A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

Size: px
Start display at page:

Download "A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California"

Transcription

1 A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1

2 Outline Background Chip Architecture Key Circuits Interleaved Clocks Front-end Track/Hold ADC Digital Circuits Calibration Results Summary 2

3 Application: Digital Oscilloscopes Probe Preamp ADC Memory System DUT Calibration Sources ADC Designer s scope block diagram System CPU Real time waveform acquisition Maximum sample rate Inputs band-limited to ~ F sample /4 ~ 8 bit resolution External CPU and calibration sources 3

4 Design Goals Goals: 4 GSample/s, 8 bit conversions 7 effective bits (ENOB) at low frequency > 5 ENOB at F in =1 GHz (F s /4) -1 db bandwidth of 1 GHz. Low enough power for standard packaging Approach: Use time-interleaved ADCs to get high sample rate Minimize the high-speed analog signal path Make all the circuits small for low power Take full advantage of offline calibration 4

5 ADC Chip Architecture Input Clock V in + - DLL Clock Gen 32 T/H+V/I 32 ADCs 32 RCs 4 muxes Radix Converters 8b +clk, 1GSa/s 32 time-interleaved pipeline ADCs at 125 MSa/s Net sample rate is 4 GSa/s 5

6 Background: Timing Error and ADC Resolution V in dv dt Fast signal converts a sample timing error (dt) to an apparent voltage error (dv). 6

7 ADC Effective Bits vs Timing Error Sinewave Effective bits Otherwise Ideal ADC 1 ps rms 4 ps rms 16 ps rms F in (MHz) Rule of thumb: 1 ps / 1 GHz --> 7 effective bits 7

8 Clock Timing Errors Cycle/Cycle Errors (jitter) Thermal noise induced jitter Substrate and supply noise induced jitter Static Errors Clock and signal path mismatches (time of flight) Device and parasitic mismatches Design Approach Shorten total clock delay to reduce errors. Calibrate remaining static errors. 8

9 Direct Approach: 31 Stage DLL DLL Input Clock 125 MHz 31 stages, 250 ps/stage, total delay 8 ns... To Track/Hold Circuits Static timing errors: Error ~ total delay Supply noise coupling: Error ~ total delay Thermal jitter: Power ~ (total delay) 2 DLL meeting jitter spec would consume entire ADC power budget!! 9

10 DLL 500 MHz Clock PD Timing Generator Ring Cntrs /4 /4 /4 /4 /4 /4 /4 /4 Delay Adjusters Sampling Clocks (125 MHz) Max input edge to sampling edge delay: 2 ns ~ 1 ps jitter < 1 ps static error after cal 10

11 Simplified Input Track/Hold Clock V in V hold C hold To achieve highest bandwidth and linearity: ONLY 1 NMOS FET in signal path Restrict C hold to only T/H and load parasitics Low common mode input voltage Low-swing differential signal (250 mv peak) Fastest possible full-swing clock edge 2 GHz bandwidth, -50 db HD3 at 1 GHz 11

12 Interleaved Track/Hold Input Circuits Clk 0 V in... C hold 32 T/H Circuits (125 MSa/s) Clk 31 C hold Requirements 2 GHz input bandwidth to C hold Low parasitics on V in Kickback to V in must be independent of signal 12

13 Analog Front End Implementation Clk s Clk cc V in + - Clk rst V hold + V hold - V/I I out + I out - W W/2 W/2 Sample Charge Comp. Reset Parasitic-only hold capacitance (140 ff) Only 1 ns pulse width for Clk s Reset phase Transconductor (V/I) current output drives ADC 13

14 125 MSa/Sec 8-bit Full Nyquist ADC Key Attribute Reason Pipelined Architecture Low power Small area Low input capacitance 1 bit / Stage Highest speed pipeline Open-loop amplifiers Current mode signals (Switched current mirrors) Scale for thermal noise Making it work Fastest settling No explicit capacitors Small Area Smallest area and power Reduce Radix to 1.6 Digital Calibration Achieves Redundancy Corrects amplifier gain and offset errors. 14

15 Pipeline ADC Block Diagram Corrected Output (8 bits, binary) Radix Conversion Circuit Raw ADC output: 12 bits, Radix 1.6 De-skew latches Input Clock 1-bit quantizer 1 1-bit 1-bit quantizer quantizer 2 12 Input T/H Clock + _ FF DAC + - G Residue G= Only 1 comparator per stage

16 Current-Mode T/H and Gain I in I out Gain=M W M*W Good Linearity: Current mirrors with cascodes are 8 bit linear. Poor Accuracy: Gain and offset errors 16

17 Current-Mode ADC Stage Vbias DAC I in Gain=1.6 I out 17

18 Current-Mode Pipeline ADC State of the art speed/power ratio for an 8-bit ADC 125 MSa/s, full nyquist performance 80 mw total 20 mw V/I buffer 40 mw pipeline 20 mw radix converter Small Area 0.3 mm 2 18

19 Radix Converter - Principle of Operation Calculate and download bit weights during cal. Bit 11 weight 11 Bit 10 weight 10 Bit 9 weight 9 Σ Binary Output (8 bits) Bit 1 weight 1 Bit 0 weight 0 Output = b 11.w 11 + b 10.w b 1.w 1 + b 0.w 0 Look-up table is an alternative. This ADC uses a hybrid look-up/adder. 19

20 Supply and Substrate Noise Reduction Fully differential analog path Very low-noise digital logic family (SCL - Source Coupled Logic) Differential Logic Constant Supply Current Generates less noise than the ADC Comparators!! Differential output drivers Chip-level supply and substrate noise simulation for design verification. 20

21 What Needs To Be Calibrated? Clock 32 ADCs 32 RCs muxes DLL Timing Adjust Clock Gen 32 T/H+V/I Radix Converters Per-slice Gain + Offset DACs RC Bit Weights External Lookup Table Offline Calibration with DC and Pulse sources 21

22 Offline Calibration DC Linearity Calibration Use a DC ramp input, observe ADC radix bits Analog gain and offset trim per path Use least squares fit on a large record to find optimal bit weights and 3rd harmonic fit. Least squares fit minimizes INL Timing Calibration Apply a pulse train with fast edges Use an FFT to measure phase delay on each T/H Adjust time delays, and iterate Full ADC calibration takes about 3 minutes 22

23 ADC Chip Layout 16 RCs 16 Pipelines 16 T/H 16 T/H 16 Pipelines 16 RCs 7.1 mm x 4.0 mm 300,000 FETs 4.6 W 23

24 ADC 256-Ball TBGA Package Copper body Controlled-impedance lines Custom layout, standard ball pattern 24

25 ADC Code (LSBs) Acquisition Before Calibration Time (µs) ~ 5 effective bits 25

26 150 Acquisition With Calibration 100 ADC Code Equivalent Time (ns) F s =4000 MSa/sec F in =30.27 MHz 7.0 effective bits 26

27 Error (LSBs) ADC Code Acquisition With Calibration Noise: 0.6 LSB rms Equivalent Time (ns) F s =4000 MSa/sec F in =30.27 MHz 7.0 effective bits 27

28 Error (LSBs) ADC Code Full Calibration, With 1 GHz Input Equivalent Time (ns) F s =4000 MSa/s F in = MHz 6.35 effective bits 28

29 Static Linearity INL (LSBs) DNL (LSBs) raw INL with Lookup table ADC code 29

30 ADC Effective Bits vs Input Frequency Accuracy (Effective Bits) GSample/sec 5.9 GSample/sec GHz 1 Input amplitude ~95% of full scale 0 40M 100M 200M 400M 1G 2G 4G Frequency (Hz) 1.2 ps rms clock error 30

31 Amplitude Response (db) ADC Amplitude Response -5 Measurement -6 Simulation 100M 200M 400M 1G 2G Input Frequency (Hz) -1 db at 1.3 GHz -3 db at 1.6 GHz 31

32 ADC Chip - Key Specs Measured Units Nominal Sample Rate 4 GSa/s Sample Rate Range GSa/s Resolution 8 bits 3 db Bandwidth 1.6 GHz Accuracy 30 MHz 1 GHz effective bits (ENOB) Noise 0.6 LSB rms INL / DNL ±0.3 / ±0.2 LSB Power 4.6 W at 3.3 V IC Technology 0.35 µm CMOS Chip Size 7.14 x 4.04 mm 2 Transistors 300,000 Package 256 ball TBGA 32

33 Monolithic ADCs ENOB at F s / CMOS 8 bit CMOS 6 bit Bipolar 8 bit GaAs HBT 6 bit This work 100M 400M 1G 2G 4G Sample Rate (F s ) (Hz) 33

34 Features: Results: Summary Interleaving of 32 ADCs Precision timing generator for 32 clock phases Current-mode pipeline provides a superior speed/ power ratio Extensive calibration to achieve accuracy 2x lower power/gsample than any reported GSa/s 8-bit ADC Highest reported clock rate for 6-8 bit CMOS ADCs Highest reported accuracy at 4 GSa/s 34

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS 10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu*, Andy Burstein**, Mehrdad Heshami*** Agilent Technologies, Palo Alto, CA *Agilent Technologies, Colorado Springs,

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

Another way to implement a folding ADC

Another way to implement a folding ADC Another way to implement a folding ADC J. Van Valburg and R. van de Plassche, An 8-b 650 MHz Folding ADC, IEEE JSSC, vol 27, #12, pp. 1662-6, Dec 1992 Coupled Differential Pair J. Van Valburg and R. van

More information

A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters

A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters in 0.25µm m CMOS William Ellersick 1,3, Chih-Kong Ken Yang 2 Vladimir Stojanovic 1, Siamak Modjtahedi 2, Mark A. Horowitz 1 1 Stanford

More information

A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters

A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters in 0.25µm m CMOS William Ellersick 1,3, Chih-Kong Ken Yang 2 Vladimir Stojanovic 1, Siamak Modjtahedi 2, Mark A. Horowitz 1 1 Stanford

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 25.4 A 1.8V 14b 10MS/s Pipelined ADC in 0.18µm CMOS with 99dB SFDR Yun Chiu, Paul R. Gray, Borivoje Nikolic University of California, Berkeley,

More information

GHz ADCs: From Exotic to Mainstream

GHz ADCs: From Exotic to Mainstream GHz ADCs: From Exotic to Mainstream Ken Poulton Agilent Technologies Santa Clara, California 1 Outline A Quasi-Chronological View of GHz ADC Architectures Flash Folded and Interpolated Time Interleaving

More information

L10: Analog Building Blocks (OpAmps,, A/D, D/A)

L10: Analog Building Blocks (OpAmps,, A/D, D/A) L10: Analog Building Blocks (OpAmps,, A/D, D/A) Acknowledgement: Materials in this lecture are courtesy of the following sources and are used with permission. Dave Wentzloff 1 Introduction to Operational

More information

A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC

A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC M. Åberg 2, A. Rantala 2, V. Hakkarainen 1, M. Aho 1, J. Riikonen 1, D. Gomes Martin 2, K. Halonen 1 1 Electronic Circuit Design Laboratory Helsinki University

More information

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Body voltage controlled

More information

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique 1 A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique Masaya Miyahara and Akira Matsuzawa Tokyo Institute of Technology, Japan 2 Outline Motivation Design Concept

More information

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS A 4 Channel Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura, G. Varner University of Hawai I Large Area Picosecond

More information

Assoc. Prof. Dr. Burak Kelleci

Assoc. Prof. Dr. Burak Kelleci DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING ANALOG-TO-DIGITAL AND DIGITAL- TO-ANALOG CONVERTERS Assoc. Prof. Dr. Burak Kelleci Fall 2018 OUTLINE Nyquist-Rate DAC Thermometer-Code Converter Hybrid

More information

STATE-OF-THE-ART read channels in high-performance

STATE-OF-THE-ART read channels in high-performance 258 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 2, FEBRUARY 2007 A 6-bit 800-MS/s Pipelined A/D Converter With Open-Loop Amplifiers Ding-Lan Shen, Student Member, IEEE, and Tai-Cheng Lee, Member,

More information

A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs

A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs 1 A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs Masaya Miyahara, Yusuke Asada, Daehwa Paik and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline 2 Motivation The Calibration

More information

DATASHEET HI5805. Features. Applications. Ordering Information. Pinout. 12-Bit, 5MSPS A/D Converter. FN3984 Rev 7.00 Page 1 of 12.

DATASHEET HI5805. Features. Applications. Ordering Information. Pinout. 12-Bit, 5MSPS A/D Converter. FN3984 Rev 7.00 Page 1 of 12. 12-Bit, 5MSPS A/D Converter NOT RECOMMENDED FOR NEW DESIGNS NO RECOMMENDED REPLACEMENT contact our Technical Support Center at 1-888-INTERSIL or www.intersil.com/tsc DATASHEET FN3984 Rev 7.00 The HI5805

More information

ADC1002S General description. 2. Features. 3. Applications. Single 10 bits ADC, up to 20 MHz

ADC1002S General description. 2. Features. 3. Applications. Single 10 bits ADC, up to 20 MHz Rev. 03 2 July 2012 Product data sheet 1. General description The is a 10-bit high-speed Analog-to-Digital Converter (ADC) for professional video and other applications. It converts with 3.0 V to 5.25

More information

Analog-to-Digital i Converters

Analog-to-Digital i Converters CSE 577 Spring 2011 Analog-to-Digital i Converters Jaehyun Lim, Kyusun Choi Department t of Computer Science and Engineering i The Pennsylvania State University ADC Glossary DNL (differential nonlinearity)

More information

AD Bit, 20/40/65 MSPS 3 V Low Power A/D Converter. Preliminary Technical Data

AD Bit, 20/40/65 MSPS 3 V Low Power A/D Converter. Preliminary Technical Data FEATURES Ultra Low Power 90mW @ 0MSPS; 135mW @ 40MSPS; 190mW @ 65MSPS SNR = 66.5 dbc (to Nyquist); SFDR = 8 dbc @.4MHz Analog Input ENOB = 10.5 bits DNL=± 0.5 LSB Differential Input with 500MHz Full Power

More information

A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS

A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, M. Bogdan, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura, G. Varner University of Hawai I

More information

L9: Analog Building Blocks (OpAmps, A/D, D/A)

L9: Analog Building Blocks (OpAmps, A/D, D/A) L9: Analog Building Blocks (OpAmps, A/D, D/A) Courtesy of Dave Wentzloff. Used with permission. 1 Introduction to Operational Amplifiers v id in DC Model a v id LM741 Pinout out 10 to 15V Typically very

More information

2.5GS/s Pipelined ADC with Background. Linearity Correction

2.5GS/s Pipelined ADC with Background. Linearity Correction A14b25GS/s8-Way-Interleaved 2.5GS/s Pipelined ADC with Background Calibration and Digital it Dynamic Linearity Correction B. Setterberg 1, K. Poulton 1, S. Ray 1, D.J. Huber 1, V. Abramzon 1, G. Steinbach

More information

Architectures and Issues for Gigasample/second ADCs

Architectures and Issues for Gigasample/second ADCs Architectures and Issues for Gigasample/second ADCs Ken Poulton, Robert Neff, Brian Setterberg, Bernd Wuppermann, Tom Kopley Agilent Labs, Santa Clara, California Abstract Architectures for ADCs at 1 Gigasample/second

More information

A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS

A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS UT Mixed-Signal/RF Integrated Circuits Seminar Series A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS Pio Balmelli April 19 th, Austin TX 2 Outline VDSL specifications Σ A/D converter features Broadband

More information

SPT BIT, 30 MSPS, TTL, A/D CONVERTER

SPT BIT, 30 MSPS, TTL, A/D CONVERTER 12-BIT, MSPS, TTL, A/D CONVERTER FEATURES Monolithic 12-Bit MSPS Converter 6 db SNR @ 3.58 MHz Input On-Chip Track/Hold Bipolar ±2.0 V Analog Input Low Power (1.1 W Typical) 5 pf Input Capacitance TTL

More information

12 Bit 1.2 GS/s 4:1 MUXDAC

12 Bit 1.2 GS/s 4:1 MUXDAC RDA012M4 12 Bit 1.2 GS/s 4:1 MUXDAC Features 12 Bit Resolution 1.2 GS/s Sampling Rate 4:1 or 2:1 Input Multiplexer Differential Analog Output Input code format: Offset Binary Output Swing: 600 mv with

More information

A 2-bit/step SAR ADC structure with one radix-4 DAC

A 2-bit/step SAR ADC structure with one radix-4 DAC A 2-bit/step SAR ADC structure with one radix-4 DAC M. H. M. Larijani and M. B. Ghaznavi-Ghoushchi a) School of Engineering, Shahed University, Tehran, Iran a) ghaznavi@shahed.ac.ir Abstract: In this letter,

More information

EE247 Lecture 20. Comparator architecture examples Flash ADC sources of error Sparkle code Meta-stability

EE247 Lecture 20. Comparator architecture examples Flash ADC sources of error Sparkle code Meta-stability EE247 Lecture 2 ADC Converters ADC architectures (continued) Comparator architectures Latched comparators Latched comparators incorporating preamplifier Sample-data comparators Offset cancellation Comparator

More information

Appendix A Comparison of ADC Architectures

Appendix A Comparison of ADC Architectures Appendix A Comparison of ADC Architectures A comparison of continuous-time delta-sigma (CT ), pipeline, and timeinterleaved (TI) SAR ADCs which target wide signal bandwidths (greater than 100 MHz) and

More information

A single-slope 80MS/s ADC using two-step time-to-digital conversion

A single-slope 80MS/s ADC using two-step time-to-digital conversion A single-slope 80MS/s ADC using two-step time-to-digital conversion The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

ECEN 720 High-Speed Links: Circuits and Systems

ECEN 720 High-Speed Links: Circuits and Systems 1 ECEN 720 High-Speed Links: Circuits and Systems Lab4 Receiver Circuits Objective To learn fundamentals of receiver circuits. Introduction Receivers are used to recover the data stream transmitted by

More information

Analogue to Digital Conversion

Analogue to Digital Conversion Analogue to Digital Conversion Turns electrical input (voltage/current) into numeric value Parameters and requirements Resolution the granularity of the digital values Integral NonLinearity proportionality

More information

L9: Analog Building Blocks (OpAmps,, A/D, D/A)

L9: Analog Building Blocks (OpAmps,, A/D, D/A) L9: Analog Building Blocks (OpAmps,, A/D, D/A) Acknowledgement: Dave Wentzloff Introduction to Operational Amplifiers DC Model Typically very high input resistance ~ 300KΩ v id in a v id out High DC gain

More information

ISSN:

ISSN: 1391 DESIGN OF 9 BIT SAR ADC USING HIGH SPEED AND HIGH RESOLUTION OPEN LOOP CMOS COMPARATOR IN 180NM TECHNOLOGY WITH R-2R DAC TOPOLOGY AKHIL A 1, SUNIL JACOB 2 1 M.Tech Student, 2 Associate Professor,

More information

CLC Bit, 52 MSPS A/D Converter

CLC Bit, 52 MSPS A/D Converter 14-Bit, 52 MSPS A/D Converter General Description The is a monolithic 14-bit, 52 MSPS analog-to-digital converter. The ultra-wide dynamic range and high sample rate of the device make it an excellent choice

More information

Second-Order Sigma-Delta Modulator in Standard CMOS Technology

Second-Order Sigma-Delta Modulator in Standard CMOS Technology SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 1, No. 3, November 2004, 37-44 Second-Order Sigma-Delta Modulator in Standard CMOS Technology Dragiša Milovanović 1, Milan Savić 1, Miljan Nikolić 1 Abstract:

More information

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing Fundamentals of Data Converters DAVID KRESS Director of Technical Marketing 9/14/2016 Analog to Electronic Signal Processing Sensor (INPUT) Amp Converter Digital Processor Actuator (OUTPUT) Amp Converter

More information

A Successive Approximation ADC based on a new Segmented DAC

A Successive Approximation ADC based on a new Segmented DAC A Successive Approximation ADC based on a new Segmented DAC segmented current-mode DAC successive approximation ADC bi-direction segmented current-mode DAC DAC INL 0.47 LSB DNL 0.154 LSB DAC 3V 8 2MS/s

More information

10-Bit, 40 MSPS/60 MSPS A/D Converter AD9050 REV. B. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

10-Bit, 40 MSPS/60 MSPS A/D Converter AD9050 REV. B. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM a FEATURES Low Power: 1 mw @ 0 MSPS, mw @ 0 MSPS On-Chip T/H, Reference Single + V Power Supply Operation Selectable V or V Logic I/O SNR: db Minimum at MHz w/0 MSPS APPLICATIONS Medical Imaging Instrumentation

More information

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010.

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010. Workshop ESSCIRC Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC 17. September 2010 Christof Dohmen Outline System Overview Analog-Front-End Chopper-Amplifier

More information

A VCO-Based ADC Employing a Multi- Phase Noise-Shaping Beat Frequency Quantizer for Direct Sampling of Sub-1mV Input Signals

A VCO-Based ADC Employing a Multi- Phase Noise-Shaping Beat Frequency Quantizer for Direct Sampling of Sub-1mV Input Signals A VCO-Based ADC Employing a Multi- Phase Noise-Shaping Beat Frequency Quantizer for Direct Sampling of Sub-1mV Input Signals Bongjin Kim, Somnath Kundu, Seokkyun Ko and Chris H. Kim University of Minnesota,

More information

L10: Analog Building Blocks (OpAmps,, A/D, D/A)

L10: Analog Building Blocks (OpAmps,, A/D, D/A) L10: Analog Building Blocks (OpAmps,, A/D, D/A) Acknowledgement: Dave Wentzloff 1 Introduction to Operational Amplifiers DC Model Typically very high input resistance ~ 300KΩ v id in a v id out v out High

More information

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014 Asynchronous SAR ADC: Past, Present and Beyond Mike Shuo-Wei Chen University of Southern California MWSCAS 2014 1 Roles of ADCs Responsibility of ADC is increasing more BW, more dynamic range Potentially

More information

ECEN 720 High-Speed Links Circuits and Systems

ECEN 720 High-Speed Links Circuits and Systems 1 ECEN 720 High-Speed Links Circuits and Systems Lab4 Receiver Circuits Objective To learn fundamentals of receiver circuits. Introduction Receivers are used to recover the data stream transmitted by transmitters.

More information

Application Note 80. July How to Use the World s Smallest 24-Bit No Latency Delta-Sigma TM ADC to its Fullest Potential AN80-1

Application Note 80. July How to Use the World s Smallest 24-Bit No Latency Delta-Sigma TM ADC to its Fullest Potential AN80-1 July 1999 How to Use the World s Smallest 24-Bit No Latency Delta-Sigma TM ADC to its Fullest Potential Frequently Asked Questions About Delta-Sigma ADCs and the LTC2400 By Michael K. Mayes Linear Technology

More information

Fig. 2. Schematic of the THA. M1 M2 M3 M4 Vbias Vdd. Fig. 1. Simple 3-Bit Flash ADC. Table1. THA Design Values ( with 0.

Fig. 2. Schematic of the THA. M1 M2 M3 M4 Vbias Vdd. Fig. 1. Simple 3-Bit Flash ADC. Table1. THA Design Values ( with 0. A 2-GSPS 4-Bit Flash A/D Converter Using Multiple Track/Hold Amplifiers By Dr. Mahmoud Fawzy Wagdy, Professor And Chun-Shou (Charlie) Huang, MSEE Department of Electrical Engineering, California State

More information

Integrated Microsystems Laboratory. Franco Maloberti

Integrated Microsystems Laboratory. Franco Maloberti University of Pavia Integrated Microsystems Laboratory Power Efficient Data Convertes Franco Maloberti franco.maloberti@unipv.it OUTLINE Introduction Managing the noise power budget Challenges of State-of-the-art

More information

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS by Yves Geerts Alcatel Microelectronics, Belgium Michiel Steyaert KU Leuven, Belgium and Willy Sansen KU Leuven,

More information

SPT Bit, 250 MSPS A/D Converter with Demuxed Outputs

SPT Bit, 250 MSPS A/D Converter with Demuxed Outputs 8-Bit, 250 MSPS A/D Converter with Demuxed Outputs Features TTL/CMOS/PECL input logic compatible High conversion rate: 250 MSPS Single +5V power supply Very low power dissipation: 425mW 350 MHz full power

More information

12 Bit 1.3 GS/s Master-Slave 4:1 MUXDAC. 12 BIT 4:1 MUX 1.3GS/s DAC, DIE Lead HSD Package 12 BIT 4:1 MUX 1.3GS/s DAC, 88 Lead QFP Package

12 Bit 1.3 GS/s Master-Slave 4:1 MUXDAC. 12 BIT 4:1 MUX 1.3GS/s DAC, DIE Lead HSD Package 12 BIT 4:1 MUX 1.3GS/s DAC, 88 Lead QFP Package RDA012M4MS 12 Bit 1.3 GS/s Master-Slave 4:1 MUXDAC Features 12 Bit Resolution 1.3 GS/s Sampling Rate 4:1 Input Multiplexer Master-Slave Operation for Synchronous Operation of Multiple Devices Differential

More information

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE 3.1 INTRODUCTION An ADC is a device which converts a continuous quantity into discrete digital signal. Among its types, pipelined

More information

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015) A 14-bit 2.5 GS/s based on Multi-Clock Synchronization Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng,

More information

Lecture #6: Analog-to-Digital Converter

Lecture #6: Analog-to-Digital Converter Lecture #6: Analog-to-Digital Converter All electrical signals in the real world are analog, and their waveforms are continuous in time. Since most signal processing is done digitally in discrete time,

More information

Four-Channel Sample-and-Hold Amplifier AD684

Four-Channel Sample-and-Hold Amplifier AD684 a FEATURES Four Matched Sample-and-Hold Amplifiers Independent Inputs, Outputs and Control Pins 500 ns Hold Mode Settling 1 s Maximum Acquisition Time to 0.01% Low Droop Rate: 0.01 V/ s Internal Hold Capacitors

More information

9-Bit, 30 MSPS ADC AD9049 REV. 0. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

9-Bit, 30 MSPS ADC AD9049 REV. 0. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM a FEATURES Low Power: 00 mw On-Chip T/H, Reference Single +5 V Power Supply Operation Selectable 5 V or V Logic I/O Wide Dynamic Performance APPLICATIONS Digital Communications Professional Video Medical

More information

Data Converters. Lecture Fall2013 Page 1

Data Converters. Lecture Fall2013 Page 1 Data Converters Lecture Fall2013 Page 1 Lecture Fall2013 Page 2 Representing Real Numbers Limited # of Bits Many physically-based values are best represented with realnumbers as opposed to a discrete number

More information

IMPLEMENTING THE 10-BIT, 50MS/SEC PIPELINED ADC

IMPLEMENTING THE 10-BIT, 50MS/SEC PIPELINED ADC 98 CHAPTER 5 IMPLEMENTING THE 0-BIT, 50MS/SEC PIPELINED ADC 99 5.0 INTRODUCTION This chapter is devoted to describe the implementation of a 0-bit, 50MS/sec pipelined ADC with different stage resolutions

More information

AN increasing number of video and communication applications

AN increasing number of video and communication applications 1470 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 9, SEPTEMBER 1997 A Low-Power, High-Speed, Current-Feedback Op-Amp with a Novel Class AB High Current Output Stage Jim Bales Abstract A complementary

More information

THE TREND toward implementing systems with low

THE TREND toward implementing systems with low 724 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 7, JULY 1995 Design of a 100-MHz 10-mW 3-V Sample-and-Hold Amplifier in Digital Bipolar Technology Behzad Razavi, Member, IEEE Abstract This paper

More information

Administrative. No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed.

Administrative. No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed. Administrative No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed. EECS 247 Lecture 2 Nyquist Rate ADC: Architecture & Design 27 H.K. Page EE247 Lecture 2 ADC Converters Sampling (continued)

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

l To emphasize the measurement issues l To develop in-depth understanding of noise n timing noise, phase noise in RF systems! n noise in converters!

l To emphasize the measurement issues l To develop in-depth understanding of noise n timing noise, phase noise in RF systems! n noise in converters! Purpose! Measurement Methods and Applications to High-Performance Timing Test! Mani Soma! Univ of Washington, Seattle! l To emphasize the measurement issues critical in high-frequency test! l To develop

More information

Working with ADCs, OAs and the MSP430

Working with ADCs, OAs and the MSP430 Working with ADCs, OAs and the MSP430 Bonnie Baker HPA Senior Applications Engineer Texas Instruments 2006 Texas Instruments Inc, Slide 1 Agenda An Overview of the MSP430 Data Acquisition System SAR Converters

More information

An 11 Bit Sub- Ranging SAR ADC with Input Signal Range of Twice Supply Voltage

An 11 Bit Sub- Ranging SAR ADC with Input Signal Range of Twice Supply Voltage D. Aksin, M.A. Al- Shyoukh, F. Maloberti: "An 11 Bit Sub-Ranging SAR ADC with Input Signal Range of Twice Supply Voltage"; IEEE International Symposium on Circuits and Systems, ISCAS 2007, New Orleans,

More information

DESIGN OF A 500MHZ, 4-BIT LOW POWER ADC FOR UWB APPLICATION

DESIGN OF A 500MHZ, 4-BIT LOW POWER ADC FOR UWB APPLICATION DESIGN OF A 500MHZ, 4-BIT LOW POWER ADC FOR UWB APPLICATION SANTOSH KUMAR PATNAIK 1, DR. SWAPNA BANERJEE 2 1,2 E & ECE Department, Indian Institute of Technology, Kharagpur, Kharagpur, India Abstract-This

More information

A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection

A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection Somnath Kundu 1, Bongjin Kim 1,2, Chris H. Kim 1 1

More information

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with ±10V, ±5V, and 0 to +5V Analog Input Ranges

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with ±10V, ±5V, and 0 to +5V Analog Input Ranges 19-3157; Rev 4; 10/08 8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs General Description The MAX1316 MAX1318/MAX1320 MAX1322/MAX1324 MAX1326 14-bit, analog-to-digital converters (ADCs) offer two,

More information

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range 19-2755; Rev 1; 8/3 16-Bit, 135ksps, Single-Supply ADCs with General Description The 16-bit, low-power, successiveapproximation analog-to-digital converters (ADCs) feature automatic power-down, a factory-trimmed

More information

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth LETTER IEICE Electronics Express, Vol.11, No.2, 1 9 A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth Mingshuo Wang a), Fan Ye, Wei Li, and Junyan Ren b) State Key Laboratory

More information

Proposing. An Interpolated Pipeline ADC

Proposing. An Interpolated Pipeline ADC Proposing An Interpolated Pipeline ADC Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Lab. Background 38GHz long range mm-wave system Role of long range mm-wave Current Optical

More information

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation Y. Zu, C.- H. Chan, S.- W. Sin, S.- P. U, R.P. Martins, F. Maloberti: "A 35 fj 10b 160 MS/s Pipelined-SAR ADC with Decoupled Flip-Around MDAC and Self- Embedded Offset Cancellation"; IEEE Asian Solid-

More information

Quad 12-Bit Digital-to-Analog Converter (Serial Interface)

Quad 12-Bit Digital-to-Analog Converter (Serial Interface) Quad 1-Bit Digital-to-Analog Converter (Serial Interface) FEATURES COMPLETE QUAD DAC INCLUDES INTERNAL REFERENCES AND OUTPUT AMPLIFIERS GUARANTEED SPECIFICATIONS OVER TEMPERATURE GUARANTEED MONOTONIC OVER

More information

Digital Waveform Recorders

Digital Waveform Recorders Digital Waveform Recorders Error Models & Performance Measures Dan Knierim, Tektronix Fellow Experimental Set-up for high-speed phenomena Transducer(s) high-speed physical phenomenon under study physical

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 Lecture 5: Termination, TX Driver, & Multiplexer Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

EE 435. Lecture 32. DAC Design. Parasitic Capacitances. The String DAC

EE 435. Lecture 32. DAC Design. Parasitic Capacitances. The String DAC EE 435 Lecture 32 DAC Design The String DAC Parasitic Capacitances . eview from last lecture. DFT Simulation from Matlab . eview from last lecture. Summary of time and amplitude quantization assessment

More information

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.2

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.2 13.2 An MLSE Receiver for Electronic-Dispersion Compensation of OC-192 Fiber Links Hyeon-min Bae 1, Jonathan Ashbrook 1, Jinki Park 1, Naresh Shanbhag 2, Andrew Singer 2, Sanjiv Chopra 1 1 Intersymbol

More information

10-Bit 5MHz Pipeline A/D Converter. Kannan Sockalingam and Rick Thibodeau

10-Bit 5MHz Pipeline A/D Converter. Kannan Sockalingam and Rick Thibodeau 10-Bit 5MHz Pipeline A/D Converter Kannan Sockalingam and Rick Thibodeau July 30, 2002 Contents 1 Introduction 8 1.1 Project Overview........................... 8 1.2 Objective...............................

More information

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999 Analog-to-Digital Converter Survey & Analysis Update: July 16,1999 References: 1. R.H. Walden, Analog-to-digital converter survey and analysis, IEEE Journal on Selected Areas in Communications, vol. 17,

More information

4bit,6.5GHz Flash ADC for High Speed Application in 130nm

4bit,6.5GHz Flash ADC for High Speed Application in 130nm Australian Journal of Basic and Applied Sciences, 5(10): 99-106, 2011 ISSN 1991-8178 4bit,6.5GHz Flash ADC for High Speed Application in 130nm 1 M.J. Taghizadeh.Marvast, 2 M.A. Mohd.Ali, 3 H. Sanusi Department

More information

A 6-bit Subranging ADC using Single CDAC Interpolation

A 6-bit Subranging ADC using Single CDAC Interpolation A 6-bit Subranging ADC using Single CDAC Interpolation Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Interpolation techniques 6-bit, 500 MS/s

More information

Tuesday, March 1st, 9:15 11:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo.

Tuesday, March 1st, 9:15 11:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo. Nyquist Analog to Digital it Converters Tuesday, March 1st, 9:15 11:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo 3.1 Introduction 3.1.1 DAC applications

More information

ADC1006S055/ General description. 2. Features. 3. Applications. Single 10 bits ADC, up to 55 MHz or 70 MHz

ADC1006S055/ General description. 2. Features. 3. Applications. Single 10 bits ADC, up to 55 MHz or 70 MHz Rev. 03 2 July 2012 Product data sheet 1. General description The are a family of Bipolar CMOS (BiCMOS) 10-bit Analog-to-Digital Converters (ADC) optimized for a wide range of applications such as cellular

More information

Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) For further information, please contact Crystal Semiconductor at (512) or 1 (800)

Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) For further information, please contact Crystal Semiconductor at (512) or 1 (800) Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) 1) Do you have a four channel part? Not at this time, but we have plans to do a multichannel product Q4 97. We also have 4 digital output lines which can

More information

A Fast Waveform-Digitizing ASICbased DAQ for a Position & Time Sensing Large-Area Photo-Detector System

A Fast Waveform-Digitizing ASICbased DAQ for a Position & Time Sensing Large-Area Photo-Detector System A Fast Waveform-Digitizing ASICbased DAQ for a Position & Time Sensing Large-Area Photo-Detector System Eric Oberla on behalf of the LAPPD collaboration PHOTODET 2012 12-June-2012 Outline LAPPD overview:

More information

AD9772A - Functional Block Diagram

AD9772A - Functional Block Diagram F FEATURES single 3.0 V to 3.6 V supply 14-Bit DAC Resolution 160 MPS Input Data Rate 67.5 MHz Reconstruction Passband @ 160 MPS 74 dbc FDR @ 25 MHz 2 Interpolation Filter with High- or Low-Pass Response

More information

Short Range UWB Radio Systems. Finding the power/area limits of

Short Range UWB Radio Systems. Finding the power/area limits of Short Range UWB Radio Systems Finding the power/area limits of CMOS Bob Brodersen Ian O Donnell Mike Chen Stanley Wang Integrated Impulse Transceiver RF Front-End LNA Pulser Amp Analog CLK GEN PMF Digital

More information

ADC07D1520. Low Power, 7-Bit, Dual 1.5 GSPS or Single 3.0 GSPS A/D Converter. General Description. Features. Key Specifications.

ADC07D1520. Low Power, 7-Bit, Dual 1.5 GSPS or Single 3.0 GSPS A/D Converter. General Description. Features. Key Specifications. Low Power, 7-Bit, Dual 1.5 GSPS or Single 3.0 GSPS A/D Converter General Description The ADC07D1520 is a dual, low power, high performance CMOS analog-to-digital converter. The ADC07D1520 digitizes signals

More information

Figure 1. Functional Block Diagram

Figure 1. Functional Block Diagram Features 1-bit resolution 65/8 MSPS maximum sampling rate Ultra-Low Power Dissipation: 38/46 mw 61.6 db snr @ 8 MHz FIN Internal reference circuitry 1.8 V core supply voltage 1.7-3.6 V I/O supply voltage

More information

12-Bit Successive-Approximation Integrated Circuit A/D Converter AD ADC80

12-Bit Successive-Approximation Integrated Circuit A/D Converter AD ADC80 a 2-Bit Successive-Approximation Integrated Circuit A/D Converter FEATURES True 2-Bit Operation: Max Nonlinearity.2% Low Gain T.C.: 3 ppm/ C Max Low Power: 8 mw Fast Conversion Time: 25 s Precision 6.3

More information

ADC Bit 65 MSPS 3V A/D Converter

ADC Bit 65 MSPS 3V A/D Converter 10-Bit 65 MSPS 3V A/D Converter General Description The is a monolithic CMOS analog-to-digital converter capable of converting analog input signals into 10-bit digital words at 65 Megasamples per second

More information

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection Maxim > Design Support > Technical Documents > Application Notes > Communications Circuits > APP 3942 Maxim > Design Support > Technical Documents > Application Notes > High-Speed Interconnect > APP 3942

More information

Design of an 8-bit Successive Approximation Pipelined Analog to Digital Converter (SAP- ADC) in 90 nm CMOS

Design of an 8-bit Successive Approximation Pipelined Analog to Digital Converter (SAP- ADC) in 90 nm CMOS Design of an 8-bit Successive Approximation Pipelined Analog to Digital Converter (SAP- ADC) in 90 nm CMOS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

More information

Deep-Submicron CMOS Design Methodology for High-Performance Low- Power Analog-to-Digital Converters

Deep-Submicron CMOS Design Methodology for High-Performance Low- Power Analog-to-Digital Converters Deep-Submicron CMOS Design Methodology for High-Performance Low- Power Analog-to-Digital Converters Abstract In this paper, we present a complete design methodology for high-performance low-power Analog-to-Digital

More information

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 19-1560; Rev 1; 7/05 +2.7V to +5.5V, Low-Power, Triple, Parallel General Description The parallel-input, voltage-output, triple 8-bit digital-to-analog converter (DAC) operates from a single +2.7V to +5.5V

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Jingguang Wang for the degree of Master of Science in Electrical and Computer Engineering presented on November 12, 2008 Title: Techniques for Improving Timing Accuracy of

More information

12-Bit Successive-Approximation Integrated Circuit ADC ADADC80

12-Bit Successive-Approximation Integrated Circuit ADC ADADC80 2-Bit Successive-Approximation Integrated Circuit ADC FEATURES True 2-bit operation: maximum nonlinearity ±.2% Low gain temperature coefficient (TC): ±3 ppm/ C maximum Low power: 8 mw Fast conversion time:

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering.

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering. NPTEL Syllabus VLSI Data Conversion Circuits - Video course COURSE OUTLINE This course covers the analysis and design of CMOS Analog-to-Digital and Digital-to-Analog Converters,with about 7 design assigments.

More information

CDK bit, 250 MSPS A/D Converter with Demuxed Outputs

CDK bit, 250 MSPS A/D Converter with Demuxed Outputs Amplify the Human Experience CDK1301 8-bit, 250 MSPS A/D Converter with Demuxed Outputs features n TTL/CMOS/PECL input logic compatible n High conversion rate: 250 MSPS n Single +5V power supply n Very

More information