppe/miel/en/14cmos.pptx http://www.eet.bme.hu The abstraction level of our study: SYSTEM + MODULE GATE CIRCUIT
More informationRadivoje Đurić, 2015, Analogna Integrisana Kola 1
OTAoutput buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage
More informationDesigning Information Devices and Systems II Fall 2017 Note 1
EECS 16B Designing Information Devices and Systems II Fall 2017 Note 1 1 Digital Information Processing Electrical circuits manipulate voltages (V ) and currents (I) in order to: 1. Process information
More informationAnalysis of Different Topologies of Inverter in 0.18µm CMOS Technology and its Comparision
Analysis of Different Topologies of Inverter in 0.18µm CMOS Technology and its Comparision Ashish Panchal (Senior Lecturer) Electronics & Instrumentation Engg. Department, Shri G.S.Institute of Technology
More information2Bit Magnitude Comparator Design Using Different Logic Styles
International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 1 ǁ January. 2013 ǁ PP.1324 2Bit Magnitude Comparator Design Using Different Logic
More informationVLSI Designed Low Power Based DPDT Switch
International Journal of Electronics and Communication Engineering. ISSN 09742166 Volume 8, Number 1 (2015), pp. 8186 International Research Publication House http://www.irphouse.com VLSI Designed Low
More informationPhysics 160 Lecture 11. R. Johnson May 4, 2015
Physics 160 Lecture 11 R. Johnson May 4, 2015 Two Solutions to the Miller Effect Putting a matching resistor on the collector of Q 1 would be a big mistake, as it would give no benefit and would produce
More informationChapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier
Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in doubleended
More informationChapter 6: FieldEffect Transistors
Chapter 6: FieldEffect Transistors FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.
More informationCPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look
CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic CMOS Inverter: A First Look C L 9/11/26 VLSI
More informationMOSFET & IC Basics  GATE Problems (Part  I)
MOSFET & IC Basics  GATE Problems (Part  I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]
More informationDesign and Simulation of VoltageMode and CurrentMode ClassD Power Amplifiers for 2.4 GHz Applications
Design and Simulation of VoltageMode and CurrentMode ClassD Power Amplifiers for 2.4 GHz Applications Armindo António Barão da Silva Pontes Abstract This paper presents the design and simulations of
More informationThe Common Source JFET Amplifier
The Common Source JFET Amplifier Small signal amplifiers can also be made using Field Effect Transistors or FET's for short. These devices have the advantage over bipolar transistors of having an extremely
More information6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers
6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication
More informationDesign of basic digital circuit blocks based on an OFET device charge model
Vol. 34, No. 5 Journal of Semiconductors May 2013 Design of basic digital circuit blocks based on an OFET device charge model Shen Shu( 沈澍 ) School of Computer Science & Technology, Nanjing University
More informationCourse Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)
Course Outline 1. Chapter 1: Signals and Amplifiers 1 2. Chapter 3: Semiconductors 3. Chapter 4: Diodes 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)
More informationLow Voltage Standard CMOS Opamp Design Techniques
Low Voltage Standard CMOS Opamp Design Techniques Student name: Eliyahu Zamir Student number: 961339780 Course: ECE1352F Proffessor: Khoman Phang Page 1 of 18 1.Abstract In a neverending effort to reduce
More informationGeorgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam
Georgia Institute of Technology School of Electrical and Computer Engineering Midterm Exam ECE3400 Fall 2013 Tue, September 24, 2013 Duration: 80min First name Solutions Last name Solutions ID number
More informationLecture 9 Transistors
Lecture 9 Transistors Physics Transistor/transistor logic CMOS logic CA 1947 http://www.extremetech.com/extreme/164301graphenetransistorsbasedonnegativeresistancecouldspelltheendofsiliconandsemiconductors
More informationCMOS Digital Integrated Circuits Analysis and Design
CMOS Digital Integrated Circuits Analysis and Design Chapter 8 Sequential MOS Logic Circuits 1 Introduction Combinational logic circuit Lack the capability of storing any previous events Nonregenerative
More informationECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers
ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic
More informationAn introduction to Depletionmode MOSFETs By Linden Harrison
An introduction to Depletionmode MOSFETs By Linden Harrison Since the midnineteen seventies the enhancementmode MOSFET has been the subject of almost continuous global research, development, and refinement
More informationUMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency
UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter
More informationMOS Field Effect Transistors
MOS Field Effect Transistors A gate contact gate interconnect n polysilicon gate source contacts W active area (thin oxide area) polysilicon gate contact metal interconnect drain contacts A bulk contact
More informationDevice Technology( Part 2 ): CMOS IC Technologies
1 Device Technology( Part 2 ): CMOS IC Technologies Chapter 3 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Saroj Kumar Patra, Department of Electronics and Telecommunication, Norwegian
More informationQ.1: Power factor of a linear circuit is defined as the:
Q.1: Power factor of a linear circuit is defined as the: a. Ratio of real power to reactive power b. Ratio of real power to apparent power c. Ratio of reactive power to apparent power d. Ratio of resistance
More informationLaboratory #9 MOSFET Biasing and Current Mirror
Laboratory #9 MOSFET Biasing and Current Mirror. Objectives 1. Review the MOSFET characteristics and transfer function. 2. Understand the relationship between the bias, the input signal and the output
More informationLecture 20: Passive Mixers
EECS 142 Lecture 20: Passive Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture 20 p.
More informationField  Effect Transistor
Page 1 of 6 Field  Effect Transistor Aim : To draw and study the out put and transfer characteristics of the given FET and to determine its parameters. Apparatus : FET, two variable power supplies,
More informationFieldEffect Transistors
R L 2 FieldEffect Transistors 2.1 BAIC PRINCIPLE OF JFET The eldeffect transistor (FET) is an electric eld (voltage) operated transistor, developed as a semiconductor equivalent of the vacuumtube device,
More informationAbu Dhabi Men s College, Electronics Department. Logic Families
bu Dhabi Men s College, Electronics Department Logic Families There are several different families of logic gates. Each family has its capabilities and limitations, its advantages and disadvantages. The
More informationStatic Random Access Memory  SRAM Dr. Lynn Fuller Webpage:
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Static Random Access Memory  SRAM Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Email:
More informationLecture 7. July 24, Detecting light (converting light to electrical signal)
Lecture 7 July 24, 2017 Detecting light (converting light to electrical signal) Photoconductor Photodiode Managing electrical signal Metaloxidesemiconductor (MOS) capacitor Charge coupled device (CCD)
More informationAn Analytical model of the BulkDTMOS transistor
Journal of Electron Devices, Vol. 8, 2010, pp. 329338 JED [ISSN: 16823427 ] Journal of Electron Devices www.jeldev.org An Analytical model of the BulkDTMOS transistor Vandana Niranjan Indira Gandhi
More informationChapter 8. Field Effect Transistor
Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There
More informationBasic digital logic functions and gates
Basic digital logic functions and gates Digital logic functions and gates are the main blocks behind digital logic design. s and 1s combine to produce values that are generated by basic gates such as NOT,
More informationLecture Summary Module 1 Switching Algebra and CMOS Logic Gates
Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates Learning Outcome: an ability to analyze and design CMOS logic gates Learning Objectives: 11. convert numbers from one base (radix) to another:
More informationCommonSource Amplifiers
Lab 2: CommonSource Amplifiers Introduction The commonsource stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderatetohigh gain,
More informationChapter 13: Introduction to Switched Capacitor Circuits
Chapter 13: Introduction to Switched Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 SwitchedCapacitor Amplifiers 13.4 SwitchedCapacitor Integrator 13.5 SwitchedCapacitor
More information5. CMOS Gates: DC and Transient Behavior
5. CMOS Gates: DC and Transient Behavior Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 September 18, 2017 ECE Department, University
More informationMOS Logic and Gate Circuits. Wired OR
MOS Logic and Gate Circuits A A A B A AB Y Wired OR Contents Introduction NMOS Logic Resistive Load Saturated Enhancement Load Linear Enhancement Load Depletion Load Some Gates Transient in NMOS Circuit
More informationEECE2412 Final Exam. with Solutions
EECE2412 Final Exam with Solutions Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University Fall Semester 2010 My file 11480/exams/final General Instructions:
More informationDesign & Analysis of Low Power Full Adder
1174 Design & Analysis of Low Power Full Adder Sana Fazal 1, Mohd Ahmer 2 1 Electronics & communication Engineering Integral University, Lucknow 2 Electronics & communication Engineering Integral University,
More informationCMOS Operational Amplifier
The George Washington University Department of Electrical and Computer Engineering Course: ECE218 Instructor: Mona E. Zaghloul Students: Shunping Wang Yiping (Neil) Tsai Data: 05/14/07 Introduction In
More informationMOS Inverters Dr. Lynn Fuller Webpage:
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MOS Inverters Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035 Email: Lynn.Fuller@rit.edu
More informationA perspective on lowpower, lowvoltage supervisory circuits implemented with SOI technology.
SiliconOnInsulator A perspective on lowpower, lowvoltage supervisory circuits implemented with SOI technology. By Ondrej Subrt The magic term of SOI is attracting a lot of attention in the design of
More informationAn Overview of Static Power Dissipation
An Overview of Static Power Dissipation Jayanth Srinivasan 1 Introduction Power consumption is an increasingly important issue in general purpose processors, particularly in the mobile computing segment.
More informationAn energy efficient full adder cell for low voltage
An energy efficient full adder cell for low voltage Keivan Navi 1a), Mehrdad Maeen 2, and Omid Hashemipour 1 1 Faculty of Electrical and Computer Engineering of Shahid Beheshti University, GC, Tehran,
More informationLecture 26 Differential Amplifiers (I) DIFFERENTIAL AMPLIFIERS
Lecture 6 Differential Amplifiers (I) DIFFERENTIAL AMPLIFIERS Outline 1. Introduction. Incremental analysis of differential amplifier 3. Commonsource differential amplifier Reading Assignment: Howe and
More informationPSPICE tutorial: MOSFETs
PSPICE tutorial: MOSFETs In this tutorial, we will examine MOSFETs using a simple DC circuit and a CMOS inverter with DC sweep analysis. This tutorial is written with the assumption that you know how to
More informationDesign and Layout of Two Stage High Bandwidth Operational Amplifier
Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard
More informationCHAPTER 6 GDI BASED LOW POWER FULL ADDER CELL FOR DSP DATA PATH BLOCKS
87 CHAPTER 6 GDI BASED LOW POWER FULL ADDER CELL FOR DSP DATA PATH BLOCKS 6.1 INTRODUCTION In this approach, the four types of full adders conventional, 16T, 14T and 10T have been analyzed in terms of
More informationLow Power 8Bit ALU Design Using Full Adder and Multiplexer
Low Power 8Bit ALU Design Using Full Adder and Multiplexer Gaddam Sushil Raj B.Tech, Vardhaman College of Engineering. ABSTRACT: Arithmetic logic unit (ALU) is an important part of microprocessor. In
More informationPropagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012
Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis
More informationDesigning of a 8bits DAC in 0.35µm CMOS Technology For High Speed Communication Systems Application
Designing of a 8bits DAC in 035µm CMOS Technology For High Speed Communication Systems Application Veronica Ernita Kristianti, Hamzah Afandi, Eri Prasetyo ibowo, Brahmantyo Heruseto and shinta Kisriani
More informationPerformance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE
RESEARCH ARTICLE OPEN ACCESS Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE Mugdha Sathe*, Dr. Nisha Sarwade** *(Department of Electrical Engineering, VJTI, Mumbai19)
More informationImproved Inverter: CurrentSource PullUp. MOS Inverter with CurrentSource PullUp. What else could be connected between the drain and V DD?
Improved Inverter: CurrentSource PullUp MOS Inverter with CurrentSource PullUp What else could be connected between the drain and? Replace resistor with current source I SUP roc i D v IN v OUT Find
More informationMODULE2: Field Effect Transistors (FET)
FORMAT1B Definition: MODULE2: Field Effect Transistors (FET) FET is a three terminal electronic device used for variety of applications that match with BJT. In FET, an electric field is established by
More information6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain Bandwidth Issue for Broadband Amplifiers
6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain Bandwidth Issue for Broadband Amplifiers Massachusetts Institute of Technology February 17, 2005 Copyright 2005
More informationEE105 Fall 2015 Microelectronic Devices and Circuits
EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 111 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of
More informationMOS IC Amplifiers. Token Ring LAN JSSC 12/89
MO IC Amplifiers MOFETs are inferior to BJTs for analog design in terms of quality per silicon area But MO is the technology of choice for digital applications Therefore, most analog portions of mixedsignal
More informationLOW POWER CMOS CELL STRUCTURES BASED ON ADIABATIC SWITCHING
LOW POWER CMOS CELL STRUCTURES BASED ON ADIABATIC SWITCHING Uday Kumar Rajak Electronics & Telecommunication Dept. Columbia Institute of Engineering and Technology,Raipur (India) ABSTRACT The dynamic power
More informationDesign Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness
MIT International Journal of Electronics and Communication Engineering, Vol. 4, No. 2, August 2014, pp. 81 85 81 Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness Alpana
More informationEDC UNIT IV Transistor and FET Characteristics EDC Lesson 9 ", Raj Kamal, 1
EDC UNIT IV Transistor and FET Characteristics Lesson9: JFET and Construction of JFET 2008 EDC Lesson 9 ", Raj Kamal, 1 1. Transistor 2008 EDC Lesson 9 ", Raj Kamal, 2 Transistor Definition The transferredresistance
More informationDIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N
DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic CONTENTS PART I: THE FABRICS Chapter 1: Introduction (32 pages) 1.1 A Historical
More informationCMOS Inverter & Ring Oscillator
CMOS Inverter & Ring Oscillator Theory: In this Lab we will implement a CMOS inverter and then use it as a building block for a Ring Oscillator. MOSfets (Metal Oxide Semiconductor Field Effect Transistors)
More informationNMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING NMOS Inverter Lab Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee/ 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035
More informationUSER MANUAL FOR THE SN74LS04 HEX INVERTER AND THE DM7407 HEX BUFFER FUNCTIONAL MODULE
USER MANUAL FOR THE SN74LS04 HEX INVERTER AND THE DM7407 HEX BUFFER FUNCTIONAL MODULE SN74LS04 Hex Inverter And DM7407 Hex Buffer 1 5/24/04 TABLE OF CONTENTS 1. Index of Figures...3 2. Index of Tables...
More informationGdi Technique Based Carry Look Ahead Adder Design
IOSR Journal of VLSI and Signal Processing (IOSRJVSP) Volume 4, Issue 6, Ver. I (Nov  Dec. 2014), PP 0109 eissn: 2319 4200, pissn No. : 2319 4197 Gdi Technique Based Carry Look Ahead Adder Design
More information4.5 Biasing in MOS Amplifier Circuits
4.5 Biasing in MOS Amplifier Circuits Biasing: establishing an appropriate DC operating point for the MOSFET  A fundamental step in the design of a MOSFET amplifier circuit An appropriate DC operating
More informationFieldEffect Transistor
Module: Electronics Module Number: 610/6501 Philadelphia University Faculty of Engineering Communication and Electronics Engineering FieldEffect Transistor ntroduction FETs (FieldEffect Transistors)
More informationAnalog and Telecommunication Electronics
Politecnico di Torino  ICT School Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis 30/05/20121 ATLCE  F22011 DDC Lesson F2:
More informationDue to the absence of internal nodes, inverterbased GmC filters [1,2] allow achieving bandwidths beyond what is possible
A ForwardBodyBias Tuned 450MHz GmC 3 rd Order LowPass Filter in 28nm UTBB FDSOI with >1dBVp IIP3 over a 0.7to1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin
More informationHW#3 Solution. Dr. Parker. Spring 2014
HW#3 olution r. Parker pring 2014 Assume for the problems below that V dd = 1.8 V, V tp0 is .7 V. and V tn0 is.7 V. V tpbodyeffect is .9 V. and V tnbodyeffect is.9 V. Assume ß n (k n )= 219.4 W/L µ A(microamps)/V
More informationTechnologyIndependent CMOS Op Amp in Minimum Channel Length
TechnologyIndependent CMOS Op Amp in Minimum Channel Length A Thesis Presented to The Academic Faculty by Susanta Sengupta In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
More informationDesign Analysis of 1bit Comparator using 45nm Technology
Design Analysis of 1bit Comparator using 45nm Technology Pardeep Sharma 1, Rajesh Mehra 2 1,2 Department of Electronics and Communication Engineering, National Institute for Technical Teachers Training
More informationComparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits
Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits P. S. Aswale M. E. VLSI & Embedded Systems Department of E & TC Engineering SITRC, Nashik,
More informationLecture 24  The Si surface and the MetalOxideSemiconductor Structure (cont.) The Long MetalOxideSemiconductor FieldEffect Transistor
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 241 Lecture 24  The Si surface and the MetalOxideSemiconductor Structure (cont.) The Long MetalOxideSemiconductor FieldEffect
More informationElectronics I. Last Time
(Rev. 1.0) Electronics I Lecture 28 Introduction to Field Effect Transistors (FET s) Muhammad Tilal Department of Electrical Engineering CIIT Attock Campus The logo and is the property of CIIT, Pakistan
More informationCMPEN 411 VLSI Digital Circuits Spring Lecture 24: Peripheral Memory Circuits
CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 24: Peripheral Memory Circuits [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11
More informationA Low Power and Area Efficient Full Adder Design Using GDI Multiplexer
A Low Power and Area Efficient Full Adder Design Using GDI Multiplexer G.Bramhini M.Tech (VLSI), Vidya Jyothi Institute of Technology. G.Ravi Kumar, M.Tech Assistant Professor, Vidya Jyothi Institute of
More informationDynamic Threshold MOS transistor for Low Voltage Analog Circuits
26 Dynamic Threshold MOS transistor for Low Voltage Analog Circuits Vandana Niranjan, Akanksha Singh, Ashwani Kumar Electronics and Communication Engineering Department Indira Gandhi Delhi Technical University
More informationElectronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd
Electronic Devices Ninth Edition Floyd Chapter 9 The CommonSource Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has
More information55:041 Electronic Circuits
55:041 Electronic Circuits Output Stages and Power Amplifiers Sections of Chapter 8 A. Kruger Power + Output Stages1 Power Amplifiers, Power FETS & BJTs Audio (stereo) MP3 Players Motor controllers Servo
More informationLecture 26  Design Problems & WrapUp. May 15, 2003
6.012 Microelectronic Devices and Circuits  Spring 2003 Lecture 261 Lecture 26  Design Problems & 6.012 WrapUp May 15, 2003 Contents: 1. Design process 2. Design project pitfalls 3. Lessons learned
More informationA NEW APPROACH TO DESIGN LOW POWER CMOS FLASH A/D CONVERTER
A NEW APPROACH TO DESIGN LOW POWER CMOS FLASH A/D CONVERTER C Mohan¹ and T Ravisekhar 2 ¹M. Tech (VLSI) Student, Sree Vidyanikethan Engineering College (Autonomous), Tirupati, India 2 Assistant Professor,
More information