2. ADC Architectures and CMOS Circuits

Size: px
Start display at page:

Download "2. ADC Architectures and CMOS Circuits"

Transcription

1 /58 2. Architectures and CMOS Circuits Francesc Serra Graells Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es Integrated Circuits and Systems IMB-CNM(CSIC)

2 2/58 Classification Techniques Sub-Ranging, Time-Interleaving and Pipelining Techniques Successive-Approximation Techniques Integrating Techniques Delta-Sigma Modulation Techniques Time-Domain Techniques

3 3/58 Classification Techniques Sub-Ranging, Time-Interleaving and Pipelining Techniques Successive-Approximation Techniques Integrating Techniques Delta-Sigma Modulation Techniques Time-Domain Techniques

4 4/58 Families Classification based on architecture approach: High speed Sub-ranging Analog signal Digital signal Parallel Interleaved Pipeline voltage/current amplitude Digital timebase code Algorithmic Predictive SAR Integrating Delta-Sigma Distinctive characteristics: Feedforward vs feedback control Single vs multiple stages Amplitude vs time domains...and many more! Typically mixed solutions... High dynamic range

5 5/58 Evolution EPSCO DATRAC, B.M. Gordon, 953 -bit 50kSps 500W SAR 0.5m x 0.4m x 0.65m, 70kg Vacuum tube technology W. Kester, Analog-Digital Conversion archives/39-06/data_conversion_handbook.html

6 6/58 Evolution +60years Pipeline SAR Delta-Sigma Other State-of-art Solid-state technologies B. Murmann, Performance Survey EPSCO DATRAC, B.M. Gordon, 953 -bit 50kSps 500W SAR 0.5m x 0.4m x 0.65m, 70kg Vacuum tube technology W. Kester, Analog-Digital Conversion archives/39-06/data_conversion_handbook.html P/f s [J] fJ/conv-step 70dB SNDR [db] -bit

7 7/58 Evolution Performance enhancement: Architecture strategy Circuit design Integration technology State-of-art Solid-state technologies Still room for further improvement? Pipeline SAR Delta-Sigma Other B. Murmann, Performance Survey P/f s [J] SNDR [db]

8 8/58 Classification Techniques Sub-Ranging, Time-Interleaving and Pipelining Techniques Successive-Approximation Techniques Integrating Techniques Delta-Sigma Modulation Techniques Time-Domain Techniques

9 9/58 Basic Architecture Building blocks: Threshold generator Latched comparator array e.g. single-ended 3-bit flash thermometer code natural binary code Digital encoder combinational only logic

10 0/58 Basic Architecture Building blocks: e.g. single-ended 3-bit flash Threshold generator Latched comparator array thermometer code clock cycle conversion time natural binary code Digital encoder Area and power scaling by 2 ENOB Distortion due to technology mismatching combinational only logic

11 /58 Latched Comparator Design Compact CMOS circuit: clock M3 M4 Non-overlapped clock phases M M2

12 2/58 Latched Comparator Design Compact CMOS circuit: clock M3 M4 High-speed operation Non-overlapped clock phases Each comparator crosses at different threshold V thk M M2 Threshold voltage offset? Pre-charging phase Decision phase M3 M4 0 0 M3 M4 Positive feedback to speed-up comparison Symmetrical loading M M2 M M2

13 3/58 Comparator Optimization By attaching an array of level shifters: clock single-ended version Ck C2k signal baseline Ck C2k Ck C2k

14 4/58 Comparator Optimization By attaching an array of level shifters: clock Ck C2k single-ended version All comparators latch at the same level (V ref ) Single comparator design Low quiescent power (resistor-less thresholds) Capacitor area overhead Input capacitance increased Slower operation signal baseline Ck C2k Ck C2k effective signal effective k-threshold

15 5/58 Comparator Optimization By attaching an array of level shifters: clock Ckp C2kp fully-differential version Interference rejection Full-scale extension (+6dB) SNR enhancement (+3dB) Distortion cancellation (even harmonics) Ckn C2kn Area and power overheads (x2) Higher symmetry requirements Time

16 6/58 Comparators Offset Distortion due to DNL MOSFET V TH mismatching effects: M3 M4 M M2 CMOS technology Pelgrom's Law

17 7/58 Comparators Offset Thermometer code bubbles! Error propagation at encoding... Bubble 0 0 Latched comparator array 0 Digital encoder Gaussian probability distribution Large device area (WL) and input capacitance penalties

18 8/58 Comparators Offset Thermometer code bubbles! Digitally assisted analog design: Latched comparator array Bubble Bubble error correction (BEC) Digital encoder?

19 9/58 Comparators Offset Thermometer code bubbles! Digitally assisted analog design: Latched comparator array Bubble Bubble error correction (BEC) Digital encoder (WL) large enough to limit bubble distance to code: 0 X X 0 X 0 () X

20 20/58 Comparators Offset More on digitally assisted analog design: an stochastic flash Digital inverse Gaussian integral e.g. 63 comparators Digital full-adders S. Weaver, B. Hershberg and Un-Ku Moon, Digitally Synthesized Stochastic Using Only Standard Digital Cells, IEEE Transactions on Circuits and Systems I, 6():84-9, Jan 204

21 2/58 Comparators Offset More on digitally assisted analog design: an stochastic flash Digital inverse Gaussian integral Almost digital Compact area Non-linearity compensation required Power consumption e.g. 63 comparators Digital full-adders S. Weaver, B. Hershberg and Un-Ku Moon, Digitally Synthesized Stochastic Using Only Standard Digital Cells, IEEE Transactions on Circuits and Systems I, 6():84-9, Jan 204

22 22/58 Classification Techniques Sub-Ranging, Time-Interleaving and Pipelining Techniques Successive-Approximation Techniques Integrating Techniques Delta-Sigma Modulation Techniques Time-Domain Techniques

23 23/58 Sub-Range Building blocks: Fine stage S/H DAC ENOB/2 bit ENOB/2 bit ENOB/2 bit Coarse stage MSB Encoder LSB Two-step coarse-fine data conversion scheme ENOB splitting can be chosen asymmetric depending on circuits...

24 24/58 Sub-Range Building blocks: Fine stage S/H Coarse stage ENOB/2 bit DAC ENOB/2 bit MSB Encoder ENOB/2 bit LSB Speed reduction (x2) Non-linearity caused by mismatching between coarse -DAC, and between coarse-fine Two-step coarse-fine data conversion scheme ENOB splitting can be chosen asymmetric depending on circuits... Better ENOB scaling of comparators and passive components! e.g. Number of comparators for 8-bit flash : single-stage two-stage

25 25/58 Sub-Range Circuit implementation: S/H Fine stage Non-linearity cuased by non-unitary gain in MSB substraction Compact SC implementation: ENOB/2 bit DAC ENOB/2 bit ENOB/2 bit to coarse flash C single-ended version Coarse stage MSBs Encoder LSBs C C coarse fine signal baseline C/2 to fine flash clock from coarse flash C/4

26 26/58 Time-Interleaved Two-step CMOS comparator: sampling + auto-zero C single-ended version M2 M clock S Q C M2 M substraction + quantization C M2 M Offset insensitive! Compact area analog inverter-based Poor power supply rejection ratio (PSRR)

27 27/58 Time-Interleaved Counter-phase two-step CMOS comparator: Offset insensitive! clock S Q Q S CA M2A MA Compact area Higher speed (x2) 0 CB M2B MB Poor power supply rejection ratio (PSRR) Higher jitter sensitivity (both clock edges)

28 28/58 Time-Interleaved Extending the same idea to multiple time-interleaving: clock S Q S S S Q Q Q Q S e.g. N=4 Overall equivalent high-speed conversion Each flash operates at low-speed (/N) Q Q Q S S S Large area (xn) High latency (xn) Complex synchronization

29 29/58 Pipeline Combination of cascaded sub-ranging and time-interleaving: clock Stage Stage 2 Stage M stage stage 2 p-bit q-bit r-bit stage M MSB Time Alignment LSB Time Alignment S/H Sub-converter functions: DAC residue same i/o full-scale Sampling and hold (S/H) Sub-range quantization p-bit p-bit Residue computation and scaling Sub-converter

30 30/58 Pipeline Combination of cascaded sub-ranging and time-interleaving: clock Stage Stage 2 Stage M stage stage 2 p-bit q-bit r-bit stage M S/H MSB Time Alignment LSB Time Alignment Simpler flash sub-s Performance depends on first-stage only p-bit DAC p-bit residue same i/o full-scale No speed reduction High latency (xm) Sub-converter

31 3/58 Pipeline Simple -bit stage case study: Stage Stage 2 Stage M Time Alignment M SC implementation of each stage: single-ended version signal baseline

32 32/58 Pipeline clock Simple -bit stage case study: Stage Stage 2 Stage M sampling + quantization () Time Alignment M SC implementation of each stage: single-ended version residue (>0) + scaling signal baseline

33 33/58 Pipeline Simple -bit stage case study: Stage Stage 2 Stage M Time Alignment M SC implementation of each stage: single-ended version Simplest flash sub-s Inherently linear single bit quantization signal baseline Noise contributions from stage 2 multi-bit first stage Offset sensitivity

34 34/58 Classification Techniques Sub-Ranging, Time-Interleaving and Pipelining Techniques Successive-Approximation Techniques Integrating Techniques Delta-Sigma Modulation Techniques Time-Domain Techniques

35 35/58 Successive Approximation Building blocks: residue S/H digital state-machine (algorithm) approximation DAC N-bit Successive Approximation Register (SAR) N

36 36/58 Successive Approximation Building blocks: residue e.g. 4-bit SAR S/H digital state-machine (algorithm) Successive Approximation Register (SAR) approximation DAC N time N-bit MSB LSB time Analog minimalist Speed requirements (xn) Very low-power consumption Performance limited by flash DAC

37 37/58 Successive Approximation Circuit implementation: clock S/H DAC N-bit Successive Approximation Register (SAR) N single-ended version to SAR from SAR signal baseline

38 38/58 Successive Approximation Circuit implementation: clock S/H DAC N-bit Successive Approximation Register (SAR) N single-ended version to SAR signal baseline

39 39/58 Successive Approximation Circuit implementation: clock S/H DAC N-bit Successive Approximation Register (SAR) N single-ended version to SAR signal baseline

40 40/58 Successive Approximation Circuit implementation: clock S/H DAC N-bit Successive Approximation Register (SAR) N single-ended version to SAR from SAR signal baseline

41 4/58 Classification Techniques Sub-Ranging, Time-Interleaving and Pipelining Techniques Successive-Approximation Techniques Integrating Techniques Delta-Sigma Modulation Techniques Time-Domain Techniques

42 42/58 Single-Slope Building blocks: S/H enable reset Digital counter N pulse-width modulation (PWM) clock 0 time

43 43/58 Single-Slope Building blocks: S/H enable reset Digital counter N pulse-width modulation (PWM) clock Analog minimalist Very low-power Speed requirements (x2 N ) Technological sensitivity (RC) 0 time

44 44/58 Dual-Slope Building blocks: S/H control reset Dual counter N clock Analog minimalist Very low-power Speed requirements (x2 N ) Technology independence (RC) 0 time

45 45/58 Integrate-and-Fire Building blocks: reset Asynchronous counter N pulse-density modulation (PDM) Current-mode sensors (e.g. imagers) Very low-power Speed requirements adapted to signal Technology sensitivity (C) 0 time

46 46/58 Classification Techniques Sub-Ranging, Time-Interleaving and Pipelining Techniques Successive-Approximation Techniques Integrating Techniques Delta-Sigma Modulation Techniques Time-Domain Techniques

47 47/58 Delta-Sigma Modulator General single-loop DSM architecture: noise-shaper (predictor) quantizer error DSM digital output S/H DAC digital decimator (down sampler) prediction feedback DAC

48 48/58 Delta-Sigma Modulator General single-loop DSM architecture: S/H noise-shaper (predictor) quantizer error prediction DAC feedback DAC DSM digital output digital decimator (down sampler) Noise-shaper filter: In-band high-gain Either continuous- H(s) or discrete-time H(z) and DAC blocks can be relaxed! DSM signal vs quantization noise behavior? signal quantization noise output

49 49/58 Delta-Sigma Noise Shaping Simplest architecture: first-order (N=) -bit (B=) single-loop DSM S/H integrator comparator Single-bit feedback DAC is intrinsically linear time

50 50/58 Delta-Sigma Noise Shaping Simplest architecture: first-order (N=) -bit (B=) single-loop DSM S/H integrator comparator Single-bit feedback DAC is intrinsically linear Oversampling is needed all-pass (delay) log(power) signal 20dB/dec out-band noise (differentiator) high-pass shaping log(frequency)

51 5/58 Delta-Sigma Noise Shaping Simplest architecture: first-order (N=) -bit (B=) single-loop DSM S/H integrator comparator Single-bit feedback DAC is intrinsically linear Oversampling is needed Higher order (N>) shaping to avoid signal to quantization noise correlation (harmonics) log(power) all-pass (delay) signal in-band harmonics (differentiator) high-pass shaping log(frequency)

52 52/58 Delta-Sigma Noise Shaping Higher-order (N) noise shaping: first integrator second integrator S/H gain coefficients Sharper noise shaping log(power) Signal to quantization noise uncorrelation (continuous spectra) 40dB/dec Possibility of loop instability for N>2 Coefficients optimization! log(frequency)

53 53/58 DSM Design N-order B-bit single loop architecture: S/H multi-bit (B) quantization Multi-bit quantization: Resolution added to overall DR Internal full-scale reduction Feedback DAC not intrinsically linear High-order filtering: Sharper noise shaping Stability issues Ideal dynamic range: shaping order oversampling only log(power) signal (N+0.5)-bit/oct(OSR) 20N db/dec 6N db/oct direct improvement log(frequency)

54 54/58 DSM Design Feedfoward cancellation: Internal full scale low occupancy Additional adder stage in front of quantizer S/H Resonator attenuation: Extra noise shaping at band edge Zero sensitivity to coefficient matching log(power) S/H log(frequency)

55 55/58 DSM SC Circuits clock S X Fully-differential 2nd-order single-bit example: input sampler reuse for DAC feedback common mode integrator initialization passive adder

56 56/58 Classification Techniques Sub-Ranging, Time-Interleaving and Pipelining Techniques Successive-Approximation Techniques Integrating Techniques Delta-Sigma Modulation Techniques Time-Domain Techniques

57 57/58 Voltage-to-Frequency Building blocks: voltage-controlled oscillator (VCO) reset Coarse counter S/H MSB Fine register 0 0 xor detection Encoder LSB S N Q

58 58/58 Voltage-to-Frequency Building blocks: voltage-controlled oscillator (VCO) reset Coarse counter S/H MSB Fine register Encoder LSB N Low frequecy (f coarse <<2 ENOB f s ), unlike integrating s Non-linearity V in -I bias and I bias -f VCO S Q Low-voltage operation Technology sensitivity

3. DAC Architectures and CMOS Circuits

3. DAC Architectures and CMOS Circuits 1/30 3. DAC Architectures and CMOS Circuits Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es

More information

2. Single Stage OpAmps

2. Single Stage OpAmps /74 2. Single Stage OpAmps Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es Integrated

More information

6. OpAmp Application Examples

6. OpAmp Application Examples Preamp MRC GmC Switched-Cap 1/31 6. OpAmp Application Examples Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion Florian Erdinger Lehrstuhl für Schaltungstechnik und Simulation Technische Informatik der Uni Heidelberg VLSI Design - Mixed Mode Simulation F. Erdinger, ZITI, Uni Heidelberg

More information

Lecture 9, ANIK. Data converters 1

Lecture 9, ANIK. Data converters 1 Lecture 9, ANIK Data converters 1 What did we do last time? Noise and distortion Understanding the simplest circuit noise Understanding some of the sources of distortion 502 of 530 What will we do today?

More information

Analog-to-Digital i Converters

Analog-to-Digital i Converters CSE 577 Spring 2011 Analog-to-Digital i Converters Jaehyun Lim, Kyusun Choi Department t of Computer Science and Engineering i The Pennsylvania State University ADC Glossary DNL (differential nonlinearity)

More information

Design of Analog and Mixed Integrated Circuits and Systems Theory Exercises

Design of Analog and Mixed Integrated Circuits and Systems Theory Exercises 102726 Design of nalog and Mixed Theory Exercises Francesc Serra Graells http://www.cnm.es/~pserra/uab/damics paco.serra@imb-cnm.csic.es 1 Introduction to the Design of nalog Integrated Circuits 1.1 The

More information

CHAPTER. delta-sigma modulators 1.0

CHAPTER. delta-sigma modulators 1.0 CHAPTER 1 CHAPTER Conventional delta-sigma modulators 1.0 This Chapter presents the traditional first- and second-order DSM. The main sources for non-ideal operation are described together with some commonly

More information

Mixed-Signal-Electronics

Mixed-Signal-Electronics 1 Mixed-Signal-Electronics PD Dr.-Ing. Stephan Henzler 2 Chapter 6 Nyquist Rate Analog-to-Digital Converters 3 Analog-to-Digital Converter Families Architecture Variant Speed Precision Counting Operation

More information

Architecture for Electrochemical Sensors

Architecture for Electrochemical Sensors 1/19 J. Pallarès 1, S. Sutula 1, J. Gonzalo-Ruiz 2, F. X. Muñoz-Pascual 2, L. Terés 1,3 and F. Serra-Graells 1,3 paco.serra@imb-cnm.csic.es 1 Institut de Microelectrònica de Barcelona, IMB-CNM(CSIC) 2

More information

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering.

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering. NPTEL Syllabus VLSI Data Conversion Circuits - Video course COURSE OUTLINE This course covers the analysis and design of CMOS Analog-to-Digital and Digital-to-Analog Converters,with about 7 design assigments.

More information

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K. EE247 Lecture 22 Pipelined ADCs Combining the bits Stage implementation Circuits Noise budgeting Figures of merit (FOM) and trends for ADCs How to use/not use FOM Oversampled ADCs EECS 247 Lecture 22:

More information

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing Fundamentals of Data Converters DAVID KRESS Director of Technical Marketing 9/14/2016 Analog to Electronic Signal Processing Sensor (INPUT) Amp Converter Digital Processor Actuator (OUTPUT) Amp Converter

More information

CMOS High Speed A/D Converter Architectures

CMOS High Speed A/D Converter Architectures CHAPTER 3 CMOS High Speed A/D Converter Architectures 3.1 Introduction In the previous chapter, basic key functions are examined with special emphasis on the power dissipation associated with its implementation.

More information

Lecture #6: Analog-to-Digital Converter

Lecture #6: Analog-to-Digital Converter Lecture #6: Analog-to-Digital Converter All electrical signals in the real world are analog, and their waveforms are continuous in time. Since most signal processing is done digitally in discrete time,

More information

Tuesday, March 1st, 9:15 11:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo.

Tuesday, March 1st, 9:15 11:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo. Nyquist Analog to Digital it Converters Tuesday, March 1st, 9:15 11:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo 3.1 Introduction 3.1.1 DAC applications

More information

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive 1 The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive approximation converter. 2 3 The idea of sampling is fully covered

More information

Data Converters. Lecture Fall2013 Page 1

Data Converters. Lecture Fall2013 Page 1 Data Converters Lecture Fall2013 Page 1 Lecture Fall2013 Page 2 Representing Real Numbers Limited # of Bits Many physically-based values are best represented with realnumbers as opposed to a discrete number

More information

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS by Yves Geerts Alcatel Microelectronics, Belgium Michiel Steyaert KU Leuven, Belgium and Willy Sansen KU Leuven,

More information

A 10-bit Linearity Current-Controlled Ring Oscillator with Rolling Regulation for Smart Sensing

A 10-bit Linearity Current-Controlled Ring Oscillator with Rolling Regulation for Smart Sensing 1/19 A 10-bit Linearity Current-Controlled Ring Oscillator with Rolling Regulation for Smart Sensing M.Dei 1, J.Sacristán 1, E.Marigó 2, M.Soundara 2,L.Terés 1,3 and F.Serra-Graells 1,3 paco.serra@imb-cnm.csic.es

More information

Mixed-Signal-Electronics

Mixed-Signal-Electronics 1 Mixed-Signal-Electronics PD Dr.-Ing. Stephan Henzler 2 Chapter 6 Nyquist Rate Analog-to-Digital Converters 3 Pipelined ADC 2 4 High-Speed ADC: Pipeline Processing Stephan Henzler Advanced Integrated

More information

A Successive Approximation ADC based on a new Segmented DAC

A Successive Approximation ADC based on a new Segmented DAC A Successive Approximation ADC based on a new Segmented DAC segmented current-mode DAC successive approximation ADC bi-direction segmented current-mode DAC DAC INL 0.47 LSB DNL 0.154 LSB DAC 3V 8 2MS/s

More information

Abstract Abstract approved:

Abstract Abstract approved: AN ABSTRACT OF THE DISSERTATION OF Taehwan Oh for the degree of Doctor of Philosophy in Electrical and Computer Engineering presented on May 29, 2013. Title: Power Efficient Analog-to-Digital Converters

More information

Selecting and Using High-Precision Digital-to-Analog Converters

Selecting and Using High-Precision Digital-to-Analog Converters Selecting and Using High-Precision Digital-to-Analog Converters Chad Steward DAC Design Section Leader Linear Technology Corporation Many applications, including precision instrumentation, industrial automation,

More information

Summary Last Lecture

Summary Last Lecture EE247 Lecture 23 Converters Techniques to reduce flash complexity Interpolating (continued) Folding Multi-Step s Two-Step flash Pipelined s EECS 247 Lecture 23: Data Converters 26 H.K. Page Summary Last

More information

Pipeline vs. Sigma Delta ADC for Communications Applications

Pipeline vs. Sigma Delta ADC for Communications Applications Pipeline vs. Sigma Delta ADC for Communications Applications Noel O Riordan, Mixed-Signal IP Group, S3 Semiconductors noel.oriordan@s3group.com Introduction The Analog-to-Digital Converter (ADC) is a key

More information

Appendix A Comparison of ADC Architectures

Appendix A Comparison of ADC Architectures Appendix A Comparison of ADC Architectures A comparison of continuous-time delta-sigma (CT ), pipeline, and timeinterleaved (TI) SAR ADCs which target wide signal bandwidths (greater than 100 MHz) and

More information

Data Converters. Springer FRANCO MALOBERTI. Pavia University, Italy

Data Converters. Springer FRANCO MALOBERTI. Pavia University, Italy Data Converters by FRANCO MALOBERTI Pavia University, Italy Springer Contents Dedicat ion Preface 1. BACKGROUND ELEMENTS 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 The Ideal Data Converter Sampling 1.2.1 Undersampling

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications RESEARCH ARTICLE OPEN ACCESS Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications Sharon Theresa George*, J. Mangaiyarkarasi** *(Department of Information and Communication

More information

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016 Analog I/O ECE 153B Sensor & Peripheral Interface Design Introduction Anytime we need to monitor or control analog signals with a digital system, we require analogto-digital (ADC) and digital-to-analog

More information

Design of Pipeline Analog to Digital Converter

Design of Pipeline Analog to Digital Converter Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analog-to-digital converter (ADC) architecture is the most popular topology

More information

10. Chapter: A/D and D/A converter principles

10. Chapter: A/D and D/A converter principles Punčochář, Mohylová: TELO, Chapter 10: A/D and D/A converter principles 1 10. Chapter: A/D and D/A converter principles Time of study: 6 hours Goals: the student should be able to define basic principles

More information

DESIGN OF LOW POWER VCO ENABLED QUANTIZER IN CONTINUOUS TIME SIGMA DELTA ADC FOR SIGNAL PROCESSING APPLICATION

DESIGN OF LOW POWER VCO ENABLED QUANTIZER IN CONTINUOUS TIME SIGMA DELTA ADC FOR SIGNAL PROCESSING APPLICATION ISSN: 2395-1680 (ONLINE) DOI: 10.21917/ijme.2016.0033 ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2016, VOLUME: 02, ISSUE: 01 DESIGN OF LOW POWER VCO ENABLED QUANTIZER IN CONTINUOUS TIME SIGMA DELTA ADC

More information

Another way to implement a folding ADC

Another way to implement a folding ADC Another way to implement a folding ADC J. Van Valburg and R. van de Plassche, An 8-b 650 MHz Folding ADC, IEEE JSSC, vol 27, #12, pp. 1662-6, Dec 1992 Coupled Differential Pair J. Van Valburg and R. van

More information

Summary Last Lecture

Summary Last Lecture EE247 Lecture 23 Converters Techniques to reduce flash complexity Interpolating (continued) Folding Multi-Step s Two-Step flash Pipelined s EECS 247 Lecture 23: Data Converters 26 H.K. Page 1 Summary Last

More information

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010.

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010. Workshop ESSCIRC Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC 17. September 2010 Christof Dohmen Outline System Overview Analog-Front-End Chopper-Amplifier

More information

High-Speed Analog to Digital Converters. ELCT 1003:High Speed ADCs

High-Speed Analog to Digital Converters. ELCT 1003:High Speed ADCs High-Speed Analog to Digital Converters Ann Kotkat Barbara Georgy Mahmoud Tantawi Ayman Sakr Heidi El-Feky Nourane Gamal 1 Outline Introduction. Process of ADC. ADC Specifications. Flash ADC. Pipelined

More information

ANALOG-TO-DIGITAL CONVERTER FOR INPUT VOLTAGE MEASUREMENTS IN LOW- POWER DIGITALLY CONTROLLED SWITCH-MODE POWER SUPPLY CONVERTERS

ANALOG-TO-DIGITAL CONVERTER FOR INPUT VOLTAGE MEASUREMENTS IN LOW- POWER DIGITALLY CONTROLLED SWITCH-MODE POWER SUPPLY CONVERTERS ANALOG-TO-DIGITAL CONVERTER FOR INPUT VOLTAGE MEASUREMENTS IN LOW- POWER DIGITALLY CONTROLLED SWITCH-MODE POWER SUPPLY CONVERTERS Aleksandar Radić, S. M. Ahsanuzzaman, Amir Parayandeh, and Aleksandar Prodić

More information

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation Y. Zu, C.- H. Chan, S.- W. Sin, S.- P. U, R.P. Martins, F. Maloberti: "A 35 fj 10b 160 MS/s Pipelined-SAR ADC with Decoupled Flip-Around MDAC and Self- Embedded Offset Cancellation"; IEEE Asian Solid-

More information

Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS

Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 6 Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS Goal The goals of this experiment are: - Verify the operation of a differential ADC; - Find the

More information

Chapter 2 Signal Conditioning, Propagation, and Conversion

Chapter 2 Signal Conditioning, Propagation, and Conversion 09/0 PHY 4330 Instrumentation I Chapter Signal Conditioning, Propagation, and Conversion. Amplification (Review of Op-amps) Reference: D. A. Bell, Operational Amplifiers Applications, Troubleshooting,

More information

CMOS ADC & DAC Principles

CMOS ADC & DAC Principles CMOS ADC & DAC Principles Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 201 Table of contents Definitions Digital-to-analog converters Resistive Capacitive

More information

The need for Data Converters

The need for Data Converters The need for Data Converters ANALOG SIGNAL (Speech, Images, Sensors, Radar, etc.) PRE-PROCESSING (Filtering and analog to digital conversion) DIGITAL PROCESSOR (Microprocessor) POST-PROCESSING (Digital

More information

Electronics A/D and D/A converters

Electronics A/D and D/A converters Electronics A/D and D/A converters Prof. Márta Rencz, Gábor Takács, Dr. György Bognár, Dr. Péter G. Szabó BME DED December 1, 2014 1 / 26 Introduction The world is analog, signal processing nowadays is

More information

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies A. Pena Perez, V.R. Gonzalez- Diaz, and F. Maloberti, ΣΔ Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies, IEEE Proceeding of Latin American Symposium on Circuits and Systems, Feb.

More information

A 2.5 V 109 db DR ADC for Audio Application

A 2.5 V 109 db DR ADC for Audio Application 276 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.10, NO.4, DECEMBER, 2010 A 2.5 V 109 db DR ADC for Audio Application Gwangyol Noh and Gil-Cho Ahn Abstract A 2.5 V feed-forward second-order deltasigma

More information

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.2, APRIL, 2018 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2018.18.2.281 ISSN(Online) 2233-4866 A 4b/cycle Flash-assisted SAR ADC with

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Final Exam EECS 247 H. Khorramabadi Tues., Dec. 14, 2010 FALL 2010 Name: SID: Total number of

More information

A single-slope 80MS/s ADC using two-step time-to-digital conversion

A single-slope 80MS/s ADC using two-step time-to-digital conversion A single-slope 80MS/s ADC using two-step time-to-digital conversion The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters 0 Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters F. Maloberti University of Pavia - Italy franco.maloberti@unipv.it 1 Introduction Summary Sigma-Delta

More information

Integrated Circuit Design for High-Speed Frequency Synthesis

Integrated Circuit Design for High-Speed Frequency Synthesis Integrated Circuit Design for High-Speed Frequency Synthesis John Rogers Calvin Plett Foster Dai ARTECH H O US E BOSTON LONDON artechhouse.com Preface XI CHAPTER 1 Introduction 1 1.1 Introduction to Frequency

More information

Integrated Microsystems Laboratory. Franco Maloberti

Integrated Microsystems Laboratory. Franco Maloberti University of Pavia Integrated Microsystems Laboratory Power Efficient Data Convertes Franco Maloberti franco.maloberti@unipv.it OUTLINE Introduction Managing the noise power budget Challenges of State-of-the-art

More information

A 130mW 100MS/s Pipelined ADC with 69dB SNDR Enabled by Digital Harmonic Distortion Correction. Andrea Panigada, Ian Galton

A 130mW 100MS/s Pipelined ADC with 69dB SNDR Enabled by Digital Harmonic Distortion Correction. Andrea Panigada, Ian Galton A 130mW 100MS/s Pipelined ADC with 69dB SNDR Enabled by Digital Harmonic Distortion Correction Andrea Panigada, Ian Galton University of California at San Diego, La Jolla, CA INTEGRATED SIGNAL PROCESSING

More information

Chapter 13 Oscillators and Data Converters

Chapter 13 Oscillators and Data Converters Chapter 13 Oscillators and Data Converters 13.1 General Considerations 13.2 Ring Oscillators 13.3 LC Oscillators 13.4 Phase Shift Oscillator 13.5 Wien-Bridge Oscillator 13.6 Crystal Oscillators 13.7 Chapter

More information

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014 Asynchronous SAR ADC: Past, Present and Beyond Mike Shuo-Wei Chen University of Southern California MWSCAS 2014 1 Roles of ADCs Responsibility of ADC is increasing more BW, more dynamic range Potentially

More information

Working with ADCs, OAs and the MSP430

Working with ADCs, OAs and the MSP430 Working with ADCs, OAs and the MSP430 Bonnie Baker HPA Senior Applications Engineer Texas Instruments 2006 Texas Instruments Inc, Slide 1 Agenda An Overview of the MSP430 Data Acquisition System SAR Converters

More information

A Two- Bit- per- Cycle Successive- Approximation ADC with Background Offset Calibration

A Two- Bit- per- Cycle Successive- Approximation ADC with Background Offset Calibration M. Casubolo, M. Grassi, A. Lombardi, F. Maloberti, P. Malcovati: "A Two-Bit-per- Cycle Successive-Approximation ADC with Background Calibration"; 15th IEEE Int. Conf. on Electronics, Circuits and Systems,

More information

Summary 185. Chapter 4

Summary 185. Chapter 4 Summary This thesis describes the theory, design and realization of precision interface electronics for bridge transducers and thermocouples that require high accuracy, low noise, low drift and simultaneously,

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 5: Data Conversion ADC Background/Theory Examples Background Physical systems are typically analogue To apply digital signal processing, the analogue signal

More information

UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale

UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale UNIT III Data Acquisition & Microcontroller System Mr. Manoj Rajale Syllabus Interfacing of Sensors / Actuators to DAQ system, Bit width, Sampling theorem, Sampling Frequency, Aliasing, Sample and hold

More information

FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1

FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1 FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1 Many of these slides were provided by Dr. Sebastian Hoyos January 2019 Texas A&M University 1 Spring, 2019 Outline Fundamentals of Analog-to-Digital

More information

A 2-bit/step SAR ADC structure with one radix-4 DAC

A 2-bit/step SAR ADC structure with one radix-4 DAC A 2-bit/step SAR ADC structure with one radix-4 DAC M. H. M. Larijani and M. B. Ghaznavi-Ghoushchi a) School of Engineering, Shahed University, Tehran, Iran a) ghaznavi@shahed.ac.ir Abstract: In this letter,

More information

Asynchronous Sigma Delta Modulators for Data Conversion

Asynchronous Sigma Delta Modulators for Data Conversion 1 Asynchronous Sigma Delta Modulators for Data Conversion Wei Chen Imperial College London Department of Electrical and Electronic Engineering Submitted in Partial Fulfilment of the Requirements for the

More information

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems 1 Eun-Jung Yoon, 2 Kangyeob Park, 3* Won-Seok Oh 1, 2, 3 SoC Platform Research Center, Korea Electronics Technology

More information

Design of an 8-bit Successive Approximation Pipelined Analog to Digital Converter (SAP- ADC) in 90 nm CMOS

Design of an 8-bit Successive Approximation Pipelined Analog to Digital Converter (SAP- ADC) in 90 nm CMOS Design of an 8-bit Successive Approximation Pipelined Analog to Digital Converter (SAP- ADC) in 90 nm CMOS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

More information

10-Bit, 40 MSPS/60 MSPS A/D Converter AD9050 REV. B. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

10-Bit, 40 MSPS/60 MSPS A/D Converter AD9050 REV. B. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM a FEATURES Low Power: 1 mw @ 0 MSPS, mw @ 0 MSPS On-Chip T/H, Reference Single + V Power Supply Operation Selectable V or V Logic I/O SNR: db Minimum at MHz w/0 MSPS APPLICATIONS Medical Imaging Instrumentation

More information

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns 1224 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 12, DECEMBER 2008 Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A.

More information

Design Approaches for Low-Power Reconfigurable Analog-to-Digital Converters

Design Approaches for Low-Power Reconfigurable Analog-to-Digital Converters Design Approaches for Low-Power Reconfigurable Analog-to-Digital Converters A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The

More information

Source Coding and Pre-emphasis for Double-Edged Pulse width Modulation Serial Communication

Source Coding and Pre-emphasis for Double-Edged Pulse width Modulation Serial Communication Source Coding and Pre-emphasis for Double-Edged Pulse width Modulation Serial Communication Abstract: Double-edged pulse width modulation (DPWM) is less sensitive to frequency-dependent losses in electrical

More information

Behavior Model of Noise Phase in a Phase Locked Loop Employing Sigma Delta Modulator

Behavior Model of Noise Phase in a Phase Locked Loop Employing Sigma Delta Modulator Behavior Model of Noise Phase in a Phase Locked Loop Employing Sigma Delta Modulator Tayebeh Ghanavati Nejad 1 and Ebrahim Farshidi 2 1,2 Electrical Department, Faculty of Engineering, Shahid Chamran University

More information

Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL

Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL 2.1 Background High performance phase locked-loops (PLL) are widely used in wireless communication systems to provide

More information

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth LETTER IEICE Electronics Express, Vol.11, No.2, 1 9 A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth Mingshuo Wang a), Fan Ye, Wei Li, and Junyan Ren b) State Key Laboratory

More information

Analysis of the system level design of a 1.5 bit/stage pipeline ADC 1 Amit Kumar Tripathi, 2 Rishi Singhal, 3 Anurag Verma

Analysis of the system level design of a 1.5 bit/stage pipeline ADC 1 Amit Kumar Tripathi, 2 Rishi Singhal, 3 Anurag Verma 014 Fourth International Conference on Advanced Computing & Communication Technologies Analysis of the system level design of a 1.5 bit/stage pipeline ADC 1 Amit Kumar Tripathi, Rishi Singhal, 3 Anurag

More information

AD9772A - Functional Block Diagram

AD9772A - Functional Block Diagram F FEATURES single 3.0 V to 3.6 V supply 14-Bit DAC Resolution 160 MPS Input Data Rate 67.5 MHz Reconstruction Passband @ 160 MPS 74 dbc FDR @ 25 MHz 2 Interpolation Filter with High- or Low-Pass Response

More information

A Compact, Low-Power Low- Jitter Digital PLL. Amr Fahim Qualcomm, Inc.

A Compact, Low-Power Low- Jitter Digital PLL. Amr Fahim Qualcomm, Inc. A Compact, Low-Power Low- Jitter Digital PLL Amr Fahim Qualcomm, Inc. 1 Outline Introduction & Motivation Digital PLL Architectures Proposed DPLL Architecture Analysis of DPLL DPLL Adaptive Algorithm DPLL

More information

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter J. Park, F. Maloberti: "Fractional-N PLL with 90 Phase Shift Lock and Active Switched-Capacitor Loop Filter"; Proc. of the IEEE Custom Integrated Circuits Conference, CICC 2005, San Josè, 21 September

More information

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE Mehdi Taghizadeh and Sirus Sadughi Department of Electrical Engineering, Science and Research Branch,

More information

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC Hussein Fakhoury and Hervé Petit C²S Research Group Presentation Outline Introduction Basic concepts

More information

Testing A/D Converters A Practical Approach

Testing A/D Converters A Practical Approach Testing A/D Converters A Practical Approach Mixed Signal The seminar entitled Testing Analog-to-Digital Converters A Practical Approach is a one-day information intensive course, designed to address the

More information

Low Power Design of Successive Approximation Registers

Low Power Design of Successive Approximation Registers Low Power Design of Successive Approximation Registers Rabeeh Majidi ECE Department, Worcester Polytechnic Institute, Worcester MA USA rabeehm@ece.wpi.edu Abstract: This paper presents low power design

More information

Flash ADC (Part-I) Architecture & Challenges

Flash ADC (Part-I) Architecture & Challenges project synopsis In The Name of Almighty Lec. 4: Flash ADC (PartI) Architecture & Challenges Lecturer: Samaneh Babayan Integrated Circuit Lab. Department of Computer Science & Engineering ImamReza University

More information

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 LECTURE 160 CDR EXAMPLES INTRODUCTION Objective The objective of this presentation is: 1.) Show two examples of clock and data recovery

More information

9-Bit, 30 MSPS ADC AD9049 REV. 0. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

9-Bit, 30 MSPS ADC AD9049 REV. 0. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM a FEATURES Low Power: 00 mw On-Chip T/H, Reference Single +5 V Power Supply Operation Selectable 5 V or V Logic I/O Wide Dynamic Performance APPLICATIONS Digital Communications Professional Video Medical

More information

A Multiplexer-Based Digital Passive Linear Counter (PLINCO)

A Multiplexer-Based Digital Passive Linear Counter (PLINCO) A Multiplexer-Based Digital Passive Linear Counter (PLINCO) Skyler Weaver, Benjamin Hershberg, Pavan Kumar Hanumolu, and Un-Ku Moon School of EECS, Oregon State University, 48 Kelley Engineering Center,

More information

CONTINUOUS DIGITAL CALIBRATION OF PIPELINED A/D CONVERTERS

CONTINUOUS DIGITAL CALIBRATION OF PIPELINED A/D CONVERTERS CONTINUOUS DIGITAL CALIBRATION OF PIPELINED A/D CONVERTERS By Alma Delić-Ibukić B.S. University of Maine, 2002 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of

More information

A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology

A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology M. Annovazzi, V. Colonna, G. Gandolfi, STMicroelectronics Via Tolomeo, 2000 Cornaredo (MI), Italy vittorio.colonna@st.com

More information

A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC

A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC Zhijie Chen, Masaya Miyahara, Akira Matsuzawa Tokyo Institute of Technology Symposia on VLSI Technology and Circuits Outline Background

More information

Second-Order Sigma-Delta Modulator in Standard CMOS Technology

Second-Order Sigma-Delta Modulator in Standard CMOS Technology SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 1, No. 3, November 2004, 37-44 Second-Order Sigma-Delta Modulator in Standard CMOS Technology Dragiša Milovanović 1, Milan Savić 1, Miljan Nikolić 1 Abstract:

More information

On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators

On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators By Du Yun Master Degree in Electrical and Electronics Engineering 2013 Faculty of Science and Technology University

More information

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion Cascaded Noise-Shaping Modulators for Oversampled Data Conversion Bruce A. Wooley Stanford University B. Wooley, Stanford, 2004 1 Outline Oversampling modulators for A/D conversion Cascaded noise-shaping

More information

Acronyms. ADC analog-to-digital converter. BEOL back-end-of-line

Acronyms. ADC analog-to-digital converter. BEOL back-end-of-line Acronyms ADC analog-to-digital converter BEOL back-end-of-line CDF cumulative distribution function CMOS complementary metal-oxide-semiconductor CPU central processing unit CR charge-redistribution CS

More information

Design of a 200MS/s, 8-bit Time based Analog to Digital Converter in 65nm CMOS Technology

Design of a 200MS/s, 8-bit Time based Analog to Digital Converter in 65nm CMOS Technology Design of a 200MS/s, 8-bit Time based Analog to Digital Converter in 65nm CMOS Technology Ahmed Abdelaziz Mohamed Mohamed Mohamed Abdelkader Mohamed Mahmoud Ahmed Ali Hassan Ali Supervised by Dr. Hassan

More information

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE 3.1 INTRODUCTION An ADC is a device which converts a continuous quantity into discrete digital signal. Among its types, pipelined

More information

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1 MASH 2- MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN Yu hang, Ning Xie, Hui Wang and Yejun He College of Information Engineering, Shenzhen University, Shenzhen, Guangdong 58060, China kensouren@yahoo.com.cn

More information

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs Advanced AD/DA converters Overview Why ΔΣ DACs ΔΣ DACs Architectures for ΔΣ DACs filters Smoothing filters Pietro Andreani Dept. of Electrical and Information Technology Lund University, Sweden Advanced

More information

Administrative. No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed.

Administrative. No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed. Administrative No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed. EECS 247 Lecture 2 Nyquist Rate ADC: Architecture & Design 27 H.K. Page EE247 Lecture 2 ADC Converters Sampling (continued)

More information

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers 6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Bandwidth Constraints

More information

Eliminate Pipeline Headaches with New 12-Bit 3Msps SAR ADC by Dave Thomas and William C. Rempfer

Eliminate Pipeline Headaches with New 12-Bit 3Msps SAR ADC by Dave Thomas and William C. Rempfer A new 12-bit 3Msps ADC brings new levels of performance and ease of use to high speed ADC applications. By raising the speed of the successive approximation (SAR) method to 3Msps, it eliminates the many

More information