UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale

Size: px
Start display at page:

Download "UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale"

Transcription

1 UNIT III Data Acquisition & Microcontroller System Mr. Manoj Rajale

2 Syllabus Interfacing of Sensors / Actuators to DAQ system, Bit width, Sampling theorem, Sampling Frequency, Aliasing, Sample and hold circuit, ADC (Successive Approximation), DAC (R-2R), Current and Voltage Amplifier.

3 Objectives. Understand key elements of Mechatronics system, representation into block diagram 2. Understand concept of transfer function, reduction and analysis 3. Understand principles of sensors, its characteristics, interfacing with DAQ microcontroller 4. Understand the concept of PLC system and its ladder programming, and significance of PLC systems in industrial application 5. Understand the system modeling and analysis in time domain and frequency domain. 6. Understand control actions such as Proportional, derivative and integral and study its significance in industrial applications.

4 Outcomes. Identification of key elements of mechatronics system and its representation in terms of block diagram 2. Understanding the concept of signal processing and use of interfacing systems such as ADC, DAC, digital I/O 3. Interfacing of Sensors, Actuators using appropriate DAQ micro-controller 4. Time and Frequency domain analysis of system model (for control application) 5. PID control implementation on real time systems 6. Development of PLC ladder programming and implementation of real life system

5 Introduction- DAQ is first step in any automated system. Data means Signal obtained by transducer. In electronics, an analog-to-digital converter (ADC, A/D, A D, or A-to-D) is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide an isolated measurement such as an electronic device that converts an input analog voltage or current to a digital number proportional to the magnitude of the voltage or current. A digital-to-analog converter (DAC) performs the reverse function; it converts a digital signal into an analog signal.

6 Interfacing of Sensor / Actuator to DAQ Mechanical System Sensors Amplifying Electronics Actuators Data Acquisition System Amplifying Electronics Data Acquisition System Control System Micro-controller or Computer

7 What is Analog / Digital Signal?

8 Steps in DAQ. The sensor measures behavior of system 2. The output from the sensor is conditioned (amplified, filtered, etc.). 3. The conditioned analog signal is digitized using an analogto-digital converter (ADC) 4. The digital information is acquired, processed and recorded by the computer. 5. The computer may then modify the system by outputting control signals. The digital control signals are converted to analog signals using a digital-to-analog converter (DAC). 6. The analog signals are conditioned (e.g. amplified and filtered) appropriately for an actuator 7. The actuator interacts with the system to give desired response

9 Interfacing of Sensor / Actuator to DAQ

10 Interfacing of Sensor / Actuator to DAQ

11 Analog - Digital Converter Engineering signals are continuous. Eg: voltage that varies over time; a chemical reaction rate that depends on temperature, etc. ADC and DAC allow digital computers to interact with these signals. Analog-Digital Conversion Process

12 How does ADC Work? Converts an analog voltage level to a digital number Digital Numbers can be effectively handled by microcontrollers, analog levels Digital numbers are non-fractional

13 How does ADC Work?

14 An electronic integrated circuit which transforms a signal from analog (continuous) to digital (discrete) form. Analog signals are directly measurable quantities. Digital signals only have two states. For digital computer, we refer to binary states, 0 and. Microprocessors can only perform complex processing on digitized signals. ADC Provides a link between the analog world of transducers and the digital world of signal processing and data handling.

15 Application of ADC ADC are used virtually everywhere where an analog signal has to be processed, stored, or transported in digital form. Some examples of ADC usage are digital volt meters, cell phone, thermocouples, and digital oscilloscope. Microcontrollers commonly use 8, 0, 2, or 6 bit ADCs. In aircrafts control system, industrial processes

16 Important in DAQ. Resolution (bits) & bit width i. Precision of A to D conversion process is dependent upon the number (n) of bits the ADC of DAQ is used. ii. The higher the resolution, the higher the number of division, the voltage range is broken into (2 n ), and therefore, the smaller detectable voltage changes. 2. Sampling rate

17 Resolution- The smallest change in analog signal that will result in a change in the digital output. Resolution defines the number of possible output states ΔV = Resolution V r = Reference voltage range N = Number of bits in digital output. 2 N = Number of states. 8-bit converter has bit converter has bit converter has 2 2 = 256 states = 024 states = 4096 states Higher resolution = less quantization error

18 -bit analog to digital conversion Resolution 2-bit analog to digital conversion 3-bit analog to digital conversion

19 Example

20 Sampling- Reduction of continuous signal to discrete signal

21 Example- Sampling Freq= () (2) (4) (3)

22 Example-2 Sampling Freq= () (2) (4) (3)

23 Nyquist Criterion- Why is this Sample Frequency Important? The Nyquist criterion states that, in order to prevent undesired aliasing, one must sample a signal at a rate equal to at least twice its bandwidth. As per Nyquist Theorem : f s 2 f Example

24

25 Proper and Improper Sampling As per Nyquist Theorem : f s 2 f f s - number of samples obtained in one second f- highest freq

26 Aliasing Aliasing results into a different signal when reconstructed from samples taken from a continuous signal Reconstructed Signal Actual Signal

27 Aliasing Example

28 Analog to digital conversion is a two-step process: Quantizing: in binary Partitioning the reference signal range into a number of discrete quanta, then matching the input signal to the correct quantum. Analog Signal Digital output in binary Encoding: Assigning a unique digital code to each quantum, then allocating the digital code to the input signal.

29 () (2) (3)

30 () (2) (3)

31 () (2) (3)

32 Sampling rate Bit Width

33 There are two ways to best improve the accuracy of A/D conversion:. increasing the resolution which improves the accuracy in measuring the amplitude of the analog signal. 2. increasing the sampling rate which increases the maximum frequency that can be measured. Low Accuracy Improved

34

35

36 Sample and Hold Operation SHA is used in ADC, to stabilize the voltage while it is being converted to a digital value SHA consists of a voltage holding capacitor and a voltage follower When the switch is closed, the output voltage is equal to the input voltage When the switch is open, capacitor holds the voltage corresponding to the last sampled value Sample and Hold Circuit

37 Types of A/D Converters. Dual Slope A/D Converter 2. Successive Approximation A/D Converter 3. Flash A/D Converter 4. Delta-Sigma A/D Converter 5. Other- Voltage-to-frequency, staircase ramp or single slope, charge balancing or redistribution, switched capacitor, tracking, and synchro or resolver

38 Example- Analog signal Sampling Increase sampling rate for smoother curve Sampling & holding

39 Cont.. Quantizing analog signal

40 Least Significant Bit (LSB) and Most Significant Bit (MSB)

41 Successive Approximation Register type ADC The SAR is initialized so that the MSB is equal to a. This code is fed into the DAC, which then supplies the analog equivalent of this digital code into the comparator circuit for comparison with the sampled input voltage. If this analog voltage exceeds V in the comparator causes the SAR to reset this bit; otherwise, the bit is left a. Then the next bit is set to and the same test is done, continuing this until every bit in the SAR has been tested. SAR type ADC The resulting code is the digital approximation of the sampled input voltage

42 Uses a n-bit DAC to compare DAC and original analog results. Uses SAR supplies an approximate digital code to DAC of Vin. Comparison changes digital output to bring it closer to the input value. Uses Closed-Loop Feedback Conversion

43 SAR ADC

44 Advantages. Medium accuracy compared to other ADC types 2. Good tradeoff between speed and cost 3. Capable of outputting the binary number in serial (one bit at a time) format. Disadvantages. Higher resolution required 2. successive approximation 3. ADC s will be slower

45 Example For a 0 bit ADC with a V ref =volts, find the digital equivalent of V in =0.6

46 Cont. Vin = 0.6v For MSB i.e. bit 9. V= V ref / 2 n 2. Compare V with V in 0.5 V ref MSB i. If V in is greater than V, turn MSB on i.e. = 0 Bit sytem LSB ii. If V in is less than V, turn MSB off i.e. = 0 3. V in =0.6V and V = V ref / 2 = Since V in > V, 0.6> 0.5, MSB is turned on i.e. =

47 For MSB i.e. bit 8 Cont.. Compare V in =0.6 V to V 2 =V + V ref /2 2 = = 0.75V. Since 0.6<0.75, MSB is turned off i.e = 0 For MSB 2 i.e. bit 7. Compare V in =0.6 V with V 3 =(V +V ref /2 3 )= Since 0.6<0.625, MSB 2 is turned off i.e = 0

48 Cont. For MSB 3 i.e. bit 6. Go to the last bit that caused it to be turned on (In this case MSB-) and add it to V ref /6, and compare it to V in 2. Compare V in to V 4 = V + V ref /2 4 = Since 0.6>0.5625, MSB 3 turned on =

49 Cont. This process continues for all the remaining bits Thus, the digital equivalent of V in =0.6 is: volts out out out ref out V V V b b b b b b b b b b V V

50 Digital -Analog Conversion Properly weighted voltages are summed together to yield the analog output. Three weighted voltages are summed. The three-bit binary code is represented by the switches Thus, if the binary number is 0, the center and bottom switches are on, and the analog output is 6 volts. In actual use, the switches are electronic and are set by the input binary code.

51 R-2R Digital - Analog Converter 4 Bit Digital-Analog Converter using R-2R Approach

52 Ex. Convert 000 to analog signal

53 Cont

54 Cont =V R/(2R) =

55 Cont

56 Cont

57 Cont

58 Digital - Analog Converter For binary input, voltage V 0 is then equal to: In generic terms, for a four bit DAC, the equivalent analog output is given by: V out V s b b b b V V s out

59 Example An 8-bit R-2R DAC has a V ref of 0 Volts. The binary input is 000. Find the analog output voltage. V out V ref b 7 2 b 6 4 b 5 8 b 4 6 b 3 32 b 2 64 b 28 b V out V out V out volts

60 OR An 8-bit R-2R DAC has a V ref of 0 V. The binary input is 000. Find the analog output voltage.

61 Op amplifier

62 Inverting type op amplifier In which the output is exactly 80 0 out of phase with respect to input (i.e. if you apply a positive voltage, output will be negative). i V s i 2 Applying KCL at inverting node we get i = (V i -V s )/R i V s = 0 (Virtual ground) Let, i = i 2 and i 2 = (V s -V o )/R f (V i -0)/R i = (0-V o )/R f Voltage gain A v = V o / V i = R f /R i

63

64 Non-inverting type op amplifier In which the output is in phase with respect to input (i.e. if you apply a positive voltage, output will be positive ). Applying Ohms at inverting node we get, i + i 2 =0 (V i /R +(V i -V o )/R f = 0 V i (/R +/R f ) - V 0 /R f =0 Voltage gain A v = V o / V i = (+ R f /R i )

PHYS225 Lecture 22. Electronic Circuits

PHYS225 Lecture 22. Electronic Circuits PHYS225 Lecture 22 Electronic Circuits Last lecture Digital to Analog Conversion DAC Converts digital signal to an analog signal Computer control of everything! Various types/techniques for conversion

More information

Analog to Digital Converters

Analog to Digital Converters Analog to Digital Converters By: Byron Johns, Danny Carpenter Stephanie Pohl, Harry Bo Marr http://ume.gatech.edu/mechatronics_course/fadc_f05.ppt (unless otherwise marked) Presentation Outline Introduction:

More information

ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs)

ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) Digital Output Dout 111 110 101 100 011 010 001 000 ΔV, V LSB V ref 8 V FSR 4 V 8 ref 7 V 8 ref Analog Input

More information

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12.

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12. Analog Signals Signals that vary continuously throughout a defined range. Representative of many physical quantities, such as temperature and velocity. Usually a voltage or current level. Digital Signals

More information

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016 Analog I/O ECE 153B Sensor & Peripheral Interface Design Introduction Anytime we need to monitor or control analog signals with a digital system, we require analogto-digital (ADC) and digital-to-analog

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion 02534567998 6 4 2 3 4 5 6 ANALOG to DIGITAL CONVERSION Analog variation (Continuous, smooth variation) Digitized Variation (Discrete set of points) N2 N1 Digitization applied

More information

EEE312: Electrical measurement & instrumentation

EEE312: Electrical measurement & instrumentation University of Turkish Aeronautical Association Faculty of Engineering EEE department EEE312: Electrical measurement & instrumentation Digital Electronic meters BY Ankara March 2017 1 Introduction The digital

More information

Digital to Analog Conversion. Data Acquisition

Digital to Analog Conversion. Data Acquisition Digital to Analog Conversion (DAC) Digital to Analog Conversion Data Acquisition DACs or D/A converters are used to convert digital signals representing binary numbers into proportional analog voltages.

More information

Chapter 2 Signal Conditioning, Propagation, and Conversion

Chapter 2 Signal Conditioning, Propagation, and Conversion 09/0 PHY 4330 Instrumentation I Chapter Signal Conditioning, Propagation, and Conversion. Amplification (Review of Op-amps) Reference: D. A. Bell, Operational Amplifiers Applications, Troubleshooting,

More information

ELG4139: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs)

ELG4139: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) ELG4139: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) Digital Output Dout 111 110 101 100 011 010 001 000 ΔV, V LSB V ref 8 V FS 4 V 8 ref 7 V 8 ref Analog Input V

More information

A-D and D-A Converters

A-D and D-A Converters Chapter 5 A-D and D-A Converters (No mathematical derivations) 04 Hours 08 Marks When digital devices are to be interfaced with analog devices (or vice a versa), Digital to Analog converter and Analog

More information

Outline. Analog/Digital Conversion

Outline. Analog/Digital Conversion Analog/Digital Conversion The real world is analog. Interfacing a microprocessor-based system to real-world devices often requires conversion between the microprocessor s digital representation of values

More information

P a g e 1. Introduction

P a g e 1. Introduction P a g e 1 Introduction 1. Signals in digital form are more convenient than analog form for processing and control operation. 2. Real world signals originated from temperature, pressure, flow rate, force

More information

Linear Integrated Circuits

Linear Integrated Circuits Linear Integrated Circuits Single Slope ADC Comparator checks input voltage with integrated reference voltage, V REF At the same time the number of clock cycles is being counted. When the integrator output

More information

Data Converters. Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT

Data Converters. Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT Data Converters Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT Purpose To convert digital values to analog voltages V OUT Digital Value Reference Voltage Digital Value DAC Analog Voltage Analog Quantity:

More information

Cyber-Physical Systems ADC / DAC

Cyber-Physical Systems ADC / DAC Cyber-Physical Systems ADC / DAC ICEN 553/453 Fall 2018 Prof. Dola Saha 1 Analog-to-Digital Converter (ADC) Ø ADC is important almost to all application fields Ø Converts a continuous-time voltage signal

More information

EE 421L Digital Electronics Laboratory. Laboratory Exercise #9 ADC and DAC

EE 421L Digital Electronics Laboratory. Laboratory Exercise #9 ADC and DAC EE 421L Digital Electronics Laboratory Laboratory Exercise #9 ADC and DAC Department of Electrical and Computer Engineering University of Nevada, at Las Vegas Objective: The purpose of this laboratory

More information

10. Chapter: A/D and D/A converter principles

10. Chapter: A/D and D/A converter principles Punčochář, Mohylová: TELO, Chapter 10: A/D and D/A converter principles 1 10. Chapter: A/D and D/A converter principles Time of study: 6 hours Goals: the student should be able to define basic principles

More information

Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC)

Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC) 1 Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC) 2 1. DAC In an electronic circuit, a combination of high voltage (+5V) and low voltage (0V) is usually used to represent a binary

More information

Data acquisition and instrumentation. Data acquisition

Data acquisition and instrumentation. Data acquisition Data acquisition and instrumentation START Lecture Sam Sadeghi Data acquisition 1 Humanistic Intelligence Body as a transducer,, data acquisition and signal processing machine Analysis of physiological

More information

ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC)

ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC) COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC) Connecting digital circuitry to sensor devices

More information

CHAPTER ELEVEN - Interfacing With the Analog World

CHAPTER ELEVEN - Interfacing With the Analog World CHAPTER ELEVEN - Interfacing With the Analog World 11.1 (a) Analog output = (K) x (digital input) (b) Smallest change that can occur in the analog output as a result of a change in the digital input. (c)

More information

Data Acquisition: A/D & D/A Conversion

Data Acquisition: A/D & D/A Conversion Data Acquisition: A/D & D/A Conversion Mark Colton ME 363 Spring 2011 Sampling: A Review In order to store and process measured variables in a computer, the computer must sample the variables 10 Continuous

More information

PC-based controller for Mechatronics System

PC-based controller for Mechatronics System Course Code: MDP 454, Course Name:, Second Semester 2014 PC-based controller for Mechatronics System Mechanical System PC Controller Controller in the Mechatronics System Configuration Actuators Power

More information

Analog to digital and digital to analog converters

Analog to digital and digital to analog converters Analog to digital and digital to analog converters A/D converter D/A converter ADC DAC ad da Number bases Decimal, base, numbers - 9 Binary, base, numbers and Oktal, base 8, numbers - 7 Hexadecimal, base

More information

16.2 DIGITAL-TO-ANALOG CONVERSION

16.2 DIGITAL-TO-ANALOG CONVERSION 240 16. DC MEASUREMENTS In the context of contemporary instrumentation systems, a digital meter measures a voltage or current by performing an analog-to-digital (A/D) conversion. A/D converters produce

More information

Operational Amplifiers (Op Amps)

Operational Amplifiers (Op Amps) Operational Amplifiers (Op Amps) Introduction * An operational amplifier is modeled as a voltage controlled voltage source. * An operational amplifier has a very high input impedance and a very high gain.

More information

The need for Data Converters

The need for Data Converters The need for Data Converters ANALOG SIGNAL (Speech, Images, Sensors, Radar, etc.) PRE-PROCESSING (Filtering and analog to digital conversion) DIGITAL PROCESSOR (Microprocessor) POST-PROCESSING (Digital

More information

Analytical Chemistry II

Analytical Chemistry II Analytical Chemistry II L3: Signal processing (selected slides) Semiconductor devices Apart from resistors and capacitors, electronic circuits often contain nonlinear devices: transistors and diodes. The

More information

DSP Project. Reminder: Project proposal is due Friday, October 19, 2012 by 5pm in my office (Small 239).

DSP Project. Reminder: Project proposal is due Friday, October 19, 2012 by 5pm in my office (Small 239). DSP Project eminder: Project proposal is due Friday, October 19, 2012 by 5pm in my office (Small 239). Budget: $150 for project. Free parts: Surplus parts from previous year s project are available on

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture overview Microprocessors & Interfacing /Output output PMW Digital-to- (D/A) Conversion input -to-digital (A/D) Conversion Lecturer : Dr. Annie Guo S2, 2008 COMP9032 Week9 1 S2, 2008 COMP9032 Week9

More information

Chapter 2 Analog-to-Digital Conversion...

Chapter 2 Analog-to-Digital Conversion... Chapter... 5 This chapter examines general considerations for analog-to-digital converter (ADC) measurements. Discussed are the four basic ADC types, providing a general description of each while comparing

More information

Ch 5 Hardware Components for Automation

Ch 5 Hardware Components for Automation Ch 5 Hardware Components for Automation Sections: 1. Sensors 2. Actuators 3. Analog-to-Digital Conversion 4. Digital-to-Analog Conversion 5. Input/Output Devices for Discrete Data Computer-Process Interface

More information

ELG3336 Design of Mechatronics System

ELG3336 Design of Mechatronics System ELG3336 Design of Mechatronics System Elements of a Data Acquisition System 2 Analog Signal Data Acquisition Hardware Your Signal Data Acquisition DAQ Device System Computer Cable Terminal Block Data Acquisition

More information

Analog/Digital and Sampling

Analog/Digital and Sampling Analog/Digital and Sampling Alexander Nelson October 22, 2018 University of Arkansas - Department of Computer Science and Computer Engineering Analog Signals in the real world are analog signals Process

More information

Analog Input and Output. Lecturer: Sri Parameswaran Notes by: Annie Guo

Analog Input and Output. Lecturer: Sri Parameswaran Notes by: Annie Guo Analog Input and Output Lecturer: Sri Parameswaran Notes by: Annie Guo 1 Analog output Lecture overview PMW Digital-to-Analog (D/A) Conversion Analog input Analog-to-Digital (A/D) Conversion 2 PWM Analog

More information

Basic Analog Circuits

Basic Analog Circuits Basic Analog Circuits Overview This tutorial is part of the National Instruments Measurement Fundamentals series. Each tutorial in this series, will teach you a specific topic of common measurement applications,

More information

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2017 Lecture #5

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2017 Lecture #5 FYS3240 PC-based instrumentation and microcontrollers Signal sampling Spring 2017 Lecture #5 Bekkeng, 30.01.2017 Content Aliasing Sampling Analog to Digital Conversion (ADC) Filtering Oversampling Triggering

More information

EE251: Tuesday October 10

EE251: Tuesday October 10 EE251: Tuesday October 10 Analog to Digital Conversion Text Chapter 20 through section 20.2 TM4C Data Sheet Chapter 13 Lab #5 Writeup Lab Practical #1 this week Homework #4 is due on Thursday at 4:30 p.m.

More information

Electronics A/D and D/A converters

Electronics A/D and D/A converters Electronics A/D and D/A converters Prof. Márta Rencz, Gábor Takács, Dr. György Bognár, Dr. Péter G. Szabó BME DED December 1, 2014 1 / 26 Introduction The world is analog, signal processing nowadays is

More information

University of Pennsylvania. Department of Electrical and Systems Engineering. ESE Undergraduate Laboratory. Analog to Digital Converter

University of Pennsylvania. Department of Electrical and Systems Engineering. ESE Undergraduate Laboratory. Analog to Digital Converter University of Pennsylvania Department of Electrical and Systems Engineering ESE Undergraduate Laboratory Analog to Digital Converter PURPOSE The purpose of this lab is to design and build a simple Digital-to-Analog

More information

Digital control systems

Digital control systems CHAPTER (6) Objectives: This chapter will consider digital control loops including Interfacing with digital controller, analog to digital circuits, digital to analog circuits, and digital controllers.

More information

DATA CONVERSION AND LAB (17.368) Fall Class # 07. October 16, 2008

DATA CONVERSION AND LAB (17.368) Fall Class # 07. October 16, 2008 DATA CONVERSION AND LAB (17.368) Fall 2008 Class # 07 October 16, 2008 Dohn Bowden 1 Today s Lecture Outline Course Admin Lab #3 next week Exam in two weeks 10/30/08 Detailed Technical Discussions Digital

More information

Chapter 7. Introduction. Analog Signal and Discrete Time Series. Sampling, Digital Devices, and Data Acquisition

Chapter 7. Introduction. Analog Signal and Discrete Time Series. Sampling, Digital Devices, and Data Acquisition Chapter 7 Sampling, Digital Devices, and Data Acquisition Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Introduction Integrating analog electrical transducers with

More information

Data Converters. Lecture Fall2013 Page 1

Data Converters. Lecture Fall2013 Page 1 Data Converters Lecture Fall2013 Page 1 Lecture Fall2013 Page 2 Representing Real Numbers Limited # of Bits Many physically-based values are best represented with realnumbers as opposed to a discrete number

More information

Chapter 5: Signal conversion

Chapter 5: Signal conversion Chapter 5: Signal conversion Learning Objectives: At the end of this topic you will be able to: explain the need for signal conversion between analogue and digital form in communications and microprocessors

More information

Last Time. P and N type semiconductors Diode internals Transistors NPN PNP

Last Time. P and N type semiconductors Diode internals Transistors NPN PNP Last Time P and N type semiconductors Diode internals Transistors NPN PNP Device of the Day... Piezo microphone Device of the Day... Transistor Recap Transistors operate as current amplifiers With the

More information

Operational amplifiers

Operational amplifiers Operational amplifiers Bởi: Sy Hien Dinh INTRODUCTION Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance: the operational

More information

Data Acquisition & Computer Control

Data Acquisition & Computer Control Chapter 4 Data Acquisition & Computer Control Now that we have some tools to look at random data we need to understand the fundamental methods employed to acquire data and control experiments. The personal

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion Why It s Needed Embedded systems often need to measure values of physical parameters These parameters are usually continuous (analog) and not in a digital form which computers

More information

Lecture #3 Basic Op-Amp Circuits

Lecture #3 Basic Op-Amp Circuits Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-322 Electronic Circuits (B) Lecture #3 Basic Op-Amp Circuits Instructor: Dr. Ahmad El-Banna Agenda Comparators Summing Amplifiers Integrators

More information

Electronics II Physics 3620 / 6620

Electronics II Physics 3620 / 6620 Electronics II Physics 3620 / 6620 Feb 09, 2009 Part 1 Analog-to-Digital Converters (ADC) 2/8/2009 1 Why ADC? Digital Signal Processing is more popular Easy to implement, modify, Low cost Data from real

More information

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin CRN: 32030 MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin Course Description: Class 2, Lab 2, Cr. 3, Junior class standing and 216 Instrumentation for pressure,

More information

Data Conversion and Lab (17.368) Fall Lecture Outline

Data Conversion and Lab (17.368) Fall Lecture Outline Data Conversion and Lab (17.368) Fall 2013 Lecture Outline Class # 07 October 17, 2013 Dohn Bowden 1 Today s Lecture Outline Administrative Detailed Technical Discussions Digital to Analog Conversion Lab

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 5: Data Conversion ADC Background/Theory Examples Background Physical systems are typically analogue To apply digital signal processing, the analogue signal

More information

Analogue Interfacing. What is a signal? Continuous vs. Discrete Time. Continuous time signals

Analogue Interfacing. What is a signal? Continuous vs. Discrete Time. Continuous time signals Analogue Interfacing What is a signal? Signal: Function of one or more independent variable(s) such as space or time Examples include images and speech Continuous vs. Discrete Time Continuous time signals

More information

Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals

Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Faculty of Engineering Institute of Electrical Engineering

More information

Lecture 6: Digital/Analog Techniques

Lecture 6: Digital/Analog Techniques Lecture 6: Digital/Analog Techniques The electronics signals that we ve looked at so far have been analog that means the information is continuous. A voltage of 5.3V represents different information that

More information

Introduction. These two operations are performed by data converters : Analogue-to-digital converter (ADC) Digital-to-analogue converter (DAC)

Introduction. These two operations are performed by data converters : Analogue-to-digital converter (ADC) Digital-to-analogue converter (DAC) Lezione 7 Conversione analogico digitale Introduzione Campionamento di segnali analogici e Aliasing Porte di campionamento e di mantenimento Quantizzazione segnali analogici Ricostruzione del segnale analogico

More information

Design IV. E232 Spring 07

Design IV. E232 Spring 07 Design IV Spring 07 Class 8 Bruce McNair bmcnair@stevens.edu 8-1/38 Computerized Data Acquisition Measurement system architecture System under test sensor sensor sensor sensor signal conditioning signal

More information

Tuesday, March 1st, 9:15 11:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo.

Tuesday, March 1st, 9:15 11:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo. Nyquist Analog to Digital it Converters Tuesday, March 1st, 9:15 11:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo 3.1 Introduction 3.1.1 DAC applications

More information

ANALOG-TO-DIGITAL CONVERTERS

ANALOG-TO-DIGITAL CONVERTERS ANALOG-TO-DIGITAL CONVERTERS Definition An analog-to-digital converter is a device which converts continuous signals to discrete digital numbers. Basics An analog-to-digital converter (abbreviated ADC,

More information

Specifying A D and D A Converters

Specifying A D and D A Converters Specifying A D and D A Converters The specification or selection of analog-to-digital (A D) or digital-to-analog (D A) converters can be a chancey thing unless the specifications are understood by the

More information

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5 FYS3240 PC-based instrumentation and microcontrollers Signal sampling Spring 2015 Lecture #5 Bekkeng, 29.1.2015 Content Aliasing Nyquist (Sampling) ADC Filtering Oversampling Triggering Analog Signal Information

More information

Learning Objectives:

Learning Objectives: Learning Objectives: At the end of this topic you will be able to; Analyse and design a DAC based on an op-amp summing amplifier to meet a given specification. 1 Digital and Analogue Information Module

More information

Working with ADCs, OAs and the MSP430

Working with ADCs, OAs and the MSP430 Working with ADCs, OAs and the MSP430 Bonnie Baker HPA Senior Applications Engineer Texas Instruments 2006 Texas Instruments Inc, Slide 1 Agenda An Overview of the MSP430 Data Acquisition System SAR Converters

More information

Chapter 7: From Digital-to-Analog and Back Again

Chapter 7: From Digital-to-Analog and Back Again Chapter 7: From Digital-to-Analog and Back Again Overview Often the information you want to capture in an experiment originates in the laboratory as an analog voltage or a current. Sometimes you want to

More information

Embedded System Hardware

Embedded System Hardware 12 Embedded System Hardware Jian-Jia Chen (Slides are based on Peter Marwedel) Informatik 12 TU Dortmund Germany 2015 11 11 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 13: Basic op-amp circuits Prof. Manar Mohaisen Department of EEC Engineering Introduction Review of the Precedent Lecture Op-amp operation modes and parameters

More information

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing Fundamentals of Data Converters DAVID KRESS Director of Technical Marketing 9/14/2016 Analog to Electronic Signal Processing Sensor (INPUT) Amp Converter Digital Processor Actuator (OUTPUT) Amp Converter

More information

WINTER 14 EXAMINATION

WINTER 14 EXAMINATION Subject Code:173 WINTER 14 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The

More information

Mixed-Signal-Electronics

Mixed-Signal-Electronics 1 Mixed-Signal-Electronics PD Dr.-Ing. Stephan Henzler 2 Chapter 6 Nyquist Rate Analog-to-Digital Converters 3 Analog-to-Digital Converter Families Architecture Variant Speed Precision Counting Operation

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Prabal Dutta University of Michigan Lecture 11: Sampling, ADCs, and DACs Oct 7, 2014 Some slides adapted from Mark Brehob, Jonathan Hui & Steve Reinhardt

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion Florian Erdinger Lehrstuhl für Schaltungstechnik und Simulation Technische Informatik der Uni Heidelberg VLSI Design - Mixed Mode Simulation F. Erdinger, ZITI, Uni Heidelberg

More information

CENG4480 Lecture 04: Analog/Digital Conversions

CENG4480 Lecture 04: Analog/Digital Conversions CENG4480 Lecture 04: Analog/Digital Conversions Bei Yu byu@cse.cuhk.edu.hk (Latest update: October 3, 2018) Fall 2018 1 / 31 Overview Preliminaries Comparator Digital to Analog Conversion (DAC) Analog

More information

3. DAC Architectures and CMOS Circuits

3. DAC Architectures and CMOS Circuits 1/30 3. DAC Architectures and CMOS Circuits Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es

More information

Based with permission on lectures by John Getty Laboratory Electronics II (PHSX262) Spring 2011 Lecture 9 Page 1

Based with permission on lectures by John Getty Laboratory Electronics II (PHSX262) Spring 2011 Lecture 9 Page 1 Today 3// Lecture 9 Analog Digital Conversion Sampled Data Acquisition Systems Discrete Sampling and Nyquist Digital to Analog Conversion Analog to Digital Conversion Homework Study for Exam next week

More information

Lecture 3: Sensors, signals, ADC and DAC

Lecture 3: Sensors, signals, ADC and DAC Instrumentation and data acquisition Spring 2010 Lecture 3: Sensors, signals, ADC and DAC Zheng-Hua Tan Multimedia Information and Signal Processing Department of Electronic Systems Aalborg University,

More information

UNIVERSITY of PENNSYLVANIA DEPARTMENT OF ELECTRICAL AND SYSTEMS ENGINEERING ESE Undergraduate Labs Electrical Circuits and Systems II Laboratory

UNIVERSITY of PENNSYLVANIA DEPARTMENT OF ELECTRICAL AND SYSTEMS ENGINEERING ESE Undergraduate Labs Electrical Circuits and Systems II Laboratory UNIVERSITY of PENNSYLVANIA DEPARTMENT OF ELECTRICAL AND SYSTEMS ENGINEERING ESE Undergraduate Labs Electrical Circuits and Systems II Laboratory Overview Analog-to-Digital (ADC) and Digital-to-Analog (DAC)

More information

The University of Texas at Arlington Lecture 10 ADC and DAC

The University of Texas at Arlington Lecture 10 ADC and DAC The University of Texas at Arlington Lecture 10 ADC and DAC CSE 3442/5442 Measuring Physical Quantities (Digital) computers use discrete values, and use these to emulate continuous values if needed. In

More information

Lecture 9, ANIK. Data converters 1

Lecture 9, ANIK. Data converters 1 Lecture 9, ANIK Data converters 1 What did we do last time? Noise and distortion Understanding the simplest circuit noise Understanding some of the sources of distortion 502 of 530 What will we do today?

More information

Embedded Control. Week 3 (7/13/11)

Embedded Control. Week 3 (7/13/11) Embedded Control Week 3 (7/13/11) Week 3 15:00 Lecture Overview of analog signals Digital-to-analog conversion Analog-to-digital conversion 16:00 Lab NXT analog IO Overview of Analog Signals Continuous

More information

SIGMA-DELTA CONVERTER

SIGMA-DELTA CONVERTER SIGMA-DELTA CONVERTER (1995: Pacífico R. Concetti Western A. Geophysical-Argentina) The Sigma-Delta A/D Converter is not new in electronic engineering since it has been previously used as part of many

More information

Section3 Chapter 2: Operational Amplifiers

Section3 Chapter 2: Operational Amplifiers 2012 Section3 Chapter 2: Operational Amplifiers Reference : Microelectronic circuits Sedra six edition 1/10/2012 Contents: 1- THE Ideal operational amplifier 2- Inverting configuration a. Closed loop gain

More information

Digital to Analog Converters (DAC) 15 March 2006 Doug Hinckley Lee Huynh Dooroo Kim

Digital to Analog Converters (DAC) 15 March 2006 Doug Hinckley Lee Huynh Dooroo Kim Digital to Analog Converters (DAC) 5 March 006 Doug Hinckley Lee Huynh Dooroo Kim What is a DAC? A digital to analog converter (DAC) converts a digital signal to an analog voltage or current output. 000

More information

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase.

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase. P a g e 2 Contents 1) Oscillators 3 Sinusoidal Oscillators Phase Shift Oscillators 4 Wien Bridge Oscillators 4 Square Wave Generator 5 Triangular Wave Generator Using Square Wave Generator 6 Using Comparator

More information

Analog circuit design ( )

Analog circuit design ( ) Silver Oak College of Engineering & Technology Department of Electronics and Communication 4 th Sem Mid semester-1(summer 2019) Syllabus Microprocessor & Interfacing (2141001) 1 Introduction To 8-bit Microprocessor

More information

APPLICATION BULLETIN PRINCIPLES OF DATA ACQUISITION AND CONVERSION. Reconstructed Wave Form

APPLICATION BULLETIN PRINCIPLES OF DATA ACQUISITION AND CONVERSION. Reconstructed Wave Form APPLICATION BULLETIN Mailing Address: PO Box 11400 Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd. Tucson, AZ 85706 Tel: (60) 746-1111 Twx: 910-95-111 Telex: 066-6491 FAX (60) 889-1510 Immediate

More information

Digital Sampling. This Lecture. Engr325 Instrumentation. Dr Curtis Nelson. Digital sampling Sample rate. Bit depth. Other terms. Types of conversion.

Digital Sampling. This Lecture. Engr325 Instrumentation. Dr Curtis Nelson. Digital sampling Sample rate. Bit depth. Other terms. Types of conversion. Digital Sampling Engr325 Instrumentation Dr Curtis Nelson Digital sampling Sample rate. Bit depth. Other terms. Types of conversion. This Lecture 1 Data Acquisition and Control Computers are nearly always

More information

Chapter 13 Oscillators and Data Converters

Chapter 13 Oscillators and Data Converters Chapter 13 Oscillators and Data Converters 13.1 General Considerations 13.2 Ring Oscillators 13.3 LC Oscillators 13.4 Phase Shift Oscillator 13.5 Wien-Bridge Oscillator 13.6 Crystal Oscillators 13.7 Chapter

More information

Menu EEL EEL 3744 A/D and D/A Conversion Process. A-to-D, D-to-A, Part 1

Menu EEL EEL 3744 A/D and D/A Conversion Process. A-to-D, D-to-A, Part 1 Menu A/D-D/A Conversion Processes >Example: Grandma Singing Hymns Digital Signal Processing Analog-to-Digital Conversion >A/D Conversion Methods Operational Amplifier in D/A & A/D Digital-to-Analog Look

More information

Lab.3. Tutorial : (draft) Introduction to CODECs

Lab.3. Tutorial : (draft) Introduction to CODECs Lab.3. Tutorial : (draft) Introduction to CODECs Fig. Basic digital signal processing system Definition A codec is a device or computer program capable of encoding or decoding a digital data stream or

More information

AERO2705 Space Engineering 1 Week 7 The University of Sydney

AERO2705 Space Engineering 1 Week 7 The University of Sydney AERO2705 Space Engineering 1 Week 7 The University of Sydney Presenter Mr. Warwick Holmes Executive Director Space Engineering School of Aerospace, Mechanical and Mechatronic Engineering The University

More information

Transistor Design & Analysis (Inverter)

Transistor Design & Analysis (Inverter) Experiment No. 1: DIGITAL ELECTRONIC CIRCUIT Transistor Design & Analysis (Inverter) APPARATUS: Transistor Resistors Connecting Wires Bread Board Dc Power Supply THEORY: Digital electronics circuits operate

More information

A New, Low-Cost, Sampled-Data, 10-Bit CMOS A/D Converter

A New, Low-Cost, Sampled-Data, 10-Bit CMOS A/D Converter A New, Low-Cost, Sampled-Data, 10-Bit CMOS A/D Converter IF IT S NOT LOW COST, IT S NOT CREATIVE Cost is the single most important factor in the success of any new product. The current emphasis on digital

More information

Embedded Systems Lecture 2: Interfacing with the Environment. Björn Franke University of Edinburgh

Embedded Systems Lecture 2: Interfacing with the Environment. Björn Franke University of Edinburgh Embedded Systems Lecture 2: Interfacing with the Environment Björn Franke University of Edinburgh Overview Interfacing with the Physical Environment Signals, Discretisation Input (Sensors) Output (Actuators)

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Ronald Dreslinski University of Michigan Sampling, ADCs, and DACs and more Some slides adapted from Mark Brehob, Prabal Dutta, Jonathan Hui & Steve Reinhardt

More information

APPLICATION NOTE 695 New ICs Revolutionize The Sensor Interface

APPLICATION NOTE 695 New ICs Revolutionize The Sensor Interface Maxim > Design Support > Technical Documents > Application Notes > Sensors > APP 695 Keywords: high performance, low cost, signal conditioner, signal conditioning, precision sensor, signal conditioner,

More information