ELEN 610 Data Converters

Size: px
Start display at page:

Download "ELEN 610 Data Converters"

Transcription

1 Spring 2014 S. Hoyos-ECEN ELEN 610 Data Converters Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group

2 Folding Spring 2014 S. Hoyos-ECEN-610 2

3 Spring 2014 S. Hoyos-ECEN Inefficiency of Flash ADC V FS V i Strobe 2 N -1 f s Encoder D o D o 2 N -1 comparators 0 V FS V i Only comparators in the vicinity of V in are active at a time low efficiency.

4 Spring 2014 S. Hoyos-ECEN Segmented Quantization 2 N -1 V FS D o Segment indicator (M bits) V i Analog pre-processing divides V in into 2 M uniformly-spaced segments. Fine quantization (N-M) bits

5 Spring 2014 S. Hoyos-ECEN Signal Folding 2 N -1 V FS D o Analog pre-processing folding amplifier Folding factor (F) is equal to the number of folded segments V i Fine quantization N-log 2 (F) bits Segment indicator (log 2 (F) bits)

6 Spring 2014 S. Hoyos-ECEN Folding ADC Architecture V R V i Reference Ladder Fine ADC Coarse ADC MSB s F = 8 5 bits LSB s 3 bits Digital Logic 8 bits D out The fine ADC performs amplitude quantization on the folded signal. The coarse ADC differentiates which segment V in resides in.

7 Spring 2014 S. Hoyos-ECEN Folding Amplifier R L R L V o + V o - F = 3 M 1 M 2 M 3 M 4 M 5 M 6 I S V R 1 I S V R 2 I S V R 3 V i V o I S R L 0 V i -I S R L V R /6 V R /2 5V R /6

8 Spring 2014 S. Hoyos-ECEN Signal Folding Pros Folding reduces the comparator number by the folding factor F, and also reduces the number of preamplifiers by F but adds F folder amplifiers. Cons Multiple differential pairs in the folder increases the output loading. Frequency multiplication at the folder output.

9 Spring 2014 S. Hoyos-ECEN Frequency Multiplication f max fin sin 1 (2 ) F

10 Spring 2014 S. Hoyos-ECEN Folding Amplifier R L R L V o + V o - F = 3 M 1 M 2 M 3 M 4 M 5 M 6 V i I S V R 1 I S V R 2 I S V R 3 Zero-crossings are still precise! V o I S R L 0 V i -I S R L V R /6 V R /2 5V R /6

11 Spring 2014 S. Hoyos-ECEN Zero-Crossing Detection V o 0 V i F = 3, P = 4 Only detect zero-crossings instead of fine amplitude quantization insensitive to folder nonlinearities. P parallel folding amplifiers are required.

12 Spring 2014 S. Hoyos-ECEN Offset Parallel Folding V R V i F = 3, P = 4 Folder 1 V 1 c 0 V i Reference Ladder Folder 2 V 2 Folder 3 V 3 c c 0 0 V i V i Folder 4 V 4 c 0 V i Total # of zero-crossings = Total # of preamps = P*F Parallel folding saves the # of comparators, but not the # of preamps still large C in.

13 Spring 2014 S. Hoyos-ECEN Folding + Interpolation V i Cross-connect P & N sides at the endpoints c V i

14 Spring 2014 S. Hoyos-ECEN Rounding Problem V o 0 V i F = 3 2 2(V gs -V th ) V o 0 V i F = 9 2 2(V gs -V th ) Large F results in signal rounding, causing gain and swing loss. Max. folding factor is limited by V ov of folder and supply voltage.

15 Spring 2014 S. Hoyos-ECEN Folding vs. Interpolation/Averaging Folding Folding works better with non-overlapped active regions between adjacent folders. Large V ov (for high speed) of folders and low supply voltage limit the max. achievable F. Interpolation/Averaging Work better with closely spaced overlapped active region between adjacent folding signals. Observation Small F and large P (parallel folders) will help both folding and interpolation/averaging, but introduces large C in. What else can we do?

16 Spring 2014 S. Hoyos-ECEN Cascaded Folding V o 0 V i F = 3 c V o 0 V i F = 9 Ideal: A large folding factor F can be developed successively. Small F in the 1 st -stage folder large V ov, less capacitive loading, and less frequency multiplication effect.

17 Spring 2014 S. Hoyos-ECEN Cascaded Folder Architecture (I) F =? Gilbert four-quadrant multiplier based folding amplifier Only works with even P, requires a lot of headroom

18 Spring 2014 S. Hoyos-ECEN Cascaded Folder Architecture (II) F =? V o + V o - V i Simple differential pair-based folding amplifiers Only works with odd P, compatible with low supply voltage.

19 Spring 2014 S. Hoyos-ECEN Mechanical Model of Cascaded Folding Bult (JSSC 97)

20 Spring 2014 S. Hoyos-ECEN Distributed Preamplification Comparators Interpolation and Averaging Interpolation and 2 nd -stage Folding 1 st -stage Folding and Averaging c c c Gain Input and Reference Ladder c Large signal gain developed gradually along the signal path from soft to hard decision

21 Spring 2014 S. Hoyos-ECEN Cascaded Offset Bit Alignment V R V i Reference Ladder 1 st -stage Folders (P*F1) 2 nd -stage Folders (F2) Fine Comparators LSB s Digital Logic D out F1 Cmp s P Cmp s Bit Alignment MSB s Two-step offset bit alignment large offset tolerance on F 1 coarse comparators and medium tolerance on P comparators.

22 Spring 2014 S. Hoyos-ECEN Useful Formulas Assuming a two-stage cascaded folding & interpolating ADC, F 1 = 1 st -stage folding factor, F 2 = 2 nd -stage folding factor, P = # of offset parallel folders (P>F 2 ), I = total interpolation factor, then total # of decision level = P*F 1 *I, ADC Resolution = Log 2 (P*F 1 *I), total # of preamps in 1 st folder = P*F 1, total # of preamps in 2 nd folder = P, total # of fine comparators = P*I/F 2, total # of coarse comparators = F 1 *F 2, F 1 +F 2, or F 1 +P?

23 Spring 2014 S. Hoyos-ECEN Cascaded Offset Bit Alignment V i A B C D V FS 0 D C B A Margin A OF UF F 1 coarse comparators at input and P coarse comparators at 1 st -stage folder outputs resolve F 1 *P (>F 1 *F 2 ) folds. One fine comparator output is utilized to perform offset bit alignment.

24 Spring 2014 S. Hoyos-ECEN References 1. R. J. van De Plassche et al., JSSC, vol. 14, pp. 938, issue 6, R. E. J. van De Grift et al., JSSC, vol. 19, pp , issue 3, R. E. J. van De Grift et al., JSSC, vol. 22, pp , issue 6, R. J. van de Plassche et al., JSSC, vol. 23, pp , issue 6, J. van Valburg et al., JSSC, vol. 27, pp , issue 12, B. Nauta et al., JSSC, vol. 30, pp , issue 12, A. G. W. Venes et al., JSSC, vol. 31, pp , issue 12, M. P. Flynn et al., JSSC, vol. 31, pp , issue 9, P. Vorenkamp et al., JSSC, vol. 32, pp , issue 12, K. Bult et al., JSSC, vol. 32, pp , issue 12, M. P. Flynn et al., JSSC, vol. 33, pp , issue 12, M.-J. Choe et al., VLSI, 1999, pp R. C. Taft et al., JSSC, vol. 39, pp. 2107, issue 12, 2004.

25 Nyquist-Rate ADC s Word-at-a-time (1 step) Flash Folding Interleaving Level-at-a-time (2 N steps) Integrating (Serial) Bit-at-a-time (N steps) Successive approximation Algorithmic (Cyclic) Partial word-at-a-time (1<M N steps) Subranging Pipeline the number in the parentheses is the latency of conversion, not throughput. Spring 2014 S. Hoyos-ECEN

26 Spring 2014 S. Hoyos-ECEN Resolution-Conversion Speed Tradeoff Resolution [Bits] 20 Integrating 1 level/t clk 1 word/osr*tclk 1 bit/t clk 15 Oversampling Partial word/t clk 10 5 Nyquist Oversampling Successive Approximation Algorithmic Subranging Pipeline 1 word/t clk Flash Folding & Interpolating Interleaving 0 1k 10k 100k 1M 10M 100M 1G 10G Sample Rate [Hz]

27 Integrating ADC Spring 2014 S. Hoyos-ECEN

28 Spring 2014 S. Hoyos-ECEN Single-Slope Integrating ADC V i V Y V X f clk Control Counter D o I C Counter keeps counting until comparator output toggles. Simple, inherently monotonic, but very slow (2 N *T clk /sample).

29 Spring 2014 S. Hoyos-ECEN Single-Slope Integrating ADC V X slope=i/c V Y t V i I C D o t 1 1, Do Tclk C I T clk t V. i t 1 start stop t INL depends on the linearity of the ramp signal. Precision capacitor (C) and current source (I) are required. Comparator must handle large common-mode input.

30 Spring 2014 S. Hoyos-ECEN Dual-Slope Integrating ADC C V i -V R R V X Control Counter D o f clk CT RC integrator replaces the current integrator. Input and reference voltages experience the same signal path. Comparator only detects zero-crossing (constant input CM).

31 Spring 2014 S. Hoyos-ECEN Dual-Slope Integrating ADC V X V os V m t 1 t t V m Vin RC D o t 1 N N 2 1 VR t2 RC t2 V t V 1 in R. Exact values of R, C, and T clk are not required. Comparator offset doesn t matter. Op-amp offset introduces gain error and offset. Op-amp nonlinearity introduces INL error.

32 Spring 2014 S. Hoyos-ECEN Subranging Dual-Slope ADC SHA V t V i C 1 C S V X C 2 f clk Control Logic Cnt 1 (8 bits) Carry Cnt 2 (8 bits) MSB s LSB s I I 256 Much faster conversion speed. Two matched current sources and two comparators are required.

33 Spring 2014 S. Hoyos-ECEN Subranging Dual-Slope ADC V X V t 1 2 t 1 t 2 t dvx dt dvx dt D o 1 2 N I, C I. 256C W 1 N 2 Precise V t is not required if carry is propagated. Matching between the current sources is critical if I 1 = I, I 2 = (1+δ) I/256, then δ 0.5/256.

34 Spring 2014 S. Hoyos-ECEN Subranging Multi-Slope ADC SHA V i C S V X Cnt 1 4 Bits f clk Control Logic Cnt 2 4 Bits I I 16 I 256 Cnt 3 4 Bits Ref: J.-G. Chern and A. A. Abidi, "An 11 bit, 50 ksample/s CMOS A/D converter cell using a multislope integration technique," in Proceedings of IEEE Custom Integrated Circuits Conference, 1989, pp. 6.2/1-6.2/4.

35 Spring 2014 S. Hoyos-ECEN Subranging Multi-Slope ADC V X t dvx dt dvx dt dvx dt I, C I, 16C I. 256C t 1 t 3 t 2 D o N1 W1 N2 W2 N3 Single comparator detects zero-crossing. Comparator response time is greatly relaxed. Matching between the current sources is still critical.

36 Spring 2014 S. Hoyos-ECEN Successive Approximation ADC

37 Spring 2014 S. Hoyos-ECEN Successive Approximation ADC V i V X V DAC b 1 DAC D o b N Shift Register Binary search algorithm N*T clk to complete N bits. Conversion speed is limited by comparator, DAC, and SAR (successive approximation register)

38 Spring 2014 S. Hoyos-ECEN Binary Search V DAC V i V FS V FS MSB T clk LSB t DAC output gradually approaches the input voltage. Comparator differential input gradually approaches zero.

39 Spring 2014 S. Hoyos-ECEN Charge Redistribution SA ADC Φ 1e V X 8C 4C 2C C C SAR D o V R V i Φ 1 Φ 1 Φ 1 Φ 1 Φ 1 4-bit binary-weighted capacitor array DAC. Capacitor array samples input when Φ 1 is asserted (bottom-plate).

40 Spring 2014 S. Hoyos-ECEN Charge Redistribution (MSB) SAR D o Φ 1e V X 2C C C 8C 4C V R V i Φ 1 Φ 1 Φ 1 Φ 1 Φ 1 i R j j j j i R X j j X X R j j i V V C C V C V V C V C V V C V

41 Spring 2014 S. Hoyos-ECEN Comparison (MSB) V X 1 0 t Sample 1 MSB MSB TEST : V X V 2 R V i If V X < 0, then V i > V R /2, and MSB = 1, C 4 remains connected to V R. If V X > 0, then V i < V R /2, and MSB = 0, C 4 is switched to ground.

42 Spring 2014 S. Hoyos-ECEN Charge Redistribution (MSB-1) Φ 1e V X 8C 4C 2C C C SAR D o V R V i Φ 1 Φ 1 Φ 1 Φ 1 Φ 1 V i 16C V R VX 12C VX 4C VX V R 12C Vi 16C 16C VR Vi 3 4

43 Spring 2014 S. Hoyos-ECEN Comparison (MSB-1) V X t Sample 1 0 MSB MSB TEST : V X 3 V 4 R V i If V X < 0, then V i > 3V R /4, and MSB-1 = 1, C 3 remains connected to V R. If V X > 0, then V i < 3V R /4, and MSB-1 = 0, C 3 is switched to ground.

44 Spring 2014 S. Hoyos-ECEN Charge Redistribution (Other Bits) Φ 1e V X 8C 4C 2C C C SAR D o V R V i Φ 1 Φ 1 Φ 1 Φ 1 Φ 1 Test completes when all four bits are determined w/ four charge redistributions and comparisons.

45 Spring 2014 S. Hoyos-ECEN After Four Clock Cycles V X t Sample MSB LSB Usually, half T clk is allocated for charge redistribution and half for comparison + digital logic. V X always converges to 0 (V os if comparator has nonzero offset).

46 Spring 2014 S. Hoyos-ECEN Bottom-Plate Parasitics Φ 1e C P 8C 4C 2C C C V os SAR D o V R V i Φ 1 Φ 1 Φ 1 Φ 1 Φ 1 If V os = 0, C P has no effect; otherwise, C P attenuates V X. AZ can be applied to the comparator to reduce offset.

47 Spring 2014 S. Hoyos-ECEN Summary on SA ADC Power efficiency only comparator consumes DC power. DAC nonlinearity limits the INL and DNL of the SA ADC N-bit precision requires N-bit matching from the cap array. Calibration can be performed to remove mismatch errors (Lee, JSSC 84). If C P =0, comparator offset V os introduces an input-referred offset V os ; for nonzero C P, input-referred offset is larger than V os (δ~c P /ΣC j ). If V os =0, CP has no effect (V X 0 at the end of search); otherwise, charge sharing occurs at summing node (V X is attenuated). Binary search is sensitive to intermediate errors made during search DAC must settle into ½ LSB within the time allowed. Comparator offset must be constant (no hysteresis). Nonbinary search can be used (Kuttner, ISSCC, 2002).

48 Spring 2014 S. Hoyos-ECEN References 1. R. E. Suarez, P. R. Gray, and D. A. Hodges, JSSC, pp , issue 6, J. L. McCreary and P. R. Gray, JSSC, pp , issue 6, H.-S. Lee, D. A. Hodges, and P. R. Gray, JSSC, pp , issue 6, M. de Wit, K.-S. Tan, and R. K. Hester, JSSC, pp , issue 4, C. M. Hammerschmied and H. Qiuting, JSSC, pp , issue 8, S. Mortezapour and E. K. F. Lee, JSSC, pp , issue 4, G. Promitzer, JSSC, pp , issue 7, F. Kuttner, ISSCC, 2002, pp

49 Algorithmic ADC Spring 2014 S. Hoyos-ECEN

50 Spring 2014 S. Hoyos-ECEN Algorithmic (Cyclic) ADC V i SHA V X 2X V o Sample mode 1-b V FS /2 V FS /2 DAC 0 b j Input is sampled first, then circulates in the loop for N clock cycles. Conversion takes N cycles with one bit resolved in each T clk.

51 Spring 2014 S. Hoyos-ECEN Modified Binary Search Algorithm V i SHA V X 2X V o Conversion mode 1-b V FS /2 V FS /2 DAC 0 b j If V X < V FS /2, then b j = 0, and V o = 2*V X. If V X > V FS /2, then b j = 1, and V o = 2*(V X -V FS /2).

52 Spring 2014 S. Hoyos-ECEN Modified Binary Search Algorithm V X 1 X2 2 X2 3 X2 4 X2 5 X2 6 V FS V i V FS MSB LSB T clk Constant threshold (V FS /2) is used for each comparison. 2X gain is provisioned each time residue circulates around the loop.

53 Spring 2014 S. Hoyos-ECEN Loop Transfer Function V o V i SHA V X 2X V o c V FS b j =0 b j =1 1-b V FS /2 V FS /2 DAC 0 b j 0 V FS /2 V FS V i If V X < V FS /2, then b j = 0, and V o = 2*V X. If V X > V FS /2, then b j = 1, and V o = 2*(V X -V FS /2).

54 Spring 2014 S. Hoyos-ECEN Offset Errors Ideal RA offset CMP offset V o V o V o V FS b=0 b=1 V FS b=0 b=1 V os V FS b=0 b=1 V os 0 V FS /2 V FS V i 0 V FS /2 V FS V i 0 V FS /2 V FS V i D o D o D o 0 V FS /2 V FS V i V FS /2 V i 0 V FS 0 V FS /2 V FS V i V o = 2*(V i - b j *V FS /2) V i = b j *V FS /2 + V o /2

55 Spring 2014 S. Hoyos-ECEN The Multiplier DAC (MDAC) Φ 2 V i Φ 1 C 1 -V R /4 Φ 1 C 2 A V o V R /4 Φ 1e -V R 0 V R Decoder Φ 2 2X gain + 3-level DAC + subtraction all integrated. A 3-level DAC is perfectly linear w/ fully-differential signals.

56 Spring 2014 S. Hoyos-ECEN The 1.5-Bit Architecture V R V R /2 -V R /2 -V R b=0 b=1 b=2 V o V R /4 V R /4 V R V i 3 decision levels ENOB = log 2 3 = Max tolerance on comparator offset is ±V R /4. An implementation of the Sweeny-Robertson-Tocher (SRT) division principle. The conversion accuracy solely relies on the loopgain error, i.e., the gain error and nonlinearity. A 3-level DAC is required. Architecture can be generalized to n.5-b per conversion.

57 Spring 2014 S. Hoyos-ECEN Error Mechanisms of RA Φ 1 C 1 Φ 2 V o C1 C C 1 2 V i C C 2 b 1 VR 1 V i -V R /4 V R /4 Φ 1 C 2 Φ 1e A V o Capacitor mismatch Op-amp finite-gain error and nonlinearity -V R 0 V R Decoder Φ 2 Charge injection and clock feedthrough Finite circuit bandwidth V o t C C V b 1 2 C 1 i 1 C C1 C2 A V o 2 V R ΔV V i

58 Spring 2014 S. Hoyos-ECEN RA Gain Error and Nonlinearity V R V R /2 b=0 b=1 b=2 V o D o 0 V i -V R /2 -V R -V R /4 V R /4 V R 0 -V R V i V R Raw accuracy is usually limited to bits w/o error correction.

59 Spring 2014 S. Hoyos-ECEN N 1 N N 2 b 2 b 2 b b 2 1 Do 1 N 1 N N 3 b 3 b 3 b b 3 2 Do 1 bit and 1.5-b with Offset Tolerance 1.5-b without Offset Tolerance

60 Effect of Offset Spring 2014 S. Hoyos-ECEN

61 Effect of Offset Spring 2014 S. Hoyos-ECEN

62 Spring 2014 S. Hoyos-ECEN References 1. P. W. Li, et al., JSSC, vol. 19, pp , issue 6, C. Shih, et al., JSSC, vol. 21, pp , issue 4, H. Ohara, et al., JSSC, vol. 22, pp , issue 6, H. Onodera, et al., JSSC, vol. 23, pp , issue 1, B.-S. Song, et al., JSSC, vol. 23, pp , issue 6, B. Ginetti, et al., JSSC, vol. 27, pp , issue 7, S. H. Lewis, et al., JSSC, vol. 27, pp , issue 3, A. N. Karanicolas, et al., JSSC, vol. 28, pp , issue 12, H.-S. Lee, JSSC, vol. 29, pp , issue 4, S.-Y. Chin et al., JSSC, vol. 31, pp , issue 8, O. E. Erdogan, et al., JSSC, vol. 34, pp , issue 12, 1999.

63 Spring 2014 S. Hoyos-ECEN Algorithmic ADC Hardware-efficient, but relatively low conversion speed. Binary search algorithm. Loopgain (2X) requires the use of a residue amplifier, but greatly simplifies the DAC 1-bit, inherently linear. Residue gets amplified each time it circulates the loop; the gain makes the later conversion steps (the LSB s) insensitive to circuit noise and distortion. Conversion errors (residue error due to loopgain nonidealities and comparator offset) made in the earlier conversion cycles also get amplified again and again overall accuracy is usually limited by the MSB resolving and residue generation step. Digital redundancy is often used to treat comparator/loop offsets. Trimming/calibration/ratio-independent techniques are often used to treat loopgain error.

64 Precision Techniques Spring 2014 S. Hoyos-ECEN

65 Spring 2014 S. Hoyos-ECEN Ratio-Independent Multiply-By-N Circuit (1) (2) (3) C 2 C 2 C 1 C 1 C 1 C 2 V i A V o (1) V o (2) A A V o (3) Sampling Charge transfer C 1 -C 2 exchanged Steps (1) and (2) are repeated for N times. C 2 functions as a temporary charge storage.

66 RA Gain Trimming V i + C 1 C 2 Trim array V X + V X - A V o + V o - C 1 /C 2 = 2 nominally V i - C 1 C 2 Precise gain-of-two is achieved by adjustment of the trim array. Finite-gain error of op-amp is also compensated (not nonlinearity). Spring 2014 S. Hoyos-ECEN

67 Spring 2014 S. Hoyos-ECEN Split-Array Trimming DAC V i + 1.2C 2C V X + C 2C 4C 8C C 2C 4C 8C 8-bit gain setting + sign C 2C 4C 8C C 2C 4C 8C V i - 1.2C 2C V X - Successive approximation is performed to find the correct gain setting. Coupling cap is slightly increased to ensure segment overlap.

68 Spring 2014 S. Hoyos-ECEN Digital Calibration V R MSB=0 V o MSB=1 D o S 1 S 2 MSB=1 0 V i MSB=0 S 1 S 2 0 -V R V R -V R V i V R RA gain is set lower than 2X, forcing missing codes but NOT missing decision levels. Calibration is performed by measuring distance between S 1 and S 2 ; (S 2 -S 1 ) is later subtracted from D o (gain error and offset remain).

69 Spring 2014 S. Hoyos-ECEN Digital Calibration Φ 1e Φ 2 C 3 Φ 2 Φ 1 C 2 Φ 1e C 1 = C 2 V i -V R V R Decoder Φ 1 C 1 Φ 2 Residue Amplifier A V o V o C 3 = βc 1 AZ SC amplifier C C V 2b 1 2 C 2 C 2Vi 2b1 V 1 β i R 3 1 C V 1 R

70 Capacitor Error-Averaging Φ 1 Φ 2 Φ 3 C 1 C 1 C 2 C 2 C 2 C 1 V i V R V x1 V R V x2 A 1 A 1 A 1 V x 1 1 δ C, C2 1 +Δ -Δ 2V i -V R V x1 C 1 C2 Vi C 1 C 2 V R 2V i V R δv V, i R Φ 1 Φ 2 V x 2 C C Φ 3 V x2 1 Vi C 2 2 C V 1 R 2V i V R δv V. i R Inherently linear capacitor error-averaging techniques for pipelined A/D conversion Yun Chiu;Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on Volume 47, Issue 3, March 2000 Page(s): Spring 2014 S. Hoyos-ECEN

71 Spring 2014 S. Hoyos-ECEN Capacitor Error-Averaging Φ 2 Φ 3 C 3 C 3 C 4-1 C 4 V x1-1 V x2 V o A 2 A 2 V o C 3 2C4, 2V i -V R C C V C V C, Vx1 3 4 o 3 x2 4 Φ 1 Φ 2 Φ 3 V o V x1 V 2 x2 2V i V R,

72 Spring 2014 S. Hoyos-ECEN Capacitor Error-Averaging C C1 C C1 1 δ 1 2 δ 2 C 2C1 C C1 3 δ 3 4 δ 4 Assume,,, δ, are zero mean Gaussian with variance. δ1 δ δ Find an expression for Vo and comment on the effectiveness of the capacitor error-averaging technique.

73 Spring 2014 S. Hoyos-ECEN References 1. P. W. Li, et al., JSSC, vol. 19, pp , issue 6, C. Shih, et al., JSSC, vol. 21, pp , issue 4, H. Ohara, et al., JSSC, vol. 22, pp , issue 6, H. Onodera, et al., JSSC, vol. 23, pp , issue 1, B.-S. Song, et al., JSSC, vol. 23, pp , issue 6, B. Ginetti, et al., JSSC, vol. 27, pp , issue 7, S. H. Lewis, et al., JSSC, vol. 27, pp , issue 3, A. N. Karanicolas, et al., JSSC, vol. 28, pp , issue 12, H.-S. Lee, JSSC, vol. 29, pp , issue 4, S.-Y. Chin et al., JSSC, vol. 31, pp , issue 8, O. E. Erdogan, et al., JSSC, vol. 34, pp , issue 12, 1999.

74 Subranging ADC Spring 2014 S. Hoyos-ECEN

75 Spring 2014 S. Hoyos-ECEN Subranging ADC Architecture V RT V RB Coarse Encoder MSB s V i Fine Flash Coarse Flash Fine Encoder LSB s

76 Spring 2014 S. Hoyos-ECEN Subranging ADC Pros Reduced complexity 2*(2 N/2-1) comparators Reduced C in, area, and power consumption No residue amplifier required Cons Typically 3 clock phases per conversion Sample Coarse comparison Fine comparison THA required (two-stage S/H if the front-end SHA only holds for one phase) Offset tolerance on fine comparators is at N-bit level. Offset tolerance on coarse comparators is also at N-bit level without digital redundancy.

77 Spring 2014 S. Hoyos-ECEN Example Block Diagram V RT V i Reference Ladder MUX SHA SHA Coarse ADC Fine ADC MSB s 4 bits LSB s 5 bits Encoder 8 bits D o V RB Redundancy in fine ADC provided by over- and under-range comparators

78 Spring 2014 S. Hoyos-ECEN Digital Redundancy of Fine ADC V R 1 V R 2 To Coarse CMP s V i Extra CMP s Fine Encoder + Error Correction Extra CMP s Search range of the fine ADC is extended on both sides.

79 Spring 2014 S. Hoyos-ECEN Two-Step ADC V i SHA SHA 2 n 1 Fine ADC LSB s RA Coarse ADC D/A V R MSB s V R Coarse-fine two-step subranging architecture Conversion residue is produced instead of switching reference taps. A DAC and a subtraction circuit are required. Residue gain can be provisioned to relax offset tolerance in fine ADC.

80 Spring 2014 S. Hoyos-ECEN Timing Diagram Sample V i Coarse ADC DAC + RA Fine ADC Four conversion steps can be pipelined. Usually DAC + RA settling takes the longest time. RA is often omitted (residue gain of one) to speed up conversion.

81 Spring 2014 S. Hoyos-ECEN References 1. A. G. F. Dingwall et al., JSSC, vol. 20, pp , issue 6, J. Doernberg et al., JSSC, vol. 24, pp , issue 2, B.-S. Song et al., JSSC, vol. 25, pp , issue 6, T. Matsuura et al., CICC, 1990, pp. 6.4/1-6.4/4. 5. B. Razavi et al., JSSC, vol. 27, pp , issue 12, C. Mangelsdorf et al., ISSCC, 1993, pp W. T. Colleran et al., JSSC, vol. 28, pp , issue 12, K. Kusumoto et al., JSSC, vol. 28, pp , issue 12, K. Sone et al., ISSCC, 1993, pp , R. Jewett et al., ISSCC, 1997, pp , B. P. Brandt et al., JSSC, vol. 34, pp , issue 12, H. Pan et al., JSSC, vol. 35, pp , issue 12, R. C. Taft et al., JSSC, vol. 36, pp. 331, issue 3, H. van der Ploeg et al., JSSC, vol. 36, pp , issue 12, J. Mulder et al., JSSC, vol. 39, pp , issue 12, 2004.

82 Pipeline ADC Spring 2014 S. Hoyos-ECEN

83 Pipeline ADC Architecture n 1 bits n 2 bits n 3 bits n k bits V in Stage V 1 Stage V 2 Stage V 3 V k Stage k V 1 S/H 2 n 2 V 2 A/D n 2 bits D/A Residue amp A multi-stage subranging ADC with inter-stage gain An unrolled algorithmic ADC Spring 2014 S. Hoyos-ECEN

84 Spring 2014 S. Hoyos-ECEN Pipeline Timing Diagram Φ 1 S1 samples S1 samples S2 DAC+RA S3 samples Φ 2 S1 DAC+RA S2 samples S1 DAC+RA S2 samples S3 DAC+RA S1 CMP S2 CMP S1 CMP S3 CMP Two-phase nonoverlapping clock is typically used, with the coarse ADC s operating within the nonoverlapping times. All pipeline stages operate simultaneously, increasing throughput (at the cost of latency).

85 Spring 2014 S. Hoyos-ECEN b/s Residue Amplifier Φ 2 V i Φ 1 C 1 -V R /4 Φ 1 C 2 A V o V R /4 Φ 1e -V R 0 V R Decoder Φ 2 Inter-stage digital redundancy relaxes the tolerance on CMP offset. 2X gain + 3-level DAC + subtraction all integrated.

86 Spring 2014 S. Hoyos-ECEN

87 Spring 2014 S. Hoyos-ECEN

88 Spring 2014 S. Hoyos-ECEN

89 Spring 2014 S. Hoyos-ECEN

90 Spring 2014 S. Hoyos-ECEN

91 Spring 2014 S. Hoyos-ECEN

92 Spring 2014 S. Hoyos-ECEN

93 Spring 2014 S. Hoyos-ECEN b/s Residue Amplifier Φ 2 V i Φ 1 C 1 Φ 1 C 2 V R 1 V R 6... Φ 1 C 3 6 CMP s Φ 1 C 4 A V o -V R Φ 2 Φ 1e 0 V R Decoder Φ 2 Φ 2

94 Spring 2014 S. Hoyos-ECEN b/s RA Transfer Characteristic V R V o b=0 b=1 b=2 b=3 b=4 b=5 b=6 V R /2 0 V i -V R /2 -V R -5V R /8-3V R /8 -V R /8 V R /8 3V R /8 5V R /8 V R 6 comparators + 7-level DAC are required. Max tolerance on comparator offset is ±V R /8.

95 Spring 2014 S. Hoyos-ECEN b/s RA Transfer Characteristic HW: - Plot the transfer functions of the 2.5-b stage with redundancy and without redundancy. Also plot the plain 2-b transfer function. - Use a tone test input signal and introduce a V R /8 Offset in the comparators. Plot Vo and the SNR in each case.

96 Spring 2014 S. Hoyos-ECEN RA Gain Error and Nonlinearity V R V R /2 b=0 b=1 b=2 V o D o 0 V i -V R /2 -V R -V R /4 V R /4 V R 0 -V R V i V R Raw accuracy is usually limited to bits w/o error correction. Similar correction techniques applied to algorithmic ADC can be used.

97 Spring 2014 S. Hoyos-ECEN Front-End Clock Skew bits/stage err.-corr. ±V FS ±V FS ±V FS range # of cmps Digital redundancy allows tolerance on sampling clock skew. Dedicated front-end SHA can be used to eliminate the problem, but introduces power and area overhead.

98 Spring 2014 S. Hoyos-ECEN

99 Spring 2014 S. Hoyos-ECEN Pipeline ADC Pros Architecture complexity is proportional to the resolution N = Σn j. Small C in, area, and power consumption Throughput is greatly improved with pipelining. Comparator offset tolerance is greatly relaxed with inter-stage gain and digital redundancy. Inter-stage gain enables the stage scaling to further save power. Cons Typically 3 conversion operations involved (slower than flash) Sample Coarse comparison DAC and residue generation High-gain op-amps are required to generate accurate residue signals, which limits the conversion speed. Long latency may be problematic for certain applications.

100 Stage Scaling of Pipeline ADC Stage size, power, area... stage 1 stage 2 stage 3 stage k-1 stage k S 1 Input-referred kt/c noise... Same C for all the stages. Assume 1.5 b/s architecure, the total noise is : N Total KT... C 4C 16C All stages are identically sized same capacitors, op-amps, comparators. Later stages are obviously oversized due to inter-stage gains. Spring 2014 S. Hoyos-ECEN

101 Spring 2014 S. Hoyos-ECEN Stage Scaling of Pipeline ADC Stage size, power, area... stage 1 stage 2 stage 3 stage k-1 stage k S n 2 2 j Input-referred kt/c noise... C is scaled by the squared of the gain for all the stages. Assume 1.5 b/s architecure, the total noise is : N Total KT... k KT / C C C C Stages are sized such that the input-referred noises are the same. Later stages are overly sized optimum scaling factor S 2 n j.

102 Spring 2014 S. Hoyos-ECEN Stage Scaling of Pipeline ADC If C is scaled by the gain for all the stages and assuming 1.5 b/s architecure, the total noise is : N Total Optimum scaling will be somewhere from scaling by the gain squared and scaling by just the gain KT... C C C Need to take into account other sources of noise in the overall expression. Example: for 6 stages of 2.5b/s, if we assume scaling by interstage gain of 16 to get equal noise contribution from each stage. Total noise will be: NTotal KT... 6n f KT / C C C C Vpp SNR 6KT C C in in 2.5pF 2 / V pp 2V

103 Spring 2014 S. Hoyos-ECEN OTA Design Single path At 500MHz, settling time 1ns For 13b, output should settle to 0.01% accuracy, nearly 9*ζ 2.5b stage feedback factor is ¼ GBW 5.73GHz

104 Spring 2014 S. Hoyos-ECEN OTA Design Dual path Time interleaving At 250MHz, settling time 2ns For 13b, output should settle to 0.01% accuracy, nearly 9*ζ 1.5b stage feedback factor is 1/2 GBW 1.43GHz

105 Spring 2014 S. Hoyos-ECEN Possible Topologies Reverse Nested Miller Compensated for high gain Single stage will have the best settling behavior With calibration, DC gain can be reduced to increase GBW Folded Cascode

106 Spring 2014 S. Hoyos-ECEN References D. W. Cline and P. R. Gray, "A power optimized 13-b 5-Msamples/s pipelined analog-to-digital converter in 1.2-μm CMOS," IEEE Journal of Solid-State Circuits, vol. 31, no. 3, pp , Mar kt/c Constrained Optimization of Power in Pipeline ADCs - Yu Lin, Vipul Katyal, Randall Geiger Dept. Electrical and Computer Engineering, Iowa State University Ames, IA, 50010, USA Mark Schlarmann Freescale Semiconductor, Inc. Kwok, P.T. F. and Luong, Howard C, Power Optimization for Pipeline Analog-to-Digital Converters, IEEE transactions on circuits and systems II: Analog and digital signal processing, Vol. 46, No. 5, May 1999, pp Background Digital Error Correction Technique For Pipelined Analog-digital Converters Sameer R. Sonkusale and Jan Van der Spiegel Digital Background Calibration Technique for Pipeline ADCs with Multi-bit Stages Antonio J. Ginés, Eduardo J. Peralías and Adoración Rueda

107 Spring 2014 S. Hoyos-ECEN Pipeline Calibration Methods Foreground Calibration Background Calibration Interruption of ADC signal Cannot correct for environmental changes and variations with time E.g. Radix based Works without interruption of normal operation E.g. - LMS based

108 Spring 2014 S. Hoyos-ECEN

109 Spring 2014 S. Hoyos-ECEN

110 Spring 2014 S. Hoyos-ECEN

111 Spring 2014 S. Hoyos-ECEN LMS based calibration n Ref. ADC Analog Input ADC x(n) Adaptive Dig. Filter y(n) n d(n) e(n) Channel Adaptive Equalizer

112 Spring 2014 S. Hoyos-ECEN Single Stage Calibration Calibration of a single stage at a time Different variations of LMS to reduce computational complexity

113 Spring 2014 S. Hoyos-ECEN Simultaneous Multistage Calibration

114 Spring 2014 S. Hoyos-ECEN Matlab Simulations Amplitude DFT plot before calibration frequency SNR 45.74dB Amplitude DFT plot after calibration Frequency SNR 77.26dB Without offset and finite gain

115 Spring 2014 S. Hoyos-ECEN Matlab Simulations 0.01 Error between filter output and expected output Weights Error Weight value Iteration Iteration Final Weights Non-ideal Weights

116 Spring 2014 S. Hoyos-ECEN Matlab Simulations 100 DFT plot before calibration 100 DFT plot after calibration Amplitude Amplitude frequency SNR db Frequency x 10 8 SNR db With offset and finite gain errors

117 Spring 2014 S. Hoyos-ECEN Matlab Simulations 0.08 Error between filter output and expected output Error Iteration

118 Spring 2014 S. Hoyos-ECEN Matlab Simulations 0.35 Alpha 1.4 Beta Value Value Iteration x Iteration x 10 4 Weights Alpha and Beta

119 Spring 2014 S. Hoyos-ECEN Code-Domain Adaptive Equalization n Ref. ADC Analog Input ADC x(n) Adaptive Dig. Filter y(n) n d(n) e(n) Channel Adaptive Equalizer Speed and Accuracy decoupled Simple analog circuits can be used for high speed Precision shifted from analog domain to digital domain

120 Spring 2014 S. Hoyos-ECEN Multi-Stage ADC Gain Error 1-bit/stage Ideal ADC ADC with gain error D o D o D1 D2 D3 D D1 D2 D3 D a a a a a a Accumulated Gain Mismatch

121 Spring 2014 S. Hoyos-ECEN ADC Calibration: Filtering Approach Ref. Path Analog Input ADC x(n) Digital Correction y(n) d(n) e(n)

122 Spring 2014 S. Hoyos-ECEN ADC Calibration: Filtering Approach Ref. Path Wiener Filter Analog Input ADC x(n) Digital Correction y(n) d(n) e(n) Unknown System System Inversion System inversion is a well known filtering problem Also known as Equalization in digital communication

123 Spring 2014 S. Hoyos-ECEN Code-Domain Adaptive Equalization n Ref. ADC Analog Input ADC x(n) Adaptive Dig. Filter y(n) n d(n) e(n) Channel Adaptive Equalizer Speed and Accuracy decoupled Simple analog circuits can be used for high speed Precision shifted from analog domain to digital domain

124 LMS Digital Filter Architecture Pipelined ADC S 1 S 2 S 3 S 4 S 5 S 6 S D i d D o D out n Reference ADC + error Nonlinear LMS Filter Linear LMS Filter Digital Error Correction 1.5b/s, 2.5/s Calibrate from LSB to MSB stage Last two stages are not calibrated Spring 2014 S. Hoyos-ECEN

125 Spring 2014 S. Hoyos-ECEN

126 Spring 2014 S. Hoyos-ECEN

127 Spring 2014 S. Hoyos-ECEN

128 Spring 2014 S. Hoyos-ECEN

129 Spring 2014 S. Hoyos-ECEN

130 Spring 2014 S. Hoyos-ECEN

131 Spring 2014 S. Hoyos-ECEN

132 Spring 2014 S. Hoyos-ECEN

133 Spring 2014 S. Hoyos-ECEN

134 Spring 2014 S. Hoyos-ECEN

135 Spring 2014 S. Hoyos-ECEN

136 Spring 2014 S. Hoyos-ECEN

137 Spring 2014 S. Hoyos-ECEN

138 Spring 2014 S. Hoyos-ECEN

139 Spring 2014 S. Hoyos-ECEN

140 Spring 2014 S. Hoyos-ECEN

141 Spring 2014 S. Hoyos-ECEN

142 Spring 2014 S. Hoyos-ECEN

143 Spring 2014 S. Hoyos-ECEN

144 Spring 2014 S. Hoyos-ECEN

145 Spring 2014 S. Hoyos-ECEN

146 Spring 2014 S. Hoyos-ECEN

147 Spring 2014 S. Hoyos-ECEN References 1. S. H. Lewis et al., JSSC, vol. 27, pp , issue 3, S. Sutarja et al., JSSC, vol. 23, pp , issue 6, B.-S. Song et al., JSSC, vol. 23, pp , issue 6, Y.-M. Lin et al., JSSC, vol. 26, pp , issue 4, A. N. Karanicolas et al., JSSC, vol. 28, pp , issue 12, K. Sone et al., JSSC, vol. 28, pp , issue 12, J. Wu et al., ISCAS, 1994, pp vol T.-H. Shu et al., JSSC, vol. 30, pp , issue 4, T. B. Cho et al., JSSC, vol. 30, pp , issue 3, P. C. Yu et al., JSSC, vol. 31, pp , issue 12, D. W. Cline et al., JSSC, vol. 31, pp , issue 3, L. A. Singer et al., VLSI, 1996, pp S.-U. Kwak et al., JSSC, vol. 32, pp , issue 12, K. Y. Kim et al., JSSC, vol. 32, pp , issue 3, J. M. Ingino et al., JSSC, vol. 33, pp , issue 12, 1998.

148 Spring 2014 S. Hoyos-ECEN References 16.I. E. Opris et al., JSSC, vol. 33, pp , issue 12, I. Mehr et al., JSSC, vol. 35, pp , issue 3, D. Miyazaki et al., ISSCC, 2002, pp , B.-M. Min et al., JSSC, vol. 38, pp , issue 12, B. Murmann et al., JSSC, vol. 38, pp , issue 12, X. Wang et al., CICC, 2003, pp J. Li et al., CICC, 2003, pp Y. Chiu et al., JSSC, vol. 39, pp , issue 12, E. Siragusa et al., JSSC, vol. 39, pp , issue 12, C. R. Grace et al., ISSCC, 2004, pp , 539.

Summary Last Lecture

Summary Last Lecture EE247 Lecture 23 Converters Techniques to reduce flash complexity Interpolating (continued) Folding Multi-Step s Two-Step flash Pipelined s EECS 247 Lecture 23: Data Converters 26 H.K. Page Summary Last

More information

Summary Last Lecture

Summary Last Lecture EE247 Lecture 23 Converters Techniques to reduce flash complexity Interpolating (continued) Folding Multi-Step s Two-Step flash Pipelined s EECS 247 Lecture 23: Data Converters 26 H.K. Page 1 Summary Last

More information

Tuesday, March 1st, 9:15 11:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo.

Tuesday, March 1st, 9:15 11:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo. Nyquist Analog to Digital it Converters Tuesday, March 1st, 9:15 11:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo 3.1 Introduction 3.1.1 DAC applications

More information

CMOS ADC & DAC Principles

CMOS ADC & DAC Principles CMOS ADC & DAC Principles Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 201 Table of contents Definitions Digital-to-analog converters Resistive Capacitive

More information

Design of Pipeline Analog to Digital Converter

Design of Pipeline Analog to Digital Converter Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analog-to-digital converter (ADC) architecture is the most popular topology

More information

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation Y. Zu, C.- H. Chan, S.- W. Sin, S.- P. U, R.P. Martins, F. Maloberti: "A 35 fj 10b 160 MS/s Pipelined-SAR ADC with Decoupled Flip-Around MDAC and Self- Embedded Offset Cancellation"; IEEE Asian Solid-

More information

EE247 Lecture 23. Advanced calibration techniques. Compensating inter-stage amplifier non-linearity Calibration via parallel & slow ADC

EE247 Lecture 23. Advanced calibration techniques. Compensating inter-stage amplifier non-linearity Calibration via parallel & slow ADC EE247 Lecture 23 Pipelined ADCs Combining the bits Stage implementation Circuits Noise budgeting Advanced calibration techniques Compensating inter-stage amplifier non-linearity Calibration via parallel

More information

EE247 Lecture 23. EECS 247 Lecture 23 Pipelined ADCs 2008 H.K. Page 1. Pipeline ADC Block Diagram DAC ADC. V res2. Stage 2 B 2.

EE247 Lecture 23. EECS 247 Lecture 23 Pipelined ADCs 2008 H.K. Page 1. Pipeline ADC Block Diagram DAC ADC. V res2. Stage 2 B 2. EE247 Lecture 23 Pipelined ADCs (continued) Effect gain stage, sub-dac non-idealities on overall ADC performance Digital calibration (continued) Correction for inter-stage gain nonlinearity Implementation

More information

CONTINUOUS DIGITAL CALIBRATION OF PIPELINED A/D CONVERTERS

CONTINUOUS DIGITAL CALIBRATION OF PIPELINED A/D CONVERTERS CONTINUOUS DIGITAL CALIBRATION OF PIPELINED A/D CONVERTERS By Alma Delić-Ibukić B.S. University of Maine, 2002 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of

More information

EECS 247 Lecture 18: Data Converters- Track & Hold- ADC Design 2009 Page 1. EE247 Lecture 18

EECS 247 Lecture 18: Data Converters- Track & Hold- ADC Design 2009 Page 1. EE247 Lecture 18 EE247 Lecture 8 ADC Converters Sampling (continued) Bottom-plate switching Track & hold T/H circuits T/H combined with summing/difference function T/H circuit incorporating gain & offset cancellation T/H

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 25.4 A 1.8V 14b 10MS/s Pipelined ADC in 0.18µm CMOS with 99dB SFDR Yun Chiu, Paul R. Gray, Borivoje Nikolic University of California, Berkeley,

More information

Analog-to-Digital i Converters

Analog-to-Digital i Converters CSE 577 Spring 2011 Analog-to-Digital i Converters Jaehyun Lim, Kyusun Choi Department t of Computer Science and Engineering i The Pennsylvania State University ADC Glossary DNL (differential nonlinearity)

More information

CMOS High Speed A/D Converter Architectures

CMOS High Speed A/D Converter Architectures CHAPTER 3 CMOS High Speed A/D Converter Architectures 3.1 Introduction In the previous chapter, basic key functions are examined with special emphasis on the power dissipation associated with its implementation.

More information

Another way to implement a folding ADC

Another way to implement a folding ADC Another way to implement a folding ADC J. Van Valburg and R. van de Plassche, An 8-b 650 MHz Folding ADC, IEEE JSSC, vol 27, #12, pp. 1662-6, Dec 1992 Coupled Differential Pair J. Van Valburg and R. van

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion Florian Erdinger Lehrstuhl für Schaltungstechnik und Simulation Technische Informatik der Uni Heidelberg VLSI Design - Mixed Mode Simulation F. Erdinger, ZITI, Uni Heidelberg

More information

2. ADC Architectures and CMOS Circuits

2. ADC Architectures and CMOS Circuits /58 2. Architectures and CMOS Circuits Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es

More information

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K. EE247 Lecture 22 Pipelined ADCs Combining the bits Stage implementation Circuits Noise budgeting Figures of merit (FOM) and trends for ADCs How to use/not use FOM Oversampled ADCs EECS 247 Lecture 22:

More information

Administrative. No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed.

Administrative. No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed. Administrative No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed. EECS 247 Lecture 2 Nyquist Rate ADC: Architecture & Design 27 H.K. Page EE247 Lecture 2 ADC Converters Sampling (continued)

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

Mixed-Signal-Electronics

Mixed-Signal-Electronics 1 Mixed-Signal-Electronics PD Dr.-Ing. Stephan Henzler 2 Chapter 6 Nyquist Rate Analog-to-Digital Converters 3 Analog-to-Digital Converter Families Architecture Variant Speed Precision Counting Operation

More information

SUCCESSIVE approximation register (SAR) analog-todigital

SUCCESSIVE approximation register (SAR) analog-todigital 426 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 62, NO. 5, MAY 2015 A Novel Hybrid Radix-/Radix-2 SAR ADC With Fast Convergence and Low Hardware Complexity Manzur Rahman, Arindam

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Final Exam EECS 247 H. Khorramabadi Tues., Dec. 14, 2010 FALL 2010 Name: SID: Total number of

More information

Mixed-Signal-Electronics

Mixed-Signal-Electronics 1 Mixed-Signal-Electronics PD Dr.-Ing. Stephan Henzler 2 Chapter 6 Nyquist Rate Analog-to-Digital Converters 3 Pipelined ADC 2 4 High-Speed ADC: Pipeline Processing Stephan Henzler Advanced Integrated

More information

EE 435. Lecture 32. DAC Design. Parasitic Capacitances. The String DAC

EE 435. Lecture 32. DAC Design. Parasitic Capacitances. The String DAC EE 435 Lecture 32 DAC Design The String DAC Parasitic Capacitances . eview from last lecture. DFT Simulation from Matlab . eview from last lecture. Summary of time and amplitude quantization assessment

More information

IMPLEMENTING THE 10-BIT, 50MS/SEC PIPELINED ADC

IMPLEMENTING THE 10-BIT, 50MS/SEC PIPELINED ADC 98 CHAPTER 5 IMPLEMENTING THE 0-BIT, 50MS/SEC PIPELINED ADC 99 5.0 INTRODUCTION This chapter is devoted to describe the implementation of a 0-bit, 50MS/sec pipelined ADC with different stage resolutions

More information

High-speed ADC techniques - overview and scaling issues - Vladimir Stojanovic

High-speed ADC techniques - overview and scaling issues - Vladimir Stojanovic High-speed ADC techniques - overview and scaling issues - Vladimir Stojanovic Outline High-Speed ADC applications Basic ADC performance metrics Architectures overview ADCs in 90s Limiting factors Conclusion

More information

A Successive Approximation ADC based on a new Segmented DAC

A Successive Approximation ADC based on a new Segmented DAC A Successive Approximation ADC based on a new Segmented DAC segmented current-mode DAC successive approximation ADC bi-direction segmented current-mode DAC DAC INL 0.47 LSB DNL 0.154 LSB DAC 3V 8 2MS/s

More information

Summary of Last Lecture

Summary of Last Lecture EE247 Lecture 2 ADC Converters (continued) Successive approximation ADCs (continued) Flash ADC Flash ADC sources of error Sparkle code Meta-stability Comparator design EECS 247 Lecture 2: Data Converters

More information

Pipelined Analog-to-Digital Converters

Pipelined Analog-to-Digital Converters Department of Electrical and Computer Engineering Pipelined Analog-to-Digital Converters Vishal Saxena Vishal Saxena -1- Multi-Step A/D Conversion Basics Vishal Saxena -2-2 Motivation for Multi-Step Converters

More information

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014 Asynchronous SAR ADC: Past, Present and Beyond Mike Shuo-Wei Chen University of Southern California MWSCAS 2014 1 Roles of ADCs Responsibility of ADC is increasing more BW, more dynamic range Potentially

More information

The need for Data Converters

The need for Data Converters The need for Data Converters ANALOG SIGNAL (Speech, Images, Sensors, Radar, etc.) PRE-PROCESSING (Filtering and analog to digital conversion) DIGITAL PROCESSOR (Microprocessor) POST-PROCESSING (Digital

More information

EE247 Lecture 20. Comparator architecture examples Flash ADC sources of error Sparkle code Meta-stability

EE247 Lecture 20. Comparator architecture examples Flash ADC sources of error Sparkle code Meta-stability EE247 Lecture 2 ADC Converters ADC architectures (continued) Comparator architectures Latched comparators Latched comparators incorporating preamplifier Sample-data comparators Offset cancellation Comparator

More information

Data Converters. Springer FRANCO MALOBERTI. Pavia University, Italy

Data Converters. Springer FRANCO MALOBERTI. Pavia University, Italy Data Converters by FRANCO MALOBERTI Pavia University, Italy Springer Contents Dedicat ion Preface 1. BACKGROUND ELEMENTS 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 The Ideal Data Converter Sampling 1.2.1 Undersampling

More information

Index terms: Analog to Digital conversion, capacitor sharing, high speed OPAMP-sharing pipelined analog to digital convertor, Low power.

Index terms: Analog to Digital conversion, capacitor sharing, high speed OPAMP-sharing pipelined analog to digital convertor, Low power. Pipeline ADC using Switched Capacitor Sharing Technique with 2.5 V, 10-bit Ankit Jain Dept. of Electronics and Communication, Indore Institute of Science & Technology, Indore, India Abstract: This paper

More information

Second-Order Sigma-Delta Modulator in Standard CMOS Technology

Second-Order Sigma-Delta Modulator in Standard CMOS Technology SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 1, No. 3, November 2004, 37-44 Second-Order Sigma-Delta Modulator in Standard CMOS Technology Dragiša Milovanović 1, Milan Savić 1, Miljan Nikolić 1 Abstract:

More information

Design of Analog Integrated Systems (ECE 615) Outline

Design of Analog Integrated Systems (ECE 615) Outline Design of Analog Integrated Systems (ECE 615) Lecture 9 SAR and Cyclic (Algorithmic) Analog-to-Digital Converters Ayman H. Ismail Integrated Circuits Laboratory Ain Shams University Cairo, Egypt ayman.hassan@eng.asu.edu.eg

More information

Chapter 3 Novel Digital-to-Analog Converter with Gamma Correction for On-Panel Data Driver

Chapter 3 Novel Digital-to-Analog Converter with Gamma Correction for On-Panel Data Driver Chapter 3 Novel Digital-to-Analog Converter with Gamma Correction for On-Panel Data Driver 3.1 INTRODUCTION As last chapter description, we know that there is a nonlinearity relationship between luminance

More information

A Digitally Enhanced 1.8-V 15-b 40- Msample/s CMOS Pipelined ADC

A Digitally Enhanced 1.8-V 15-b 40- Msample/s CMOS Pipelined ADC A Digitally Enhanced.8-V 5-b 4- Msample/s CMOS d ADC Eric Siragusa and Ian Galton University of California San Diego Now with Analog Devices San Diego California Outline Conventional PADC Example Digitally

More information

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Body voltage controlled

More information

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth LETTER IEICE Electronics Express, Vol.11, No.2, 1 9 A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth Mingshuo Wang a), Fan Ye, Wei Li, and Junyan Ren b) State Key Laboratory

More information

A Low-Power 6-b Integrating-Pipeline Hybrid Analog-to-Digital Converter

A Low-Power 6-b Integrating-Pipeline Hybrid Analog-to-Digital Converter A Low-Power 6-b Integrating-Pipeline Hybrid Analog-to-Digital Converter Quentin Diduck, Martin Margala * Electrical and Computer Engineering Department 526 Computer Studies Bldg., PO Box 270231 University

More information

Lecture 9, ANIK. Data converters 1

Lecture 9, ANIK. Data converters 1 Lecture 9, ANIK Data converters 1 What did we do last time? Noise and distortion Understanding the simplest circuit noise Understanding some of the sources of distortion 502 of 530 What will we do today?

More information

10. Chapter: A/D and D/A converter principles

10. Chapter: A/D and D/A converter principles Punčochář, Mohylová: TELO, Chapter 10: A/D and D/A converter principles 1 10. Chapter: A/D and D/A converter principles Time of study: 6 hours Goals: the student should be able to define basic principles

More information

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12.

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12. Analog Signals Signals that vary continuously throughout a defined range. Representative of many physical quantities, such as temperature and velocity. Usually a voltage or current level. Digital Signals

More information

EE247 Lecture 22. Techniques to reduce flash ADC complexity (continued) Multi-Step ADCs

EE247 Lecture 22. Techniques to reduce flash ADC complexity (continued) Multi-Step ADCs EE247 Lecture 22 Converters Techniques to reduce flash complexity (continued) MultiStep s TwoStep flash Pipelined s Effect of sub, subac, gain stage nonidealities on overall performance Error correction

More information

High-Speed Analog to Digital Converters. ELCT 1003:High Speed ADCs

High-Speed Analog to Digital Converters. ELCT 1003:High Speed ADCs High-Speed Analog to Digital Converters Ann Kotkat Barbara Georgy Mahmoud Tantawi Ayman Sakr Heidi El-Feky Nourane Gamal 1 Outline Introduction. Process of ADC. ADC Specifications. Flash ADC. Pipelined

More information

EE247 Lecture 24. EE247 Lecture 24

EE247 Lecture 24. EE247 Lecture 24 EE247 Lecture 24 Administrative EE247 Final exam: Date: Wed. Dec. 15 th Time: -12:30pm-3:30pm- Location: 289 Cory Closed book/course notes No calculators/cell phones/pdas/computers Bring one 8x11 paper

More information

Optimizing the Stage Resolution of a 10-Bit, 50 Ms/Sec Pipelined A/D Converter & Its Impact on Speed, Power, Area, and Linearity

Optimizing the Stage Resolution of a 10-Bit, 50 Ms/Sec Pipelined A/D Converter & Its Impact on Speed, Power, Area, and Linearity Circuits and Systems, 202, 3, 66-75 http://dx.doi.org/0.4236/cs.202.32022 Published Online April 202 (http://www.scirp.org/journal/cs) Optimizing the Stage Resolution of a 0-Bit, 50 Ms/Sec Pipelined A/D

More information

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing Fundamentals of Data Converters DAVID KRESS Director of Technical Marketing 9/14/2016 Analog to Electronic Signal Processing Sensor (INPUT) Amp Converter Digital Processor Actuator (OUTPUT) Amp Converter

More information

Design of an Assembly Line Structure ADC

Design of an Assembly Line Structure ADC Design of an Assembly Line Structure ADC Chen Hu 1, Feng Xie 1,Ming Yin 1 1 Department of Electronic Engineering, Naval University of Engineering, Wuhan, China Abstract This paper presents a circuit design

More information

RECENTLY, low-voltage and low-power circuit design

RECENTLY, low-voltage and low-power circuit design IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 4, APRIL 2008 319 A Programmable 0.8-V 10-bit 60-MS/s 19.2-mW 0.13-m CMOS ADC Operating Down to 0.5 V Hee-Cheol Choi, Young-Ju

More information

A 14b 40Msample/s Pipelined ADC with DFCA

A 14b 40Msample/s Pipelined ADC with DFCA A 14b 40Msample/s Pipelined ADC with DFCA Paul Yu, Shereef Shehata, Ashutosh Joharapurkar, Pankaj Chugh, Alex Bugeja, Xiaohong Du, Sung-Ung Kwak, Yiannis Papantonopoulos, Turker Kuyel Texas Instruments,

More information

Proposing. An Interpolated Pipeline ADC

Proposing. An Interpolated Pipeline ADC Proposing An Interpolated Pipeline ADC Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Lab. Background 38GHz long range mm-wave system Role of long range mm-wave Current Optical

More information

DESIGN OF FOLDING CIRCUIT AND SAMPLE AND HOLD FOR 6 BIT ADC

DESIGN OF FOLDING CIRCUIT AND SAMPLE AND HOLD FOR 6 BIT ADC DESIGN OF FOLDING CIRCUIT AND SAMPLE AND HOLD FOR 6 BIT ADC Prajeesh R 1, Manukrishna V R 2, Bellamkonda Saidilu 3 1 Assistant Professor, ECE Department, SVNCE, Mavelikara, Kerala, (India) 2,3 PhD Research

More information

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1 Outline Background Chip Architecture

More information

Summary Last Lecture

Summary Last Lecture EE47 Lecture 5 Pipelined ADCs (continued) How many bits per stage? Algorithmic ADCs utilizing pipeline structure Advanced background calibration techniques Oversampled ADCs Why oversampling? Pulse-count

More information

Design Approaches for Low-Power Reconfigurable Analog-to-Digital Converters

Design Approaches for Low-Power Reconfigurable Analog-to-Digital Converters Design Approaches for Low-Power Reconfigurable Analog-to-Digital Converters A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The

More information

Chapter 2 ADC Architecture

Chapter 2 ADC Architecture Chapter 2 ADC Architecture 2.1 Introduction While lots of Nyquist-rate ADCs are proposed to resolve resolutions at different speeds throughout the years, there are three types of architectures most widely

More information

4 Bits 250MHz Sampling Rate CMOS Pipelined Analog-to-Digital Converter

4 Bits 250MHz Sampling Rate CMOS Pipelined Analog-to-Digital Converter 4 Bits 250MHz Sampling Rate CMOS Pipelined Analog-to-Digital Converter Jinrong Wang B.Sc. Ningbo University Supervisor: dr.ir. Wouter A. Serdijn Submitted to The Faculty of Electrical Engineering, Mathematics

More information

A new structure of substage in pipelined analog-to-digital converters

A new structure of substage in pipelined analog-to-digital converters February 2009, 16(1): 86 90 www.sciencedirect.com/science/journal/10058885 The Journal of China Universities of Posts and Telecommunications www.buptjournal.cn/xben new structure of substage in pipelined

More information

CAPACITOR mismatch is a major source of missing codes

CAPACITOR mismatch is a major source of missing codes 1626 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 7, JULY 2008 An 11-Bit 45 MS/s Pipelined ADC With Rapid Calibration of DAC Errors in a Multibit Pipeline Stage Imran Ahmed, Student Member, IEEE,

More information

Flash ADC (Part-I) Architecture & Challenges

Flash ADC (Part-I) Architecture & Challenges project synopsis In The Name of Almighty Lec. 4: Flash ADC (PartI) Architecture & Challenges Lecturer: Samaneh Babayan Integrated Circuit Lab. Department of Computer Science & Engineering ImamReza University

More information

Summary of Last Lecture

Summary of Last Lecture EE47 Lecture 7 DAC Converters (continued) Dynamic element matching DAC reconstruction filter ADC Converters Sampling Sampling switch considerations Thermal noise due to switch resistance Sampling switch

More information

Analogue to Digital Conversion

Analogue to Digital Conversion Analogue to Digital Conversion Turns electrical input (voltage/current) into numeric value Parameters and requirements Resolution the granularity of the digital values Integral NonLinearity proportionality

More information

CHAPTER. delta-sigma modulators 1.0

CHAPTER. delta-sigma modulators 1.0 CHAPTER 1 CHAPTER Conventional delta-sigma modulators 1.0 This Chapter presents the traditional first- and second-order DSM. The main sources for non-ideal operation are described together with some commonly

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.3

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.3 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.3 25.3 A 96dB SFDR 50MS/s Digitally Enhanced CMOS Pipeline A/D Converter K. Nair, R. Harjani University of Minnesota, Minneapolis, MN Analog-to-digital

More information

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS 10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu*, Andy Burstein**, Mehrdad Heshami*** Agilent Technologies, Palo Alto, CA *Agilent Technologies, Colorado Springs,

More information

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell Advanced Analog Circuits Lecture 3 Switched-Capacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 2-4pm) Reference Homework 2017-01-11 1 MOD1 & MOD2 ST 2, 3,

More information

A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System

A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System 1266 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 7, JULY 2003 A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System Kambiz Kaviani, Student Member,

More information

Analogue to Digital Conversion

Analogue to Digital Conversion Analogue to Digital Conversion Turns electrical input (voltage/current) into numeric value Parameters and requirements Resolution the granularity of the digital values Integral NonLinearity proportionality

More information

Outline. Analog/Digital Conversion

Outline. Analog/Digital Conversion Analog/Digital Conversion The real world is analog. Interfacing a microprocessor-based system to real-world devices often requires conversion between the microprocessor s digital representation of values

More information

Lecture #6: Analog-to-Digital Converter

Lecture #6: Analog-to-Digital Converter Lecture #6: Analog-to-Digital Converter All electrical signals in the real world are analog, and their waveforms are continuous in time. Since most signal processing is done digitally in discrete time,

More information

THE increasing demand for high-resolution analog-to-digital

THE increasing demand for high-resolution analog-to-digital IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 11, NOVEMBER 2004 2133 Radix-Based Digital Calibration Techniques for Multi-Stage Recycling Pipelined ADCs Dong-Young Chang, Member,

More information

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Jinseok Koh Wireless Analog Technology Center Texas Instruments Inc. Dallas, TX Outline Fundamentals for ADCs Over-sampling and Noise

More information

10-Bit 5MHz Pipeline A/D Converter. Kannan Sockalingam and Rick Thibodeau

10-Bit 5MHz Pipeline A/D Converter. Kannan Sockalingam and Rick Thibodeau 10-Bit 5MHz Pipeline A/D Converter Kannan Sockalingam and Rick Thibodeau July 30, 2002 Contents 1 Introduction 8 1.1 Project Overview........................... 8 1.2 Objective...............................

More information

A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error Correction Logic

A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error Correction Logic A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error Correction Logic Abstract P.Prasad Rao 1 and Prof.K.Lal Kishore 2, 1 Research Scholar, JNTU-Hyderabad prasadrao_hod@yahoo.co.in

More information

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1 MASH 2- MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN Yu hang, Ning Xie, Hui Wang and Yejun He College of Information Engineering, Shenzhen University, Shenzhen, Guangdong 58060, China kensouren@yahoo.com.cn

More information

A single-slope 80MS/s ADC using two-step time-to-digital conversion

A single-slope 80MS/s ADC using two-step time-to-digital conversion A single-slope 80MS/s ADC using two-step time-to-digital conversion The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Eliminate Pipeline Headaches with New 12-Bit 3Msps SAR ADC by Dave Thomas and William C. Rempfer

Eliminate Pipeline Headaches with New 12-Bit 3Msps SAR ADC by Dave Thomas and William C. Rempfer A new 12-bit 3Msps ADC brings new levels of performance and ease of use to high speed ADC applications. By raising the speed of the successive approximation (SAR) method to 3Msps, it eliminates the many

More information

EE247 Lecture 15. EE247 Lecture 15

EE247 Lecture 15. EE247 Lecture 15 EE47 Lecture 5 Administrative issues Midterm exam postponed to Tues. Oct. 8th o You can only bring one 8x paper with your own written notes (please do not photocopy) o No books, class or any other kind

More information

EE247 Midterm Exam Statistics

EE247 Midterm Exam Statistics EE247 Lecture 22 Pipelined ADCs (continued) Effect gain stage, sub-dac non-idealities on overall ADC performance Digital calibration (continued) Correction for inter-stage gain nonlinearity Implementation

More information

12b 100MSps Pipeline ADC with Open-Loop Residue Amplifier

12b 100MSps Pipeline ADC with Open-Loop Residue Amplifier 12b 100MSps Pipeline ADC with Open-Loop Residue Amplifier A Major Qualifying Project Report: Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the

More information

Analog to Digital Converters

Analog to Digital Converters Analog to Digital Converters ADC review ADC Types Pipelined Data Converter Design Basic concepts eview existing approaches Pipelined Design Strategies 1 Analog to Digital Converters Most widely used mixed-signal

More information

A SAR-Assisted Two-Stage Pipeline ADC Chun C. Lee, Member, IEEE, and Michael P. Flynn, Senior Member, IEEE

A SAR-Assisted Two-Stage Pipeline ADC Chun C. Lee, Member, IEEE, and Michael P. Flynn, Senior Member, IEEE IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 4, APRIL 2011 859 A SAR-Assisted Two-Stage Pipeline ADC Chun C. Lee, Member, IEEE, and Michael P. Flynn, Senior Member, IEEE Abstract Successive approximation

More information

A 12-bit 80-Msample/s Pipelined ADC with Bootstrapped Digital Calibration

A 12-bit 80-Msample/s Pipelined ADC with Bootstrapped Digital Calibration 1 A 12-bit 80-Msample/s Pipelined ADC with Bootstrapped Digital Calibration Carl R. Grace, Paul J. Hurst, and Stephen H. Lewis C. R. Grace was with UC Davis. He is now with ClariPhy Communications Inc.,

More information

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820 8-Bit, high-speed, µp-compatible A/D converter with DESCRIPTION By using a half-flash conversion technique, the 8-bit CMOS A/D offers a 1.5µs conversion time while dissipating a maximum 75mW of power.

More information

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010.

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010. Workshop ESSCIRC Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC 17. September 2010 Christof Dohmen Outline System Overview Analog-Front-End Chopper-Amplifier

More information

Summary Last Lecture

Summary Last Lecture Interleaved ADCs EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations

More information

A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration

A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration A b 5MS/s.mW SAR ADC with redundancy and digital background calibration The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

Modeling and Implementation of A 6-Bit, 50MHz Pipelined ADC in CMOS

Modeling and Implementation of A 6-Bit, 50MHz Pipelined ADC in CMOS Master s Thesis Modeling and Implementation of A 6-Bit, 50MHz Pipelined ADC in CMOS Qazi Omar Farooq Department of Electrical and Information Technology, Faculty of Engineering, LTH, Lund University, 2016.

More information

Data Converters. Lecture Fall2013 Page 1

Data Converters. Lecture Fall2013 Page 1 Data Converters Lecture Fall2013 Page 1 Lecture Fall2013 Page 2 Representing Real Numbers Limited # of Bits Many physically-based values are best represented with realnumbers as opposed to a discrete number

More information

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 26. EE247 Lecture 26 EE247 Lecture 26 Administrative EE247 Final exam: Date: Mon. Dec. 18 th Time: 12:30pm-3:30pm Location: 241 Cory Hall Extra office hours: Thurs. Dec. 14 th, 10:30am-12pm Closed book/course notes No calculators/cell

More information

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE 3.1 INTRODUCTION An ADC is a device which converts a continuous quantity into discrete digital signal. Among its types, pipelined

More information

An 11 Bit Sub- Ranging SAR ADC with Input Signal Range of Twice Supply Voltage

An 11 Bit Sub- Ranging SAR ADC with Input Signal Range of Twice Supply Voltage D. Aksin, M.A. Al- Shyoukh, F. Maloberti: "An 11 Bit Sub-Ranging SAR ADC with Input Signal Range of Twice Supply Voltage"; IEEE International Symposium on Circuits and Systems, ISCAS 2007, New Orleans,

More information

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies A. Pena Perez, V.R. Gonzalez- Diaz, and F. Maloberti, ΣΔ Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies, IEEE Proceeding of Latin American Symposium on Circuits and Systems, Feb.

More information

EE247 Lecture 26. This lecture is taped on Wed. Nov. 28 th due to conflict of regular class hours with a meeting

EE247 Lecture 26. This lecture is taped on Wed. Nov. 28 th due to conflict of regular class hours with a meeting EE47 Lecture 6 This lecture is taped on Wed. Nov. 8 th due to conflict of regular class hours with a meeting Any questions regarding this lecture could be discussed during regular office hours or in class

More information

Analysis of the system level design of a 1.5 bit/stage pipeline ADC 1 Amit Kumar Tripathi, 2 Rishi Singhal, 3 Anurag Verma

Analysis of the system level design of a 1.5 bit/stage pipeline ADC 1 Amit Kumar Tripathi, 2 Rishi Singhal, 3 Anurag Verma 014 Fourth International Conference on Advanced Computing & Communication Technologies Analysis of the system level design of a 1.5 bit/stage pipeline ADC 1 Amit Kumar Tripathi, Rishi Singhal, 3 Anurag

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 1, January 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Low Power High

More information

EE247 Lecture 17. EECS 247 Lecture 17: Data Converters 2006 H.K. Page 1. Summary of Last Lecture

EE247 Lecture 17. EECS 247 Lecture 17: Data Converters 2006 H.K. Page 1. Summary of Last Lecture EE47 Lecture 7 DAC Converters (continued) DAC dynamic non-idealities DAC design considerations Self calibration techniques Current copiers Dynamic element matching DAC reconstruction filter ADC Converters

More information

A Low Power, 8-Bit, 5MS/s Digital to Analog Converter for Successive Approximation ADC

A Low Power, 8-Bit, 5MS/s Digital to Analog Converter for Successive Approximation ADC IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 4 (Nov. - Dec. 2012), PP 42-46 A Low Power, 8-Bit, 5MS/s Digital to Analog Converter for Successive

More information