A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth

Size: px
Start display at page:

Download "A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth"

Transcription

1 LETTER IEICE Electronics Express, Vol.11, No.2, 1 9 A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth Mingshuo Wang a), Fan Ye, Wei Li, and Junyan Ren b) State Key Laboratory of ASIC and System, Fudan University, Shanghai , China a) @fudan.edu.cn b) jyren@fudan.edu.cn Abstract: A 1.0 GHz signal bandwidth 8-bit folding and interpolating analog-to-digital converter (ADC) is presented, whose Fom is only 42 fj/conv-step. In this design, averaging resistors and interpolating resistors are shared, which can be save pr-amplifiers and active interpolators. Grouped T/H blocks are adopted to cancel the voltage buffer between the T/H block and the pre-amplifiers array. A new fulldigital T/H switch is proposed to cancel the bootstrapped capacitor, which can save the area of chip grandly. A new linear and continues offset voltages of dynamic comparator calibration method is presented. This ADC implemented in 65 nm CMOS technology achieves SNDR of 48.5 db and SFDR of 58.7 db for MHz input frequency at the rate of 1.0-GS/s. And the SNDR and SFDR maintain above 48 db and 55 db, respectively, up to MHz. The power consumption is only 17 mw with a supply voltage of. Keywords: analog-to-digital converter, folding and interpolating, averaging resistors, interpolating resistors, offset voltages, dynamic comparator Classification: Integrated circuits References [1] H. Yu and M.-C. F. Chang: IEEE Trans. Circuits Syst. II 55 [7] (2008) 668. [2] K. Ohhata, K. Uchino, Y. Shimizu, K. Oyama and K. Yamashita: IEEE J. Solid-State Circuits 44 [11] (2009) [3] E. Alpman, H. Lakdawala and L. R. Carley: ISSCC Dig. Tech. Papers (2009) 76. [4] Y. H. Chung and J. T. Wu: IEEE Symposium on VLSI Circuits Digest of Technical Papers (2011) 128. [5] J. Hwang, D. Lee and M. Song: IEEE International Conference on IC Design and Technology (2009) 241. [6] M. Wang and J. Ren: Radio-Frequency Integration Technology RFIT (2011)

2 [7] M. Wang and J. Ren: IEEE 55th International Midwest Symposium on Circuits and Systems (2012) 274. [8] H. Pan and A. A. Abidi: IEEE Trans. Circuits Syst. II 50 [8] (2003) Introduction Recently, the demand for high-speed analog-to-digital converters (ADCs) has increased drastically in the fields of software-defined radio, UWB communication system and high-speed hard disk drive read channels. Traditionally, high-speed ADCs have mainly been implemented using flash architecture [1]. However, the drawback of this kind of architecture is the large power consumption. Lately, sub-ranging [2] and successive approximation architecture (SAR) [3] have been focused as candidates for GHz sampling low-power ADCs. Now, more and more papers about these two types of ADCs are presented. But the conversion speed of sub-ranging ADCs is limited because of the long settling time of the reference voltage. While time interleaved architecture is usually adopted in SAR ADCs to reach high-speed sampling rate, which limits the bandwidth of this kind of ADCs. Meanwhile, complex calibration circuits are needed to cancel the mismatches among different channels and guarantee the performance of this kind of ADCs. In this paper, folding and interpolating architecture is adopted. The folding architecture has potentially nearly the same conversion speed as flash, without the long settling time of the reference voltage and the mismatches among different channels, this kind of ADCs can achieve a high-speed sampling rate and the low power. In previous work [6, 7], inter-switches are inserted into analog signal pre-processing paths to short the analog signal pre-processing time and reach GHz sampling rate. Active interpolating amplifiers are adopted to offer extra signal gain and decrease the effect due to offset voltages of comparators. Though, these methods can solve the sampling rate and the resolution problems, but the high power consumption of this kind of architecture is ignored. In this design, an improved folding and interpolating architecture is proposed. Inter-stage switches are saved and averaging resistors are shared to cancel active interpolating amplifiers. 2 Proposed ADC architecture As shown in Fig. 1, the ADC architecture consists of a group of sub-bootstrapped switches, a reference ladder, pre-amplifiers stage with averaging and interpolating resistors network, two folding and interpolating stages, an extra interpolating resistors array, a comparators array stage and an encoding block. The reference ladder generates 18 level voltages. The 18 level voltages generated by the former stage divide the whole quantified range into 18 sections for pre-amplifiers, which are composed by 18 overall differential N-MOS inputs amplifiers with resistive load including dummies. 18 initial zero-crossings are interpolated by the averaging and interpolating resistors 2

3 Fig. 1. ADC System Block network behind of the preamplifiers and become 36 zero-crossings. 12 folder signals with 36 zero-crossings are generated by the first folding stage, and they are averaged and interpolated by the resistors network. 12 folder signals become 24 interpolation signals. They go through the second folding and interpolating stage and become 16 interpolation signals. These signals are interpolated by the last interpolating resistors network and become 32 interpolation signals. Both 32 interpolation signals and 4 folder signals generated by the first folding stage are offered to comparators array. 36 digital logic signals generated by comparators are divided into two groups. One group is used to encode low 5-bit, which are encoded from cycle thermometer codes through gray codes to binary codes. The other one is used to encode high 3-bit, which are encoded from cycle thermometer codes to binary codes directly. This encoding method guarantees the precision of lower bits and the low power of higher bits [6]. In this design, a high linearity voltage buffer is saved to reduce the power consumption. As we all known, if the high linearity voltage buffer are not used, a kick-back noise will feed back to C S. Where C S is the single sampling capacitor of the single T/H block, and the value of the kick-back noise depends on the rate of C S and C P. C P is a sum of parasitic capacitors on inputs of pre-amplifiers, which is variable with different working modes of inputs transistors. And the working region of inputs MOSFETS is defined by the amplitude of signals. So the kick-back noise will be changed in different inputs, which equals to adding a variable capacitor on C S and will worsen the dynamic performance of the T/H block. In order to cancel the bad effect, there sub-bootstrapped switches are adopted to divided the preamplifiers into three part, It means that C P is divided into three parts, but sampling capacitors of each sub-bootstrapped switch is not changed. The rate between C P (1/3) and C S is reduced greatly and to ensure the performance of the ADC system. A traditional bootstrapped switch usually uses the MOM capacitance or the MIM capacitance as bootstrapping capacitances, but it takes up large chip area and is not suitable for the array application. In this paper, a new bootstrapped switch is proposed with I-MOS capacitance ad 3

4 bootstrapping capacitances. In order to reduce the ADC system power consumption, the averaging and interpolating resistors array is proposed. It means that the resistors array is used to average the nonlinearity and to reach the signal interpolation. The traditional averaging resistor is divided into two parts to reach the interpolation. In this design, the first averaging and interpolating network lies on the back of preamplifiers, which can reduce the number of the preamplifiers from 36 to 18 and reduce the power consumption. The second stage lies on the back of the first folding stage. The third one lies on the back of the second folding stage. Meanwhile, a extra interpolating resistors is used to reach the 8X interpolation. This interpolating method is not like the traditional active interpolator [6] and is suitable for low power design, but this interpolating method has no gain for the signal like the active interpolator. Therefore, the demand of offset voltages from the dynamic comparator is strict. In this paper, a dynamic comparator with offset voltages calibration using a controlled I-MOS capacitance is presented. what is more, the true single-phase clocked register (TSPCR) is adopted to reach the low digital power design in the encoding block. 3 Circuits design 3.1 A bootstrapped switch using I-MOS as bootstrapped capacitances The on-resistance of a bootstrapped switch is independent of the input signal amplitude, which can guarantee the analog signal held in the sampling capacitor high linear. Most kinds of ADCs need to adopt it to maintain the performance of the whole ADC system. In this design, a full digital T/H switch is proposed to meet with a array application. As is shown in Fig. 2, a MOSFET capacitance in inversion mode (I-MOS capacitor) is used to replace the MOM capacitance as a bootstrapped capacitor. The curve of a MOSFET capacitor depended different modes is shown in Fig. 2 (b). The horizontal axis shows a voltage difference between the gate and the source/drain of an I-MOS capacitance, and the longitudinal axis shows values of an I-MOS capacitance. As is known to all, the voltage difference between two sides of a bootstrapped capacitance is about VDD either in the reset mode or the bootstrapping mode. So the region marked by dotted lines is real working region as a bootstrapped capacitor in this design. The voltage difference between two sides of the bootstrapped capacitance is about from 0.95 V to 1.1 V, which leads the nonlinearity of an I-MOS capacitance change from pf to pf. The bad effect led by ΔC can be ignored. Furthermore, the chip area saved by this improvement is much considerable. Fig. 3 (c) shows the rate between one I-MOS capacitor area and one MOM capacitor area with a same capacitor value 1 pf adopted in this design. The former is about twenty five percent of the later. Whats more, the Vsb(Vdb) of M7 and M8 are varying with the change of the input signal amplitude. It means that the on-resistance is different in different 4

5 IEICE Electronics Express, Vol.11, No.2, 1 9 Fig. 2. (a) A Sub-Bootstrapped Switch With I-MOS as Bootstrapped Capacitance (b) I-MOS Capacitance versus Vg(s/d) (c) Comparing the area of MOM and I-MOS Capacitance as the same value signal amplitudes, which has bad effect on the signals linearity and leads to the resolution of the ADC system decline. In this paper, M13 and M14 are added to cancel the bias effect in the phase of tracking. Cc just is a decoupling capacitor to isolate the noise from ground. Besides, M10, M11 and M12 are added to assist M8 in turning off. 3.2 Averaging and interpolating resistors network The averaging and interpolating resistors network back of the second folder is shown in Fig. 3, which has two resistor networks. The first one is the averaging and interpolating resistors network, and the second one is the extra interpolating resistors network. Averaging and interpolating resistors networks back of the preamplifiers and the first folding stage are same as the first one. In this design, the wide bandwidth is demanded. So how to ensure that the networks have no bad effect on the system bandwidth is very important. According to the spatial filtering theory proposed in [8], the load of the node A and the node B is given as the equation (1). Combining the equations with the RC setting up theory, the value of R1 is made certain. In this design, the value of the averaging and interpolating resistors is shown in Table I, where R1 R2 and R3 are shown in Fig. 3. In Fig. 4, the final stage AC response result shows that the signal path 3 db bandwidth can reach 2.5 GHz and meets with the requirement of the ADC system completely. c IEICE 2014 RA = R2 + R22 + 2R1 R2 RB = R3 + R2 + 2RA R3 (1) 3 5

6 Fig. 3. Folders with Averaging and Interpolating Resistors Network Table I. Values of Folding and Interpolating Resistors Circuit Stages Pre-amplifiers 1 st Stage Folders 2 nd Stage Folders R1 5 kω 4 kω 2.4 kω R2 7 kω 1.5 kω 1 kω R3 N/A N/A 600 Ω Fig. 4. AC Response Curve of the Analog Signal Path 3.3 Dynamic comparator with offset voltages calibration Comparator is a critical part of the conversion from analog to digital. As is known to all, offset voltages from the inputs or outputs of comparators are main elements to affect the performance of them. In this design, comparators array is used. So either static offset voltage or dynamic offset voltage cannot be ignored. Meanwhile, the averaging and interpolating resistors offer no extra signal gain like the active interpolator, so it requires stricter for offset voltages of dynamic comparator. In this paper, a dynamic comparator with offset voltages calibration using I-MOS capacitance is presented as shown in Fig. 5 (a). Before the ADC system working, two inputs of the comparator are connected together. Because of the offset voltages, the outputs of the comparator go through the digital logic as shown in Fig. 5 (b) and generate a voltage to control the I- MOS capacitance connected to the output nodes. Until the outputs of the dynamic comparator are changed, the calibration is finished. After the offset voltages calibration, one sigma value of offset voltages is reduce from 30 mv 6

7 Fig. 5. (a) A Dynamic Comparator with Offset Voltages Calibration (b) Digital Control Logic of Offset Voltages Calibration (c) Monte Carol Simulation Results Before and After Calibration to 0.66 mv as shown in Fig. 5 (c). Meanwhile, dummy MOSFETs M8 and M10 are added to cancel the clock feed through and adopted half size of M7, M9. 4 Post simulation results A single-channel 1.0-GS/s 8-bit folding and interpolating ADC with 1.0-GHz bandwidth is designed in 65-nm CMOS technology. Fig. 6 (a) is the FFT frequency spectra with nyquist frequency input at the sampling rate 1.0 GS/s without considering noise and the mismatches of the electric component, and Fig. 6 (b) is the FFT frequency spectra with nyquist frequency input at the sampling rate 1.0 GS/s with considering noise and the mismatches of the electric component. The SNDR reduces by 0.5 db, and the SFDR reduces by 2 db. However, there are no bad effects on the performance with the low frequency input according to the post simulation results. Fig. 7 (a) shows the Post simulated SNDR and SFDR versus input signal frequency at 1.0 GS/s. SNDR and SFDR achieves 48.2 db/55.5 db at a 4.88 MHz input frequency and 48.5 db/58.7 db at a MHz input frequency. What is more, SNDR and SFDR also reach above 48 db/55 db, respectively, up to MHz. According to the post power simulation results, the total power consumption is only 17 mw at a supply voltage. The power consumption of each part is shown in Table II. Its FOM is 42 fj/conv-step compared with other measured results as shown in Fig. 7 (b). The Fig. 8 is the layout pattern of this design with the size. (Fom = P diss /(2 ENOB 2 ERBW)). 7

8 IEICE Electronics Express, Vol.11, No.2, 1 9 Fig. 6. FFT frequency spectra as Fin = MHz (a) Without Noise and Mismatches of the electric component (b) With Noise and Mismatches of the electric component Fig. 7. (a) Post Simulation results of SNDR/SFDR versus Fin (b) The Summary of Similar Performance ADCs Table II. Power Consumption of each Block Circuit Stages Bootstrapped Switches Pre-amplifiers st 1 Stage Folders 2nd Stage Folders Comparators Digital Encoder 5 c IEICE 2014 Supply Voltage Power Consumption 0.95 mw 4.1 mw 2.6 mw 3.8 mw 4.97 mw mw@4.88 MHz as input 1.08 mw@479.5 MHz as input Summary A 1.0-GS/s 8-bit single-channel folding and interpolating ADC with 1.0 GHz signal bandwidth is proposed in this paper. Optimizing the gain of preamplifiers and folding amplifiers to reach the 8-bit resolution and Optimizing the 8

9 IEICE Electronics Express, Vol.11, No.2, 1 9 Fig. 8. Layout Pattern of the ADC value of averaging and interpolating resistors to reach low power consumption and wide bandwidth. Post simulation results show that the ENOB is larger than 7.6 bits across the full sampling frequency range at 1.0-GS/s. Its Fom is the best one among similar performance designs as shown in Fig. 7 (b). Acknowledgements This work is sponsored by National Science and Technology Major Project with No.2009ZX , Special Research Funds for Doctoral Program of Higher Education of China with No and National Science and Technology Major Project of China with No.2012ZX c IEICE

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor LETTER IEICE Electronics Express, Vol.9, No.24, 1842 1848 A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor Yangyang Niu, Wei Li a), Ning

More information

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation Y. Zu, C.- H. Chan, S.- W. Sin, S.- P. U, R.P. Martins, F. Maloberti: "A 35 fj 10b 160 MS/s Pipelined-SAR ADC with Decoupled Flip-Around MDAC and Self- Embedded Offset Cancellation"; IEEE Asian Solid-

More information

A 2-bit/step SAR ADC structure with one radix-4 DAC

A 2-bit/step SAR ADC structure with one radix-4 DAC A 2-bit/step SAR ADC structure with one radix-4 DAC M. H. M. Larijani and M. B. Ghaznavi-Ghoushchi a) School of Engineering, Shahed University, Tehran, Iran a) ghaznavi@shahed.ac.ir Abstract: In this letter,

More information

RECENTLY, low-voltage and low-power circuit design

RECENTLY, low-voltage and low-power circuit design IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 4, APRIL 2008 319 A Programmable 0.8-V 10-bit 60-MS/s 19.2-mW 0.13-m CMOS ADC Operating Down to 0.5 V Hee-Cheol Choi, Young-Ju

More information

A low-variation on-resistance CMOS sampling switch for high-speed high-performance applications

A low-variation on-resistance CMOS sampling switch for high-speed high-performance applications A low-variation on-resistance CMOS sampling switch for high-speed high-performance applications MohammadReza Asgari 1 and Omid Hashemipour 2a) 1 Microelectronic Lab, Shahid Beheshti University, G. C. Tehran,

More information

A 12-bit 100kS/s SAR ADC for Biomedical Applications. Sung-Chan Rho 1 and Shin-Il Lim 2. Seoul, Korea. Abstract

A 12-bit 100kS/s SAR ADC for Biomedical Applications. Sung-Chan Rho 1 and Shin-Il Lim 2. Seoul, Korea. Abstract , pp.17-22 http://dx.doi.org/10.14257/ijunesst.2016.9.8.02 A 12-bit 100kS/s SAR ADC for Biomedical Applications Sung-Chan Rho 1 and Shin-Il Lim 2 1 Department of Electronics and Computer Engineering, Seokyeong

More information

A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs

A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs 1 A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs Masaya Miyahara, Yusuke Asada, Daehwa Paik and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline 2 Motivation The Calibration

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 25.4 A 1.8V 14b 10MS/s Pipelined ADC in 0.18µm CMOS with 99dB SFDR Yun Chiu, Paul R. Gray, Borivoje Nikolic University of California, Berkeley,

More information

4bit,6.5GHz Flash ADC for High Speed Application in 130nm

4bit,6.5GHz Flash ADC for High Speed Application in 130nm Australian Journal of Basic and Applied Sciences, 5(10): 99-106, 2011 ISSN 1991-8178 4bit,6.5GHz Flash ADC for High Speed Application in 130nm 1 M.J. Taghizadeh.Marvast, 2 M.A. Mohd.Ali, 3 H. Sanusi Department

More information

SUCCESSIVE approximation register (SAR) analog-todigital

SUCCESSIVE approximation register (SAR) analog-todigital IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 4, APRIL 2010 731 A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure Chun-Cheng Liu, Student Member, IEEE, Soon-Jyh Chang, Member,

More information

Proposing. An Interpolated Pipeline ADC

Proposing. An Interpolated Pipeline ADC Proposing An Interpolated Pipeline ADC Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Lab. Background 38GHz long range mm-wave system Role of long range mm-wave Current Optical

More information

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.2, APRIL, 2018 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2018.18.2.281 ISSN(Online) 2233-4866 A 4b/cycle Flash-assisted SAR ADC with

More information

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique 1 A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique Masaya Miyahara and Akira Matsuzawa Tokyo Institute of Technology, Japan 2 Outline Motivation Design Concept

More information

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS 10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu*, Andy Burstein**, Mehrdad Heshami*** Agilent Technologies, Palo Alto, CA *Agilent Technologies, Colorado Springs,

More information

Architectures and circuits for timeinterleaved. Sandeep Gupta Teranetics, Santa Clara, CA

Architectures and circuits for timeinterleaved. Sandeep Gupta Teranetics, Santa Clara, CA Architectures and circuits for timeinterleaved ADC s Sandeep Gupta Teranetics, Santa Clara, CA Outline Introduction to time-interleaved architectures. Conventional Sampling architectures and their application

More information

DIGITAL wireless communication applications such as

DIGITAL wireless communication applications such as IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 57, NO. 8, AUGUST 2010 1829 An Asynchronous Binary-Search ADC Architecture With a Reduced Comparator Count Ying-Zu Lin, Student Member,

More information

Design of Low-Offset Voltage Dynamic Latched Comparator

Design of Low-Offset Voltage Dynamic Latched Comparator Apr. 212, Vol. 2(4) pp: 585-59 Design of Low-Offset Voltage Dynamic Latched Comparator Mayank Nema, Rachna Thakur Assistant Professor, Department of ECE Sagar Institute of Science, Technology & Research,

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

ALTHOUGH zero-if and low-if architectures have been

ALTHOUGH zero-if and low-if architectures have been IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 6, JUNE 2005 1249 A 110-MHz 84-dB CMOS Programmable Gain Amplifier With Integrated RSSI Function Chun-Pang Wu and Hen-Wai Tsao Abstract This paper describes

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

Chapter 3 Novel Digital-to-Analog Converter with Gamma Correction for On-Panel Data Driver

Chapter 3 Novel Digital-to-Analog Converter with Gamma Correction for On-Panel Data Driver Chapter 3 Novel Digital-to-Analog Converter with Gamma Correction for On-Panel Data Driver 3.1 INTRODUCTION As last chapter description, we know that there is a nonlinearity relationship between luminance

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.3

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.3 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.3 25.3 A 96dB SFDR 50MS/s Digitally Enhanced CMOS Pipeline A/D Converter K. Nair, R. Harjani University of Minnesota, Minneapolis, MN Analog-to-digital

More information

An Optimized DAC Timing Strategy in SAR ADC with Considering the Overshoot Effect

An Optimized DAC Timing Strategy in SAR ADC with Considering the Overshoot Effect Journal of Electrical and Electronic Engineering 2015; 3(2): 19-24 Published online March 31, 2015 (http://www.sciencepublishinggroup.com/j/jeee) doi: 10.11648/j.jeee.20150302.12 ISSN: 2329-1613 (Print);

More information

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible A Forward-Body-Bias Tuned 450MHz Gm-C 3 rd -Order Low-Pass Filter in 28nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin

More information

The Caspian Sea Journal ISSN: Design of a New Flash ADC in 65 Nm CMOS Process

The Caspian Sea Journal ISSN: Design of a New Flash ADC in 65 Nm CMOS Process Available online at http://www.csjonline.org/ The Caspian Sea Journal ISSN: 1578-7899 Volume 10, Issue 1, Supplement 4 (2016) 515-524 Design of a New Flash ADC in 65 Nm CMOS Process Mohammad Jafar Taghizadeh

More information

DAT175: Topics in Electronic System Design

DAT175: Topics in Electronic System Design DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable

More information

A 19-bit column-parallel folding-integration/cyclic cascaded ADC with a pre-charging technique for CMOS image sensors

A 19-bit column-parallel folding-integration/cyclic cascaded ADC with a pre-charging technique for CMOS image sensors LETTER IEICE Electronics Express, Vol.14, No.2, 1 12 A 19-bit column-parallel folding-integration/cyclic cascaded ADC with a pre-charging technique for CMOS image sensors Tongxi Wang a), Min-Woong Seo

More information

A Two- Bit- per- Cycle Successive- Approximation ADC with Background Offset Calibration

A Two- Bit- per- Cycle Successive- Approximation ADC with Background Offset Calibration M. Casubolo, M. Grassi, A. Lombardi, F. Maloberti, P. Malcovati: "A Two-Bit-per- Cycle Successive-Approximation ADC with Background Calibration"; 15th IEEE Int. Conf. on Electronics, Circuits and Systems,

More information

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Body voltage controlled

More information

A 6-bit Subranging ADC using Single CDAC Interpolation

A 6-bit Subranging ADC using Single CDAC Interpolation A 6-bit Subranging ADC using Single CDAC Interpolation Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Interpolation techniques 6-bit, 500 MS/s

More information

DESIGN OF A 500MHZ, 4-BIT LOW POWER ADC FOR UWB APPLICATION

DESIGN OF A 500MHZ, 4-BIT LOW POWER ADC FOR UWB APPLICATION DESIGN OF A 500MHZ, 4-BIT LOW POWER ADC FOR UWB APPLICATION SANTOSH KUMAR PATNAIK 1, DR. SWAPNA BANERJEE 2 1,2 E & ECE Department, Indian Institute of Technology, Kharagpur, Kharagpur, India Abstract-This

More information

A Successive Approximation ADC based on a new Segmented DAC

A Successive Approximation ADC based on a new Segmented DAC A Successive Approximation ADC based on a new Segmented DAC segmented current-mode DAC successive approximation ADC bi-direction segmented current-mode DAC DAC INL 0.47 LSB DNL 0.154 LSB DAC 3V 8 2MS/s

More information

A Two-channel 10b 160 MS/s 28 nm CMOS Asynchronous Pipelined-SAR ADC with Low Channel Mismatch

A Two-channel 10b 160 MS/s 28 nm CMOS Asynchronous Pipelined-SAR ADC with Low Channel Mismatch JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.5.636 ISSN(Online) 2233-4866 A Two-channel 10b 160 MS/s 28 nm CMOS

More information

A 1MHz-64MHz Active RC TI-LPF with Variable Gain for SDR Receiver in 65-nm CMOS

A 1MHz-64MHz Active RC TI-LPF with Variable Gain for SDR Receiver in 65-nm CMOS 2017 5th International Conference on Computer, Automation and Power Electronics (CAPE 2017) A 1MHz-64MHz Active RC TI-LPF with Variable Gain for SDR Receiver in 65-nm CMOS Chaoxuan Zhang1, a, *, Xunping

More information

Deep-Submicron CMOS Design Methodology for High-Performance Low- Power Analog-to-Digital Converters

Deep-Submicron CMOS Design Methodology for High-Performance Low- Power Analog-to-Digital Converters Deep-Submicron CMOS Design Methodology for High-Performance Low- Power Analog-to-Digital Converters Abstract In this paper, we present a complete design methodology for high-performance low-power Analog-to-Digital

More information

A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC

A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC M. Åberg 2, A. Rantala 2, V. Hakkarainen 1, M. Aho 1, J. Riikonen 1, D. Gomes Martin 2, K. Halonen 1 1 Electronic Circuit Design Laboratory Helsinki University

More information

Another way to implement a folding ADC

Another way to implement a folding ADC Another way to implement a folding ADC J. Van Valburg and R. van de Plassche, An 8-b 650 MHz Folding ADC, IEEE JSSC, vol 27, #12, pp. 1662-6, Dec 1992 Coupled Differential Pair J. Van Valburg and R. van

More information

High Speed Flash Analog to Digital Converters

High Speed Flash Analog to Digital Converters ECE 551, Analog Integrated Circuit Design, High Speed Flash ADCs, Dec 2005 1 High Speed Flash Analog to Digital Converters Alireza Mahmoodi Abstract Flash analog-to-digital converters, also known as parallel

More information

A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration

A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration A b 5MS/s.mW SAR ADC with redundancy and digital background calibration The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Jingguang Wang for the degree of Master of Science in Electrical and Computer Engineering presented on November 12, 2008 Title: Techniques for Improving Timing Accuracy of

More information

Design of an Assembly Line Structure ADC

Design of an Assembly Line Structure ADC Design of an Assembly Line Structure ADC Chen Hu 1, Feng Xie 1,Ming Yin 1 1 Department of Electronic Engineering, Naval University of Engineering, Wuhan, China Abstract This paper presents a circuit design

More information

HIGH-SPEED low-resolution analog-to-digital converters

HIGH-SPEED low-resolution analog-to-digital converters 244 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 64, NO. 3, MARCH 2017 A 0.95-mW 6-b 700-MS/s Single-Channel Loop-Unrolled SAR ADC in 40-nm CMOS Long Chen, Student Member, IEEE, Kareem

More information

EE247 Lecture 20. Comparator architecture examples Flash ADC sources of error Sparkle code Meta-stability

EE247 Lecture 20. Comparator architecture examples Flash ADC sources of error Sparkle code Meta-stability EE247 Lecture 2 ADC Converters ADC architectures (continued) Comparator architectures Latched comparators Latched comparators incorporating preamplifier Sample-data comparators Offset cancellation Comparator

More information

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1 Outline Background Chip Architecture

More information

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015) A 14-bit 2.5 GS/s based on Multi-Clock Synchronization Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng,

More information

A 1.25GS/S 8-BIT TIME-INTERLEAVED C-2C SAR ADC FOR WIRELINE RECEIVER APPLICATIONS. Qiwei Wang

A 1.25GS/S 8-BIT TIME-INTERLEAVED C-2C SAR ADC FOR WIRELINE RECEIVER APPLICATIONS. Qiwei Wang A 1.25GS/S 8-BIT TIME-INTERLEAVED -2 SAR AD FOR WIRELINE REEIVER APPLIATIONS by Qiwei Wang A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department

More information

STATE-OF-THE-ART read channels in high-performance

STATE-OF-THE-ART read channels in high-performance 258 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 2, FEBRUARY 2007 A 6-bit 800-MS/s Pipelined A/D Converter With Open-Loop Amplifiers Ding-Lan Shen, Student Member, IEEE, and Tai-Cheng Lee, Member,

More information

2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS

2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS 2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS November 30 - December 3, 2008 Venetian Macao Resort-Hotel Macao, China IEEE Catalog Number: CFP08APC-USB ISBN: 978-1-4244-2342-2 Library of Congress:

More information

Acronyms. ADC analog-to-digital converter. BEOL back-end-of-line

Acronyms. ADC analog-to-digital converter. BEOL back-end-of-line Acronyms ADC analog-to-digital converter BEOL back-end-of-line CDF cumulative distribution function CMOS complementary metal-oxide-semiconductor CPU central processing unit CR charge-redistribution CS

More information

Bootstrapped ring oscillator with feedforward inputs for ultra-low-voltage application

Bootstrapped ring oscillator with feedforward inputs for ultra-low-voltage application This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Bootstrapped ring oscillator with feedforward

More information

A SAR-Assisted Two-Stage Pipeline ADC Chun C. Lee, Member, IEEE, and Michael P. Flynn, Senior Member, IEEE

A SAR-Assisted Two-Stage Pipeline ADC Chun C. Lee, Member, IEEE, and Michael P. Flynn, Senior Member, IEEE IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 4, APRIL 2011 859 A SAR-Assisted Two-Stage Pipeline ADC Chun C. Lee, Member, IEEE, and Michael P. Flynn, Senior Member, IEEE Abstract Successive approximation

More information

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei ABSTRACT A novel class-ab architecture for single-stage operational amplifiers is presented. The structure

More information

Design of a Low Power Current Steering Digital to Analog Converter in CMOS

Design of a Low Power Current Steering Digital to Analog Converter in CMOS Design of a Low Power Current Steering Digital to Analog Converter in CMOS Ranjan Kumar Mahapatro M. Tech, Dept. of ECE Centurion University of Technology & Management Paralakhemundi, India Sandipan Pine

More information

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 4, APRIL Dušan Stepanović, Member, IEEE, and Borivoje Nikolić, Senior Member, IEEE

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 4, APRIL Dušan Stepanović, Member, IEEE, and Borivoje Nikolić, Senior Member, IEEE IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 4, APRIL 2013 971 A 2.8 GS/s 44.6 mw Time-Interleaved ADC Achieving50.9dBSNDRand3dBEffective Resolution Bandwidth of 1.5 GHz in 65 nm CMOS Dušan Stepanović,

More information

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014 Asynchronous SAR ADC: Past, Present and Beyond Mike Shuo-Wei Chen University of Southern California MWSCAS 2014 1 Roles of ADCs Responsibility of ADC is increasing more BW, more dynamic range Potentially

More information

A MASH ΔΣ time-todigital converter based on two-stage time quantization

A MASH ΔΣ time-todigital converter based on two-stage time quantization LETTER IEICE Electronics Express, Vol.10, No.24, 1 7 A MASH 1-1-1 ΔΣ time-todigital converter based on two-stage time quantization Zixuan Wang a), Jianhui Wu, Qing Chen, and Xincun Ji National ASIC System

More information

A new class AB folded-cascode operational amplifier

A new class AB folded-cascode operational amplifier A new class AB folded-cascode operational amplifier Mohammad Yavari a) Integrated Circuits Design Laboratory, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran a) myavari@aut.ac.ir

More information

A NOVEL MDAC SUITABLE FOR A 14B, 120MS/S ADC, USING A NEW FOLDED CASCODE OP-AMP

A NOVEL MDAC SUITABLE FOR A 14B, 120MS/S ADC, USING A NEW FOLDED CASCODE OP-AMP A NOVEL MDAC SUITABLE FOR A 14B, 120MS/S ADC, USING A NEW FOLDED CASCODE OP-AMP Noushin Ghaderi 1, Khayrollah Hadidi 2 and Bahar Barani 3 1 Faculty of Engineering, Shahrekord University, Shahrekord, Iran

More information

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA)

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA) Circuits and Systems, 2013, 4, 11-15 http://dx.doi.org/10.4236/cs.2013.41003 Published Online January 2013 (http://www.scirp.org/journal/cs) A New Design Technique of CMOS Current Feed Back Operational

More information

A 10Gbps Analog Adaptive Equalizer and Pulse Shaping Circuit for Backplane Interface

A 10Gbps Analog Adaptive Equalizer and Pulse Shaping Circuit for Backplane Interface Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 225 A 10Gbps Analog Adaptive Equalizer and Pulse Shaping Circuit

More information

A 45nm Flash Analog to Digital Converter for Low Voltage High Speed System-on-Chips

A 45nm Flash Analog to Digital Converter for Low Voltage High Speed System-on-Chips A 45nm Flash Analog to Digital Converter for Low Voltage High Speed System-on-Chips Dhruva Ghai Saraju P. Mohanty Elias Kougianos dvg0010@unt.edu smohanty@cse.unt.edu eliask@unt.edu VLSI Design and CAD

More information

A Low Power Small Area Multi-bit Quantizer with A Capacitor String in Sigma-Delta Modulator

A Low Power Small Area Multi-bit Quantizer with A Capacitor String in Sigma-Delta Modulator A Low Power Small Area Multi-bit uantizer with A Capacitor String in Sigma-Delta Modulator Xuia Wang, Jian Xu, and Xiaobo Wu Abstract An ultra-low power area-efficient fully differential multi-bit quantizer

More information

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Mahdi Parvizi a), and Abdolreza Nabavi b) Microelectronics Laboratory, Tarbiat Modares University, Tehran

More information

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE 3.1 INTRODUCTION An ADC is a device which converts a continuous quantity into discrete digital signal. Among its types, pipelined

More information

Study of High Speed Buffer Amplifier using Microwind

Study of High Speed Buffer Amplifier using Microwind Study of High Speed Buffer Amplifier using Microwind Amrita Shukla M Tech Scholar NIIST Bhopal, India Puran Gaur HOD, NIIST Bhopal India Braj Bihari Soni Asst. Prof. NIIST Bhopal India ABSTRACT This paper

More information

High-Speed Analog to Digital Converters. ELCT 1003:High Speed ADCs

High-Speed Analog to Digital Converters. ELCT 1003:High Speed ADCs High-Speed Analog to Digital Converters Ann Kotkat Barbara Georgy Mahmoud Tantawi Ayman Sakr Heidi El-Feky Nourane Gamal 1 Outline Introduction. Process of ADC. ADC Specifications. Flash ADC. Pipelined

More information

LAYOUT IMPLEMENTATION OF A 10-BIT 1.2 GS/s DIGITAL-TO-ANALOG CONVERTER IN 90nm CMOS

LAYOUT IMPLEMENTATION OF A 10-BIT 1.2 GS/s DIGITAL-TO-ANALOG CONVERTER IN 90nm CMOS LAYOUT IMPLEMENTATION OF A 10-BIT 1.2 GS/s DIGITAL-TO-ANALOG CONVERTER IN 90nm CMOS A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Electrical Engineering

More information

THE comparison is the basic operation in an analog-to-digital

THE comparison is the basic operation in an analog-to-digital IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 7, JULY 2006 541 Kickback Noise Reduction Techniques for CMOS Latched Comparators Pedro M. Figueiredo, Member, IEEE, and João

More information

Design Challenges of Analog-to-Digital Converters in Nanoscale CMOS

Design Challenges of Analog-to-Digital Converters in Nanoscale CMOS IEICE TRANS. ELECTRON., VOL.E90 C, NO.4 APRIL 2007 779 INVITED PAPER Special Section on Low-Power, High-Speed LSIs and Related Technologies Design Challenges of Analog-to-Digital Converters in Nanoscale

More information

VLSI DESIGN OF 12-BIT ADC WITH 1GSPS IN 180NM CMOS INTEGRATING WITH SAR AND TWO-STEP FLASH ADC

VLSI DESIGN OF 12-BIT ADC WITH 1GSPS IN 180NM CMOS INTEGRATING WITH SAR AND TWO-STEP FLASH ADC VLSI DESIGN OF 12-BIT ADC WITH 1GSPS IN 180NM CMOS INTEGRATING WITH SAR AND TWO-STEP FLASH ADC 1 K.LOKESH KRISHNA, 2 T.RAMASHRI 1 Associate Professor, Department of ECE, Sri Venkateswara College of Engineering

More information

An accurate track-and-latch comparator

An accurate track-and-latch comparator An accurate track-and-latch comparator K. D. Sadeghipour a) University of Tabriz, Tabriz 51664, Iran a) dabbagh@tabrizu.ac.ir Abstract: In this paper, a new accurate track and latch comparator circuit

More information

A 4-bit High Speed, Low Power Flash ADC by Employing Binary Search Algorithm 1 Brahmaiah Throvagunta, 2 Prashant K Shah

A 4-bit High Speed, Low Power Flash ADC by Employing Binary Search Algorithm 1 Brahmaiah Throvagunta, 2 Prashant K Shah A 4-bit High Speed, Low Power Flash ADC by Employing Binary Search Algorithm 1 Brahmaiah Throvagunta, 2 Prashant K Shah 1 Master of Technology,Dept. of VLSI &Embedded Systems,Sardar Vallabhbhai National

More information

Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power Applications

Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power Applications International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 11 (June 2014) PP: 1-7 Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power

More information

EECS 247 Lecture 18: Data Converters- Track & Hold- ADC Design 2009 Page 1. EE247 Lecture 18

EECS 247 Lecture 18: Data Converters- Track & Hold- ADC Design 2009 Page 1. EE247 Lecture 18 EE247 Lecture 8 ADC Converters Sampling (continued) Bottom-plate switching Track & hold T/H circuits T/H combined with summing/difference function T/H circuit incorporating gain & offset cancellation T/H

More information

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS -3GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS Hyohyun Nam and Jung-Dong Park a Division of Electronics and Electrical Engineering, Dongguk University, Seoul E-mail

More information

Analog-to-Digital i Converters

Analog-to-Digital i Converters CSE 577 Spring 2011 Analog-to-Digital i Converters Jaehyun Lim, Kyusun Choi Department t of Computer Science and Engineering i The Pennsylvania State University ADC Glossary DNL (differential nonlinearity)

More information

AN ABSTRACT OF THE DISSERTATION OF

AN ABSTRACT OF THE DISSERTATION OF AN ABSTRACT OF THE DISSERTATION OF Jiaming Lin for the degree of Doctor of Philosophy in Electrical and Computer Engineering presented on July 8, 2013. Title: Design Techniques for Low Power High Speed

More information

Summary 185. Chapter 4

Summary 185. Chapter 4 Summary This thesis describes the theory, design and realization of precision interface electronics for bridge transducers and thermocouples that require high accuracy, low noise, low drift and simultaneously,

More information

Design of Analog and Mixed Integrated Circuits and Systems Theory Exercises

Design of Analog and Mixed Integrated Circuits and Systems Theory Exercises 102726 Design of nalog and Mixed Theory Exercises Francesc Serra Graells http://www.cnm.es/~pserra/uab/damics paco.serra@imb-cnm.csic.es 1 Introduction to the Design of nalog Integrated Circuits 1.1 The

More information

A 100-dB gain-corrected delta-sigma audio DAC with headphone driver

A 100-dB gain-corrected delta-sigma audio DAC with headphone driver Analog Integr Circ Sig Process (2007) 51:27 31 DOI 10.1007/s10470-007-9033-0 A 100-dB gain-corrected delta-sigma audio DAC with headphone driver Ruopeng Wang Æ Sang-Ho Kim Æ Sang-Hyeon Lee Æ Seung-Bin

More information

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram LETTER IEICE Electronics Express, Vol.10, No.4, 1 8 A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram Wang-Soo Kim and Woo-Young Choi a) Department

More information

Design of Analog Integrated Systems (ECE 615) Outline

Design of Analog Integrated Systems (ECE 615) Outline Design of Analog Integrated Systems (ECE 615) Lecture 9 SAR and Cyclic (Algorithmic) Analog-to-Digital Converters Ayman H. Ismail Integrated Circuits Laboratory Ain Shams University Cairo, Egypt ayman.hassan@eng.asu.edu.eg

More information

A wide-range all-digital duty-cycle corrector with output clock phase alignment in 65 nm CMOS technology

A wide-range all-digital duty-cycle corrector with output clock phase alignment in 65 nm CMOS technology A wide-range all-digital duty-cycle corrector with output clock phase alignment in 65 nm CMOS technology Ching-Che Chung 1a), Duo Sheng 2, and Sung-En Shen 1 1 Department of Computer Science & Information

More information

1.5 bit-per-stage 8-bit Pipelined CMOS A/D Converter for Neuromophic Vision Processor

1.5 bit-per-stage 8-bit Pipelined CMOS A/D Converter for Neuromophic Vision Processor 1.5 bit-per-stage 8-bit Pipelined CMOS A/D Converter for Neuromophic Vision Processor Yilei Li, Li Du 09212020027@fudan.edu.cn Abstract- Neuromorphic vision processor is an electronic implementation of

More information

/$ IEEE

/$ IEEE 894 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 56, NO. 5, MAY 2009 A 1.2-V 12-b 120-MS/s SHA-Free Dual-Channel Nyquist ADC Based on Midcode Calibration Hee-Cheol Choi, Young-Ju Kim,

More information

Research Article Improved Switching Energy Reduction Approach in Low-Power SAR ADC for Bioelectronics

Research Article Improved Switching Energy Reduction Approach in Low-Power SAR ADC for Bioelectronics Hindawi Publishing orporation VLSI Design Volume 26, Article ID 629254, 6 pages http://dx.doi.org/.55/26/629254 Research Article Improved Switching Energy Reduction Approach in Low-Power SAR AD for Bioelectronics

More information

A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS

A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS Shruti Gatade 1, M. Nagabhushan 2, Manjunath.R 3 1,3 Student, Department of ECE, M S Ramaiah Institute of Technology, Bangalore (India) 2 Assistant

More information

Scalable and Synthesizable. Analog IPs

Scalable and Synthesizable. Analog IPs Scalable and Synthesizable Analog IPs Akira Matsuzawa Tokyo Institute of Technology Background and Motivation 1 Issues It becomes more difficult to obtain good analog IPs Insufficient design resources

More information

Publication [P3] By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Publication [P3] By choosing to view this document, you agree to all provisions of the copyright laws protecting it. Publication [P3] Copyright c 2006 IEEE. Reprinted, with permission, from Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 5-9 Feb. 2006, pp. 488 489. This

More information

Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS

Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS LETTER IEICE Electronics Express, Vol.15, No.7, 1 10 Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS Korkut Kaan Tokgoz a), Seitaro Kawai, Kenichi Okada, and Akira Matsuzawa Department

More information

2. ADC Architectures and CMOS Circuits

2. ADC Architectures and CMOS Circuits /58 2. Architectures and CMOS Circuits Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es

More information

Design of a Low Voltage low Power Double tail comparator in 180nm cmos Technology

Design of a Low Voltage low Power Double tail comparator in 180nm cmos Technology Research Paper American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-3, Issue-9, pp-15-19 www.ajer.org Open Access Design of a Low Voltage low Power Double tail comparator

More information

A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC

A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC Zhijie Chen, Masaya Miyahara, Akira Matsuzawa Tokyo Institute of Technology Symposia on VLSI Technology and Circuits Outline Background

More information

G m /I D based Three stage Operational Amplifier Design

G m /I D based Three stage Operational Amplifier Design G m /I D based Three stage Operational Amplifier Design Rishabh Shukla SVNIT, Surat shuklarishabh31081988@gmail.com Abstract A nested Gm-C compensated three stage Operational Amplifier is reviewed using

More information

Pipelined Analog-to-Digital converter (ADC)

Pipelined Analog-to-Digital converter (ADC) Analog Integr Circ Sig Process (2012) 63:495 501 DOI 10.1007/s10470-010-9453-0 MIXED SIGNAL LETTER Pipelined Analog-to-Digital converter (ADC) Mingjun Fan Junyan Ren Ning Li Fan Ye Jun Xu Abstract A set

More information

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems 1 Eun-Jung Yoon, 2 Kangyeob Park, 3* Won-Seok Oh 1, 2, 3 SoC Platform Research Center, Korea Electronics Technology

More information

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell Advanced Analog Circuits Lecture 3 Switched-Capacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 2-4pm) Reference Homework 2017-01-11 1 MOD1 & MOD2 ST 2, 3,

More information

High-Speed Low-Power Analog to Digital Converter for Digital Beam Forming Systems. Ali Nazari

High-Speed Low-Power Analog to Digital Converter for Digital Beam Forming Systems. Ali Nazari High-Speed Low-Power Analog to Digital Converter for Digital Beam Forming Systems by Ali Nazari A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved

More information

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing N.Rajini MTech Student A.Akhila Assistant Professor Nihar HoD Abstract This project presents two original implementations

More information

International Journal of Pure and Applied Mathematics

International Journal of Pure and Applied Mathematics Volume 118 No. 0 018, 4187-4194 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A 5- GHz CMOS Low Noise Amplifier with High gain and Low power using Pre-distortion technique A.Vidhya

More information