ECEN 5008: Analog IC Design. Final Exam


 Valerie Merritt
 10 months ago
 Views:
Transcription
1 ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Timelimited, 150minute exam. When the time is called, all work must stop. Put your initials on the top of each page before the exam ends. Be sure to put your name in the space below. Open book, open notes. No cooperation is allowed. Show all work, partial credit will be given. 2. Work in the space provided, or on the back of the sheet, if necessary. Turn in these sheets. 3. The exam has 3 problems. The maximum number of points for each question and part is indicated in the square brackets. NAME: Problem 1 [30]: Problem 2 [10]: Problem 3 [60]: TOTAL [100]: Final Course Grade:
2 ECEN 5008 Initials: 2/10 1. [30 points] The approximate smallsignal model for a multistage opamp is shown in Figure 1 below. The smallsignal parameters are give by: Gm 1 50µ A/ V, Gm2 100µ A/ V R1 R2 1MΩ, Ro 500Ω C C 500 ff, C 5pF v v 1 C 12 v 2 R o v id G m1 *v id R 1 C 1 G m2 *v 1 R 2 C 2 v 2 v o v Figure 1: Opamp smallsignal model a) [8] Solve for the opamp transfer function from the differential input to the output in the following factored polezero form. Work in the space below & on the back of the opposite page, and place your results in the box below. A dm A o s 1 ω p s 1 ω 1 z s 1 ω p 2 Ao f f f z p1 p2
3 ECEN 5008 Initials: 3/10 b) [8] With the opamp of Fig.1 in the closedloop noninverting, unitygain configuration (as shown in Fig.1(b)), solve for the crossover frequency f c and phase margin PM of the resulting loop gain: v g  v o Figure 1(b) f c PM c) [14] With the opamp of Fig.1 in the closedloop configuration shown in Fig.1(c) below, write an analytical expression for the loop gain T(s), then find the approximate maximum value of R 1 (within ~20%) such that the closedloop system has a R 2 100k phase margin PM > 60. v g R 1  v o C L 100pF Figure 1(c) T ( s) R 1_ max
4 ECEN 5008 Initials: 4/10 2. [10 points] Find an analytical expression for the 3dB bandwidth of the amplifier circuit shown in Fig. 2 below using the ZVTC method. The transconductance amplifier can be modeled with infinite input impedance and an output current gain of G. m C 1 R 3 V i R 1 I o R 4 G m V o R 2 I o G m *(V V  ) R 5 Figure 2 f 3 db
5 ECEN 5008 Initials: 5/10 3. [60 points] All parts to this problem refer to Figure 3 (last page of exam), which shows a schematic diagram of the ST Microelectronics TS271 opamp. You may tear this page off for your reference and do not need to turn it in. Device parameters and sizes are given in Fig.3. Each of the following subparts can be completed independently ((a) through (f)). (a) Basic Operation: 1. [2] Determine the inverting & noninverting inputs of the opamp and circle the correct completion of the following sentence: a. The gate of T1 is: inverting or noninverting 2. [5] At the top of Fig.3, five sections of the circuit are identified in brackets. Briefly (one phrase each) explain the purpose or function of each block below: Group (1): Group (2): Group (3): Group (4): Group (5): (b) DC Bias: 1. [5] Assuming that i 1 10µ A, V V V i i 0, V output 0V, and there is no load current, solve for the DC bias currents and voltages i 2 through i 5 and v 1 through v 4. Place your work below and on the back of the opposite page and your results in the table below: Currents Voltages i 2 v 1 i 3 v 2 i 4 v 3 i 5 v 4
6 ECEN 5008 Initials: 6/10 (c) Smallsignal model & gain: 1. [5] At the DC operating point i 1 10µ A i i 0 V, V output 0V, solve for the smallsignal voltage gain from the differential input v id to v 3 : v v id 3 A3 2. [5] At the DC operating point i 1 10µ A, V V V i i 0, V o 0V, solve for the smallsignal voltage gain from the differential input v id to the opamp output. You may assume that the opamp has a R L 1 MΩ load attached to the output. A o v v output id
7 ECEN 5008 Initials: 7/10 3. [5] At the DC operating point i 1 10µ A, V V V i i 0, V o 0V, solve for the approximate output resistance of the opamp (looking into the Output terminal): R output (d) Input and output operating range: 1. [5] Determine the commonmode input voltage range of the opamp and specify the limiting transistors at each boundary: V icm T: T:
8 ECEN 5008 Initials: 8/10 2. [5] Determine the output voltage range of the opamp and specify the limiting transistors at each boundary: V output T: T: (e) Current limitations: 1. [3] Solve the slewrate limitation of the opamp due to capacitor C13pF: SR
9 ECEN 5008 Initials: 9/10 2. [8] Solve for the short circuit output current (assuming the output is shorted to ground (0V)) for the two cases: very large positive and negative input differential voltages. V 0, ( ) id >> I o short V 0, ( ) id << I o short (f) Current reference and bias. This part focuses on the group (1) current bias circuitry. You may assume the following process characteristics: VT Thermal Voltage : VT 25.9mV, 86µ V C T Vbe Base emitter : Vbe 660mV, 2mV C T 1 R2 3 Resistor : TC( R2 ) 1200 ppm C C R T 2
10 ECEN 5008 Initials: 10/10 1. [5] Write an expression for the DC component of the bias current i r as a function of device parameters and R 2 (Note: bipolar transistor T 25 has twice the emitter area of T 24, as shown by double arrows). I r 2. [2] Solve for R2 such that the bias current I r 10µ A. R 2 3. [5] Solve for the temperature coefficient of the bias current: TC( i ) r 1 I r ir T
11 V v 1 v 2 v 3 v 4 i 1 i 2 3pF i 4 i 5 i r i 3 NMOS : PMOS : µ C n µ C p ox ox 5V 100µ A / V, V 1V, γ 0, λ 0.01[ V 2 1 tn n n 50µ A / V, V 1V, γ 0, λ 0.02[ V 2 1 tp p p ] ] All MOS devices have W/L 10u / 1u except for: T 7 &T 16 both have W/L 20u / 1u All MOS body connections tied to device source Figure 3: Schematic from ST Microelectronics TS271C OpAmp Datasheet
Homework Assignment 07
Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A singlepole opamp has an openloop lowfrequency gain of A = 10 5 and an open loop, 3dB frequency of 4 Hz.
More informationChapter 12 Opertational Amplifier Circuits
1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS opamp architectures: the twostage circuit and the singlestage, folded cascode circuit.
More informationBJT Circuits (MCQs of Moderate Complexity)
BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r
More informationChapter 10: Operational Amplifiers
Chapter 10: Operational Amplifiers Differential Amplifier Differential amplifier has two identical transistors with two inputs and two outputs. 2 Differential Amplifier Differential amplifier has two identical
More informationChapter 15 Goals. accoupled Amplifiers Example of a ThreeStage Amplifier
Chapter 15 Goals accoupled multistage amplifiers including voltage gain, input and output resistances, and smallsignal limitations. dccoupled multistage amplifiers. Darlington configuration and cascode
More informationBJT Amplifier. Superposition principle (linear amplifier)
BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited
More informationChapter 11. Differential Amplifier Circuits
Chapter 11 Differential Amplifier Circuits 11.0 ntroduction Differential amplifier or diffamp is a multitransistor amplifier. t is the fundamental building block of analog circuit. t is virtually formed
More informationA Compact Foldedcascode Operational Amplifier with ClassAB Output Stage
A Compact Foldedcascode Operational Amplifier with ClassAB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design
More informationBoosting output in highvoltage opamps with a current buffer
Boosting output in highvoltage opamps with a current buffer Author: Joe Kyriakakis, Apex Microtechnology Date: 02/18/2014 Categories: Current, Design Tools, High Voltage, MOSFETs & Power MOSFETs, Op
More informationDesign and Layout of Two Stage High Bandwidth Operational Amplifier
Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard
More informationOperational Amplifiers
Fundamentals of opamp Operation modes Golden rules of opamp Opamp circuits Inverting & noninverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or opamp,
More informationLecture 030 ECE4430 Review III (1/9/04) Page 0301
Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material
More informationChapter 9: Operational Amplifiers
Chapter 9: Operational Amplifiers The Operational Amplifier (or opamp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,
More informationVoltage Feedback Op Amp (VFOpAmp)
Data Sheet Voltage Feedback Op Amp (VFOpAmp) Features 55 db dc gain 30 ma current drive Less than 1 V head/floor room 300 V/µs slew rate Capacitive load stable 40 kω input impedance 300 MHz unity gain
More informationEECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design
EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design References: Analog Integrated Circuit Design by D. Johns and K. Martin and Design of Analog CMOS Integrated Circuits by B. Razavi All figures
More informationCA3140, CA3140A. 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output. Description. Features. Applications. Ordering Information
November 99 SEMICONDUCTOR CA, CAA.MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output Features MOSFET Input Stage  Very High Input Impedance (Z IN ) .TΩ (Typ)  Very Low Input Current (I
More informationECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers
ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic
More informationRadivoje Đurić, 2015, Analogna Integrisana Kola 1
OTAoutput buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage
More informationGeorgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam
Georgia Institute of Technology School of Electrical and Computer Engineering Midterm Exam ECE3400 Fall 2013 Tue, September 24, 2013 Duration: 80min First name Solutions Last name Solutions ID number
More informationImproving Amplifier Voltage Gain
15.1 Multistage accoupled Amplifiers 1077 TABLE 15.3 ThreeStage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance
More informationLecture 240 Cascode Op Amps (3/28/10) Page 2401
Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog
More informationChapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier
Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in doubleended
More informationECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier
ECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier Objective Design, simulate and test a twostage operational amplifier Introduction Operational amplifiers (opamp) are essential components of
More informationLow Dropout Voltage Regulator Operation and Performance Review
Low Drop Voltage Regulator peration and Performance Review Eric Chen & Alex Leng ntroduction n today s power management systems, high power efficiency becomes necessary to maximize the lifetime of the
More informationOperational Amplifiers
Monolithic Amplifier Circuits: Operational Amplifiers Chapter Jón Tómas Guðmundsson tumi@hi.is. Week Fall 200 Operational amplifiers (op amps) are an integral part of many analog and mixedsignal systems
More informationOperational Amplifier BME 360 Lecture Notes Ying Sun
Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of OpAmp An operational amplifier (opamp) is an analog integrated circuit that consists of several stages of transistor amplification
More informationAnalysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications
Analysis and Design of Analog Integrated Circuits Lecture 8 Key Opamp Specifications Michael H. Perrott April 8, 0 Copyright 0 by Michael H. Perrott All rights reserved. Recall: Key Specifications of Opamps
More informationEE 501 Lab 4 Design of two stage op amp with miller compensation
EE 501 Lab 4 Design of two stage op amp with miller compensation Objectives: 1. Design a two stage op amp 2. Investigate how to miller compensate a twostage operational amplifier. Tasks: 1. Build a twostage
More informationUnit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample
Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23
More informationMetalOxideSilicon (MOS) devices PMOS. ntype
MetalOxideSilicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.
More informationUMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency
UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter
More informationConcepts to be Reviewed
Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational
More informationCMOS Operational Amplifier
The George Washington University Department of Electrical and Computer Engineering Course: ECE218 Instructor: Mona E. Zaghloul Students: Shunping Wang Yiping (Neil) Tsai Data: 05/14/07 Introduction In
More informationAn Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs
International Journal of Research in Engineering and Innovation Vol1, Issue6 (2017), 6064 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com
More informationBasic OpAmp Design and Compensation. Chapter 6
Basic OpAmp Design and Compensation Chapter 6 6.1 OpAmp applications Typical applications of OpAmps in analog integrated circuits: (a) Amplification and filtering (b) Biasing and regulation (c) Switchedcapacitor
More informationDesign and Simulation of Low Dropout Regulator
Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,
More informationMOS IC Amplifiers. Token Ring LAN JSSC 12/89
MO IC Amplifiers MOFETs are inferior to BJTs for analog design in terms of quality per silicon area But MO is the technology of choice for digital applications Therefore, most analog portions of mixedsignal
More informationA Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier
A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier Kehul A. Shah 1, N.M.Devashrayee 2 1(Associative Prof., Department of Electronics and Communication,
More informationDesign of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching
RESEARCH ARTICLE OPEN ACCESS Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching Annu Saini, Prity Yadav (M.Tech. Student, Department
More informationCommonSource Amplifiers
Lab 2: CommonSource Amplifiers Introduction The commonsource stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderatetohigh gain,
More informationTuesday, February 1st, 9:15 12:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo
Bandgap references, sampling switches Tuesday, February 1st, 9:15 12:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Outline Tuesday, February 1st 11.11
More informationLow Power OpAmp Based on Weak Inversion with MillerCascoded Frequency Compensation
Low Power OpAmp Based on Weak Inversion with MillerCascoded Frequency Compensation Maryam Borhani, Farhad Razaghian Abstract A design for a railtorail input and output operational amplifier is introduced.
More informationRailToRail Output OpAmp Design with Negative Miller Capacitance Compensation
RailToRail OpAmp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a twostage opamp design is considered using both Miller
More informationElectronics  PHYS 2371/2 TODAY
TODAY 4terminal linear amplifier OpAmp Basics, Ch28, 31 OpAmp Golden Rules for operation Opamp gain, impedance, frequency response Videos Lab6 Overview 1 Review Semiconductors Semiconductors Resistivity
More informationLM2904AH. Lowpower, dual operational amplifier. Related products. Description. Features. See LM2904WH for enhanced ESD performances
LM2904AH Lowpower, dual operational amplifier Datasheet  production data Related products See LM2904WH for enhanced ESD performances Features Frequency compensation implemented internally Large DC voltage
More informationChapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik
1 Chapter 10 Feedback Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: ActiveLoaded Differential Pair 4. Ch 10: Feedback 5. Ch 11: Output
More informationLecture 300 Low Voltage Op Amps (3/28/10) Page 3001
Lecture 300 Low Voltage Op Amps (3/28/10) Page 3001 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits
More informationor Op Amps for short
or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Chapter 14.1 Electrical Engineering: Principles and Applications Chapter 5.15.3 Fundamentals of
More informationOpAmp Simulation Part II
OpAmp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate
More informationLecture 26  Design Problems & WrapUp. May 15, 2003
6.012 Microelectronic Devices and Circuits  Spring 2003 Lecture 261 Lecture 26  Design Problems & 6.012 WrapUp May 15, 2003 Contents: 1. Design process 2. Design project pitfalls 3. Lessons learned
More informationLow Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier
RESEARCH ARTICLE OPEN ACCESS Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier Akshay Kumar Kansal 1, Asst Prof. Gayatri Sakya 2 Electronics and Communication Department, 1,2
More informationSG2525A SG3525A REGULATING PULSE WIDTH MODULATORS
SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS 8 TO 35 V OPERATION 5.1 V REFERENCE TRIMMED TO ± 1 % 100 Hz TO 500 KHz OSCILLATOR RANGE SEPARATE OSCILLATOR SYNC TERMINAL ADJUSTABLE DEADTIME CONTROL INTERNAL
More informationI1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab
Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.
More informationLecture #4 Basic OpAmp Circuits
Summer 2015 Ahmad ElBanna Faculty of Engineering Department of Electronics and Communications GEE336 Electronic Circuits II Lecture #4 Basic OpAmp Circuits Instructor: Dr. Ahmad ElBanna Agenda Some
More informationFeatures. Applications
Teeny UltraLowPower Op Amp General Description The is a railtorail output, input commonmode to ground, operational amplifier in Teeny SC70 packaging. The provides a 400kHz gainbandwidth product while
More informationFederal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS  II BASIC ELECTRICAL & ELECTRONICS LAB
THIRD SEMESTER ELECTRONICS  II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer
More informationPMOS OPERATIONAL AMPLIFIER. KhanhBiflh Ta 5th Year Microelectronic Engineering Student Rochester Institute of TechnolOgy ABSTRACT
PMOS OPERATIONAL AMPLIFIER KhanhBiflh Ta 5th Year Microelectronic Engineering Student Rochester Institute of TechnolOgy ABSTRACT This project was characteristics. an Due evaluation of to nonworking a
More informationLecture 350 Low Voltage Op Amps (3/26/02) Page 3501
Lecture 350 Low Voltage Op Amps (3/26/02) Page 3501 LECTURE 350 LOW VOLTAGE OP AMPS (READING: AH 415432) Objective The objective of this presentation is: 1.) How to design standard circuit blocks with
More informationLecture 3 SwitchedCapacitor Circuits Trevor Caldwell
Advanced Analog Circuits Lecture 3 SwitchedCapacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 24pm) Reference Homework 20170111 1 MOD1 & MOD2 ST 2, 3,
More informationDESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1
ISSN 22772685 IJESR/June 2014/ Vol4/Issue6/319323 Himanshu Shekhar et al./ International Journal of Engineering & Science Research DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL
More informationModule 4 Unit 4 Feedback in Amplifiers
Module 4 Unit 4 Feedback in mplifiers eview Questions:. What are the drawbacks in a electronic circuit not using proper feedback? 2. What is positive feedback? Positive feedback is avoided in amplifier
More information2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps
2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps Instructor: Dr. Hong Ma Oct. 3, 2007 Fundamental Circuit: Source and Load Sources Power supply Signal Generator Sensor Amplifier output
More informationBUCK Converter Control Cookbook
BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output
More informationGATE: Electronics MCQs (Practice Test 1 of 13)
GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase
More informationDesign of Low Voltage Low Power CMOS OPAMP
RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OPAMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral
More informationOp Amp Booster Designs
Op Amp Booster Designs Although modern integrated circuit operational amplifiers ease linear circuit design, IC processing limits amplifier output power. Many applications, however, require substantially
More informationExample #6 1. An amplifier with a nominal gain
1. An amplifier with a nominal gain A=1000 V/V exhibits a gain change of 10% as the operating temperature changes from 25 o C to 75 o C. If it is required to constrain the change to 0.1% by applying negative
More informationIntroduction to Op Amps By Russell Anderson, BurrBrown Corp
Introduction to Op Amps By ussell Anderson, BurrBrown Corp Introduction Analog design can be intimidating. If your engineering talents have been focused in digital, software or even scientific fields,
More informationDesign of HighSpeed OpAmps for Signal Processing
Design of HighSpeed OpAmps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 837252075 jbaker@ieee.org Abstract  As CMOS
More informationA low voltage railtorail operational amplifier with constant operation and improved process robustness
Graduate Theses and Dissertations Graduate College 2009 A low voltage railtorail operational amplifier with constant operation and improved process robustness Rien Lerone Beal Iowa State University Follow
More informationA Low Power Low Voltage High Performance CMOS Current Mirror
RESEARCH ARTICLE OPEN ACCESS A Low Power Low Voltage High Performance CMOS Current Mirror Sirish Rao, Sampath Kumar V Department of Electronics & Communication JSS Academy of Technical Education Noida,
More informationDesign and implementation of two stage operational amplifier
Design and implementation of two stage operational amplifier Priyanka T 1, Dr. H S Aravind 2, Yatheesh Hg 3 1M.Tech student, Dept, of ECE JSSATE Bengaluru 2Professor and HOD, Dept, of ECE JSSATE Bengaluru
More informationLesson number one. Operational Amplifier Basics
What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Opamps as they are more commonly called, are one of the basic building blocks
More informationE4332: VLSI Design Laboratory. Columbia University Spring 2005: Lectures
E4332: VLSI Design Laboratory Nagendra Krishnapura Columbia University Spring 2005: Lectures nkrishna@vitesse.com 1 AM radio receiver AM radio signals: Audio signals on a carrier Intercept the signal Amplify
More informationISSN:
468 Modeling and Design of a CMOS Low Dropout (LDO) Voltage Regulator PRIYADARSHINI JAINAPUR 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore560064,
More informationSingleStage Integrated Circuit Amplifiers
SingleStage Integrated Circuit Amplifiers Outline Comparison between the MOS and the BJT From discrete circuit to integrated circuit  Philosophy, Biasing, etc. Frequency response The CommonSource and
More informationLOW SUPPLY VOLTAGE, LOW NOISE FULLY DIFFERENTIAL PROGRAMMABLE GAIN AMPLIFIERS
LOW SUPPLY VOLTAGE, LOW NOISE FULLY DIFFERENTIAL PROGRAMMABLE GAIN AMPLIFIERS A. Pleteršek, D. Strle, J. Trontelj Microelectronic Laboratory University of Ljubljana, Tržaška 25, 61000 Ljubljana, Slovenia
More informationDAT175: Topics in Electronic System Design
DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable
More informationLM158, LM258, LM358. Lowpower dual operational amplifiers. Related products. Description. Features. See LM158W for enhanced ESD ratings
Lowpower dual operational amplifiers Datasheet  production data Related products See LM158W for enhanced ESD ratings Features Frequency compensation implemented internally Large DC voltage gain: 100
More informationAnalog Circuits Part 3 Operational Amplifiers
Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational
More information6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers
6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication
More informationThe Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.
CE Frequency Response The exact analysis is worked out on pp. 63964 of H&S. The Miller Approximation Therefore, we consider the effect of C µ on the input node only V  out V s = r g π m 
More informationLow Voltage Standard CMOS Opamp Design Techniques
Low Voltage Standard CMOS Opamp Design Techniques Student name: Eliyahu Zamir Student number: 961339780 Course: ECE1352F Proffessor: Khoman Phang Page 1 of 18 1.Abstract In a neverending effort to reduce
More informationUniversity of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier
University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim ElSaadi, Mohammed ElTanani, University of Michigan Abstract This paper
More informationELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE
77 ELECTRICAL CIRCUITS 6. PERATAL AMPLIIERS PART III DYNAMIC RESPNSE Introduction In the first 2 handouts on opamps the focus was on DC for the ideal and nonideal opamp. The perfect opamp assumptions
More informationOperational Amplifier Bandwidth Extension Using Negative Capacitance Generation
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 20060706 Operational Amplifier Bandwidth Extension Using Negative Capacitance Generation Adrian P. Genz Brigham Young University
More informationA PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER
A PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER M. TaherzadehSani, R. Lotfi, and O. Shoaei ABSTRACT A novel classab architecture for singlestage operational amplifiers is presented. The structure
More informationPrecision Rectifier Circuits
Precision Rectifier Circuits Rectifier circuits are used in the design of power supply circuits. In such applications, the voltage being rectified are usually much greater than the diode voltage drop,
More informationAtypical op amp consists of a differential input stage,
IEEE JOURNAL OF SOLIDSTATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 LowVoltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar SánchezSinencio Abstract This paper presents
More informationAnalyzing the Dynaco Stereo 120 Power Amplifier
Analyzing the Dynaco Stereo 120 Power Amplifier The Stereo 120 Power Amplifier came out around 1966. It was the first powerful (60 watts per channel) solid state amplifier in wide production. Each channel
More informationA Compact 2.4V Powerefficient Railtorail Operational Amplifier. Strong inversion operation stops a proposed compact 3V powerefficient
A Compact 2.4V Powerefficient Railtorail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V powerefficient railtorail OpAmp from a lower total supply voltage.
More informationMCP6031/2/3/ µa, High Precision Op Amps. Features. Description. Applications. Design Aids. Package Types. Typical Application
0.9 µa, High Precision Op Amps Features RailtoRail Input and Output Low Offset Voltage: ±150 µv (maximum) Ultra Low Quiescent Current: 0.9 µa Wide Power Supply Voltage: 1.8V to 5.5V Gain Bandwidth Product:
More informationOperational Amplifiers
Operational Amplifiers Spring 2008 Sean Lynch Lambros Samouris Tom Groshans History of Op Amps Non Named for their originally intended functions: performing mathematical operations and amplification Addition
More informationPURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.
EE4902 Lab 9 CMOS OPAMP PURPOSE: The purpose of this lab is to measure the closedloop performance of an opamp designed from individual MOSFETs. This opamp, shown in Fig. 91, combines all of the major
More informationLinear Regulators: Theory of Operation and Compensation
Linear Regulators: Theory of Operation and Compensation Introduction The explosive proliferation of battery powered equipment in the past decade has created unique requirements for a voltage regulator
More informationMacromodels User Manual
Preliminary The macromodels contained in this databook operate with the Pspice and SPice simulators and with the ELDO simulator. For most of the macromodels enclosed, no specific precautions are required
More informationES 330 Electronics II Homework # 6 Soltuions (Fall 2016 Due Wednesday, October 26, 2016)
Page1 Name Solutions ES 330 Electronics Homework # 6 Soltuions (Fall 016 ue Wednesday, October 6, 016) Problem 1 (18 points) You are given a commonemitter BJT and a commonsource MOSFET (nchannel). Fill
More informationMultistage Amplifiers
Multistage Amplifiers Singlestage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)
More informationElectronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd
Electronic Devices Ninth Edition Floyd Chapter 9 The CommonSource Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has
More informationDESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT
DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT PRADEEP G CHAGASHETTI Mr. H.V. RAVISH ARADHYA Department of E&C Department of E&C R.V.COLLEGE of ENGINEERING R.V.COLLEGE of ENGINEERING Bangalore
More information