6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers

Size: px
Start display at page:

Download "6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers"

Transcription

1 6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott

2 Bandwidth Constraints for Integer-N Synthesizers 1/T Loop Filter Bandwidth << 1/T ref(t) (1/T = 20 MHz) PFD Loop Filter out(t) Divider N[k] PFD output has a periodicity of 1/T - 1/T = reference frequency Loop filter must have a bandwidth << 1/T - PFD output pulses must be filtered out and average value extracted Closed loop PLL bandwidth often chosen to be a factor of ten lower than 1/T

3 Bandwidth Versus Frequency Resolution 1/T Loop Filter Bandwidth << 1/T ref(t) (1/T = 20 MHz) PFD Loop Filter out(t) Divider N[k] N[k] out(t) S out (f) 1/T frequency resolution = 1/T GHz Frequency resolution set by reference frequency (1/T) - Higher resolution achieved by lowering 1/T

4 Increasing Resolution in Integer-N Synthesizers 1/T Loop Filter Bandwidth << 1/T 20 MHz 100 ref(t) (1/T = 200 khz) PFD Loop Filter out(t) Divider N[k] 9001 N[k] 9000 out(t) frequency resolution = 1/T S out (f) 1/T GHz Use a reference divider to achieve lower 1/T - Leads to a low PLL bandwidth ( < 20 khz here )

5 The Issue of Noise 1/T Loop Filter Bandwidth << 1/T 20 MHz 100 ref(t) (1/T = 200 khz) PFD Loop Filter out(t) Divider N[k] 9001 N[k] 9000 out(t) frequency resolution = 1/T S out (f) 1/T GHz Lower 1/T leads to higher divide value - Increases PFD noise at synthesizer output

6 Modeling PFD Noise Multiplication PFD-referred Noise S En (f) 0 f 1/T e n (t) VCO-referred Noise S Φvn (f) 0-20 db/dec f Φ vn (t) Radians 2 /Hz 0 (f o ) opt α π N 2 S en (f) S Φvn (f) f Influence of PFD noise seen in model from Lecture 16 - PFD spectral density multiplied by N 2 before influencing PLL output phase noise Φ npfd (t) Divider Control Φ c (t) of Frequency Setting (assume noiseless for now) f o α π N G(f) Φ n (t) f o Φ nvco (t) 1-G(f) Φ out (t) Radians 2 /Hz S Φnpfd (f) (f o ) opt S Φnvco (f) High divide values high phase noise at low frequencies 0 f

7 Dual-Loop Frequency Synthesizer ref 1 PFD Loop Filter Divider VCO cos(w 1 t) sin(w 1 t) out ref 2 PFD N Loop Filter Divider VCO cos(w 2 t) sin(w 2 t) Single-sideband Mixer Overall synthesizer output M From trigonometry: cos(a-b) = cosacosb+sinasinb

8 Advantage #1: Avoids Large Divide Values ref 1 PFD Loop Filter Divider VCO cos(w 1 t) sin(w 1 t) out ref 2 PFD N Loop Filter Divider VCO cos(w 2 t) sin(w 2 t) Single-sideband Mixer M Choose top synthesizer to provide coarse tuning and bottom synthesizer to provide fine tuning - Choose w 1 to be high in frequency Set ref 1 to be high to avoid large N low resolution - Choose w 2 to be low in frequency Allows ref 2 to be low without large M high resolution

9 Advantage #2: Provides Suppression of VCO Noise ref 1 PFD Loop Filter Divider VCO cos(w 1 t) sin(w 1 t) out ref 2 PFD N Loop Filter Divider VCO cos(w 2 t) sin(w 2 t) Single-sideband Mixer M Top VCO has much more phase noise than bottom VCO due to its much higher operating frequency - Suppress top VCO noise by choosing a high PLL bandwidth for top synthesizer High PLL bandwidth possible since ref 1 is high

10 Alternate Dual-Loop Architecture ref 1 PFD Loop Filter VCO cos(w 1 t) sin(w 1 t) out Divider y ref 2 PFD N Loop Filter Divider VCO cos(w 2 t) sin(w 2 t) Single-sideband Mixer Calculation of output frequency M

11 Advantage of Alternate Dual-Loop Architecture ref 1 PFD Loop Filter cos(w 1 t) sin(w 1 t) out VCO Divider y ref 2 PFD N Loop Filter cos(w 2 t) sin(w 2 t) VCO Divider Single-sideband Mixer M Issue: a practical single-sideband mixer implementation will produce a spur at frequency w 1 + w 2 PLL bandwidth of top synthesizer can be chosen low enough to suppress the single-sideband spur - Negative: lower suppression of top VCO noise

12 Direct Digital Synthesis (DDS) clk Counter ROM DAC LPF out Encode sine-wave values in a ROM Create sine-wave output by indexing through ROM and feeding its output to a DAC and lowpass filter - Speed at which you index through ROM sets frequency of output sine-wave Speed of indexing is set by increment value on counter (which is easily adjustable in a digital manner)

13 Pros and Cons of Direct Digital Synthesis clk Counter ROM DAC LPF out Advantages - Very fast adjustment of frequency - Very high resolution can be achieved - Highly digital approach Disadvantages - Difficult to achieve high frequencies - Difficult to achieve low noise - Power hungry and complex

14 Hybrid Approach clk Counter ROM DAC LPF ref PFD Loop Filter VCO out Divider Use DDS to create a finely adjustable reference frequency Use integer-n synthesizer to multiply the DDS output frequency to much higher values Issues - Noise of DDS is multiplied by N 2 - Complex and power hungry N

15 Fractional-N Frequency Synthesizers ref(t) (1/T = 20 MHz) PFD Loop Filter out(t) N sd [k] Dithering Modulator N[k] Divider N sd [k] out(t) S out (f) 1/T frequency resolution << 1/T GHz Break constraint that divide value be integer - Dither divide value dynamically to achieve fractional values - Frequency resolution is now arbitrary regardless of 1/T Want high 1/T to allow a high PLL bandwidth

16 Classical Fractional-N Synthesizer Architecture ref(t) PFD e(t) Loop Filter out(t) div(t) N/N+1 frac[k] Accumulator 1-bit carry_out[k] N sd [k] = N + frac[k] Use an accumulator to perform dithering operation - Fractional input value fed into accumulator - Carry out bit of accumulator fed into divider

17 Accumulator Operation clk(t) frac[k] M-bit Accumulator M-bit 1-bit residue[k] carry_out[k] residue[k] frac[k] =.25 carry_out[k] Carry out bit is asserted when accumulator residue reaches or surpasses its full scale value - Accumulator residue increments by input fractional value each clock cycle

18 Fractional-N Synthesizer Signals with N = 4.25 carry_out(t) out(t) div(t) ref(t) e(t) phase error(t) Divide value set at N = 4 most of the time - Resulting frequency offset causes phase error to accumulate - Reset phase error by swallowing a VCO cycle Achieved by dividing by 5 every 4 reference cycles

19 The Issue of Spurious Tones ref(t) PFD e(t) Loop Filter out(t) div(t) N/N+1 frac[k] Accumulator 1-bit carry_out[k] PFD error is periodic - Note that actual PFD waveform is series of pulses the sawtooth waveform represents pulse width values over time Periodic error signal creates spurious tones in synthesizer output N sd [k] = N + frac[k] - Ruins noise performance of synthesizer

20 The Phase Interpolation Technique ref(t) PFD e(t) Loop Filter out(t) div(t) α N/N+1 D/A frac[k] M-bit Accumulator M-bit residue[k] 1-bit carry_out[k] Phase error due to fractional technique is predicted by the instantaneous residue of the accumulator - Cancel out phase error based on accumulator residue

21 The Problem With Phase Interpolation ref(t) PFD e(t) Loop Filter out(t) div(t) α N/N+1 D/A frac[k] M-bit Accumulator M-bit residue[k] 1-bit carry_out[k] Gain matching between PFD error and scaled D/A output must be extremely precise - Any mismatch will lead to spurious tones at PLL output

22 Is There a Better Way?

23 A Better Dithering Method: Sigma-Delta Modulation Time Domain M-bit Input Digital Σ Modulator 1-bit D/A Analog Output Digital Input Spectrum Quantization Noise Frequency Domain Analog Output Spectrum Input Σ Sigma-Delta dithers in a manner such that resulting quantization noise is shaped to high frequencies

24 Linearized Model of Sigma-Delta Modulator r[k] S r (e j2πft )= NTF z=e j2πft STF q[k] x[k] y[k] x[k] y[k] H Σ s (z) z=e j2πft H n (z) S q (e j2πft )= H n (e j2πft ) Composed of two transfer functions relating input and noise to output - Signal transfer function (STF) Filters input (generally undesirable) - Noise transfer function (NTF) Filters (i.e., shapes) noise that is assumed to be white

25 Example: Cutler Sigma-Delta Topology x[k] u[k] y[k] H(z) - 1 e[k] Output is quantized in a multi-level fashion Error signal, e[k], represents the quantization error Filtered version of quantization error is fed back to input - H(z) is typically a highpass filter whose first tap value is 1 i.e., H(z) = 1 + a 1 z -1 + a 2 z -2 L - H(z) 1 therefore has a first tap value of 0 Feedback needs to have delay to be realizable

26 Linearized Model of Cutler Topology x[k] u[k] y[k] x[k] u[k] r[k] y[k] H(z) - 1 e[k] H(z) - 1 e[k] Represent quantizer block as a summing junction in which r[k] represents quantization error - Note: It is assumed that r[k] has statistics similar to white noise - This is a key assumption for modeling often not true!

27 Calculation of Signal and Noise Transfer Functions x[k] u[k] y[k] x[k] u[k] r[k] y[k] H(z) - 1 e[k] H(z) - 1 e[k] Calculate using Z-transform of signals in linearized model - NTF: H n (z) = H(z) - STF: H s (z) = 1

28 A Common Choice for H(z) 8 7 m = 3 6 Magnitude m = 2 m = Frequency (Hz) 1/(2T)

29 Example: First Order Sigma-Delta Modulator Choose NTF to be x[k] u[k] y[k] H(z) - 1 e[k] Plot of output in time and frequency domains with input of 1 Amplitude Magnitude (db) 0 0 Sample Number Frequency (Hz) 1/(2T)

30 Example: Second Order Sigma-Delta Modulator Choose NTF to be x[k] u[k] y[k] H(z) - 1 e[k] Plot of output in time and frequency domains with input of 2 Amplitude 1 0 Magnitude (db) -1 0 Sample Number Frequency (Hz) 1/(2T)

31 Example: Third Order Sigma-Delta Modulator Choose NTF to be x[k] u[k] y[k] H(z) - 1 e[k] Plot of output in time and frequency domains with input of 4 3 Amplitude Magnitude (db) Sample Number Frequency (Hz) 1/(2T)

32 Observations Low order Sigma-Delta modulators do not appear to produce shaped noise very well - Reason: low order feedback does not properly scramble relationship between input and quantization noise Quantization noise, r[k], fails to be white Higher order Sigma-Delta modulators provide much better noise shaping with fewer spurs - Reason: higher order feedback filter provides a much more complex interaction between input and quantization noise

33 Warning: Higher Order Modulators May Still Have Tones Quantization noise, r[k], is best whitened when a sufficiently exciting input is applied to the modulator - Varying input and high order helps to scramble interaction between input and quantization noise Worst input for tone generation are DC signals that are rational with a low valued denominator - Examples (third order modulator): x[k] = 0.1 x[k] = /1024 Magnitude (db) Magnitude (db) 0 Frequency (Hz) 1/(2T) 0 Frequency (Hz) 1/(2T)

34 Cascaded Sigma-Delta Modulator Topologies x[k] Σ M 1 [k] q 1 [k] Σ M 2 [k] q 2 [k] Σ M 3 [k] M 1 1 y 1 [k] y 2 [k] y 3 [k] Digital Cancellation Logic y[k] Multibit output Achieve higher order shaping by cascading low order sections and properly combining their outputs Advantage over single loop approach - Allows pipelining to be applied to implementation High speed or low power applications benefit Disadvantages - Relies on precise matching requirements when combining outputs (not a problem for digital implementations) - Requires multi-bit quantizer (single loop does not)

35 MASH topology x[k] Σ M 1 [k] r 1 [k] Σ M 2 [k] r 2 [k] Σ M 3 [k] M 1 1 y 1 [k] y 2 [k] y 3 [k] 1-z -1 (1-z -1 ) 2 u[k] y[k] Cascade first order sections Combine their outputs after they have passed through digital differentiators

36 Calculation of STF and NTF for MASH topology (Step 1) x[k] Σ M 1 [k] r 1 [k] Σ M 2 [k] r 2 [k] Σ M 3 [k] M 1 1 y 1 [k] y 2 [k] y 3 [k] 1-z -1 (1-z -1 ) 2 u[k] y[k] Individual output signals of each first order modulator Addition of filtered outputs

37 Calculation of STF and NTF for MASH topology (Step 1) x[k] Σ M 1 [k] r 1 [k] Σ M 2 [k] r 2 [k] Σ M 3 [k] M 1 1 y 1 [k] y 2 [k] y 3 [k] 1-z -1 (1-z -1 ) 2 u[k] y[k] Overall modulator behavior - STF: H s (z) = 1 - NTF: H n (z) = (1 z -1 ) 3

38 Sigma-Delta Frequency Synthesizers F ref F out = M.F F ref ref(t) div(t) N sd [m] PFD e(t) Σ Modulator Charge Pump N[m] Divider Loop Filter M+1 M Σ Quantization Noise Use Sigma-Delta modulator rather than accumulator to perform dithering operation - Achieves much better spurious performance than classical fractional-n approach v(t) VCO f out(t) Riley et. al., JSSC, May 1993

39 Background: The Need for A Better PLL Model PFD-referred Noise S En (f) VCO-referred Noise S Φvn (f) -20 db/dec 0 e n (t) 1/T f 0 Φ vn (t) f Φ ref [k] Φ div [k] α π PFD e(t) I cp Charge Pump Divider 1 N H(f) Loop Filter v(t) K V jf VCO Φ out (t) Classical PLL model - Predicts impact of PFD and VCO referred noise sources - Does not allow straightforward modeling of impact due to divide value variations N[k] This is a problem when using fractional-n approach

40 A PLL Model Accommodating Divide Value Variations PFD-referred Noise S En (f) VCO-referred Noise S Φvn (f) -20 db/dec Φ ref [k] PFD Tristate: α=1 XOR: α=2 α T 2π 0 e n (t) 1/T e(t) f C.P. I cp Loop Filter H(f) v(t) VCO K V jf 0 Φ vn (t) f Φ out (t) Φ div [k] 1 N nom Φ d [k] Divider 1 T n[k] 2π z-1 z=e j2πft 1 - z-1 See derivation in Perrott et. al., A Modeling Approach for Sigma-Delta Fractional-N Frequency Synthesizers, JSSC, Aug 2002

41 Parameterized Version of New Model Noise Φ jit [k] e spur (t) α T π PFD-referred Noise S En (f) 0 e n (t) 1/T f VCO-referred Noise S Φvn (f) -20 db/dec 0 Φ vn (t) f Ι cpn (t) 1 Ι f o π α Nnom G(f) f o 1-G(f) Φ npfd (t) Φ nvco (t) Divide value variation n[k] n[k] 2π z z -1 G(f) Φ d (t) z=e j2πft F c (t) T G(f) f o Alternate Representation f o 1 jf Φ c (t) Φ c (t) Φ n (t) Φ out (t) D/A and Filter Freq. Phase

42 Spectral Density Calculations case (a): CT CT x(t) H(f) y(t) case (b): DT DT x[k] H(e j2πft ) y[k] case (c): DT CT x[k] H(f) y(t) Case (a): Case (b): Case (c):

43 Example: Calculate Impact of Ref/Divider Jitter (Step 1) Div(t) S Φjit (e j2πft ) T t ( t jit ) rms = β sec. π T 2 β 2 0 f t jit [k] π T Φ jit [k] Assume jitter is white - i.e., each jitter value independent of values at other time instants Calculate spectra for discrete-time input and output - Apply case (b) calculation

44 Example: Calculate Impact of Ref/Divider Jitter (Step 2) Div(t) S Φjit (e j2πft ) S Φn (f) T t ( t jit ) rms = β sec. π T 2 β 2 0 f 2 1 TN π T nom T 2 β2 0 f o f t jit [k] π T Φ jit [k] Φ jit [k] TN nom G(f) Φ n (t) f o Compute impact on output phase noise of synthesizer - We now apply case (c) calculation - Note that G(f) = 1 at DC

45 Now Consider Impact of Divide Value Variations Noise Φ jit [k] e spur (t) α T π PFD-referred Noise S En (f) 0 e n (t) 1/T f VCO-referred Noise S Φvn (f) -20 db/dec 0 Φ vn (t) f Ι cpn (t) 1 Ι f o π α Nnom G(f) f o 1-G(f) Φ npfd (t) Φ nvco (t) Divide value variation n[k] n[k] 2π z z -1 G(f) Φ d (t) z=e j2πft F c (t) T G(f) f o Alternate Representation f o 1 jf Φ c (t) Φ c (t) Φ n (t) Φ out (t) D/A and Filter Freq. Phase

46 Divider Impact For Classical Vs Fractional-N Approaches Classical Synthesizer 1 1/T n(t) 1 T n[k] G(f) f o F out (t) D/A and Filter Fractional-N Synthesizer 1 1/T n sd (t) 1 T n sd [k] Dithering Modulator n[k] G(f) f o D/A and Filter F out (t) Note: 1/T block represents sampler (to go from CT to DT)

47 Focus on Sigma-Delta Frequency Synthesizer n[k] F out (t) n sd [k] 1 1/T n sd (t) 1 T n sd [k] Σ n[k] G(f) f o F out (t) freq=1/t D/A and Filter Divide value can take on fractional values - Virtually arbitrary resolution is possible PLL dynamics act like lowpass filter to remove much of the quantization noise

48 Quantifying the Quantization Noise Impact PFD-referred Noise S En (f) VCO-referred Noise S Φvn (f) -20 db/dec n sd [k] S r (e j2πft )= 1 12 NTF STF H s (z) r[k] Σ H n (z) q[k] n[k] z=e j2πft Σ Quantization Noise S q (e j2πft ) 0 2π z z -1 f Φ n [k] z=e j2πft 0 E n (t) f o Φ vn (t) T G(f) Φ tn,pll (t) Φ div (t) Φ out (t) f o 1/T f π α Nnom G(f) 0 f o f 1-G(f) Calculate by simply attaching Sigma-Delta model - We see that quantization noise is integrated and then lowpass filtered before impacting PLL output

49 A Well Designed Sigma-Delta Synthesizer -60 f o = 84 khz Spectral Density (dbc/hz) PFD-referred noise S Φout,En (f) Σ noise S Φout, Σ (f) VCO-referred noise S Φout,vn (f) khz 100 khz 1 MHz 10 MHz Frequency f 0 1/T Order of G(f) is set to equal to the Sigma-Delta order - Sigma-Delta noise falls at -20 db/dec above G(f) bandwidth Bandwidth of G(f) is set low enough such that synthesizer noise is dominated by intrinsic PFD and VCO noise

50 Impact of Increased PLL Bandwidth f o = 84 khz f o = 160 khz Spectral Density (dbc/hz) PFD-referred noise S Φout,En (f) Σ noise S Φout, Σ (f) VCO-referred noise S Φout,vn (f) Spectral Density (dbc/hz) PFD-referred noise S Φout,En (f) VCO-referred noise S Φout,vn (f) Σ noise S Φout, Σ (f) khz 100 khz 1 MHz 10 MHz Frequency f 0 1/T khz 100 khz 1 MHz 10 MHz f Frequency 0 1/T Allows more PFD noise to pass through Allows more Sigma-Delta noise to pass through Increases suppression of VCO noise

51 Impact of Increased Sigma-Delta Order m = 2 m = 3 Spectral Density (dbc/hz) PFD-referred noise S Φout,En (f) Σ noise S Φout, Σ (f) VCO-referred noise S Φout,vn (f) khz 100 khz 1 MHz 10 MHz Frequency f 0 1/T Spectral Density (dbc/hz) PFD-referred noise S Φout,En (f) Σ noise S Φout, Σ (f) VCO-referred noise S Φout,vn (f) khz 100 khz 1 MHz 10 MHz f Frequency 0 1/T PFD and VCO noise unaffected Sigma-Delta noise no longer attenuated by G(f) such that a -20 db/dec slope is achieved above its bandwidth

Sigma-Delta Fractional-N Frequency Synthesis

Sigma-Delta Fractional-N Frequency Synthesis Sigma-Delta Fractional-N Frequency Synthesis Scott Meninger Michael Perrott Massachusetts Institute of Technology June 7, 2004 Copyright 2004 by Michael H. Perrott All rights reserved. Note: Much of this

More information

Analog Frequency Synthesizers: A Short Tutorial. IEEE Distinguished Lecture SSCS, Dallas Chapter

Analog Frequency Synthesizers: A Short Tutorial. IEEE Distinguished Lecture SSCS, Dallas Chapter Analog Frequency Synthesizers: A Short Tutorial IEEE Distinguished Lecture SSCS, Dallas Chapter Michael H. Perrott April 2013 Copyright 2013 by Michael H. Perrott All rights reserved. What is a Phase-Locked

More information

6.776 High Speed Communication Circuits Lecture 23. Design of Fractional-N Frequency Synthesizers and Bandwidth Extension Techniques

6.776 High Speed Communication Circuits Lecture 23. Design of Fractional-N Frequency Synthesizers and Bandwidth Extension Techniques 6.776 High Speed Communication Circuits Lecture 23 Design of Fractional-N Frequency Synthesizers and Bandwidth Extension Techniques Michael Perrott Massachusetts Institute of Technology May, 2005 Copyright

More information

High Performance Digital Fractional-N Frequency Synthesizers

High Performance Digital Fractional-N Frequency Synthesizers High Performance Digital Fractional-N Frequency Synthesizers Michael Perrott October 16, 2008 Copyright 2008 by Michael H. Perrott All rights reserved. Why Are Digital Phase-Locked Loops Interesting? PLLs

More information

6.976 High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers

6.976 High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers 6.976 High Speed Communication Circuits and Systems Lecture 16 in Integer-N Frequency Synthesizers Michael Perrott Massachusetts Institute o Technology Copyright 23 by Michael H. Perrott Frequency Synthesizer

More information

High Performance Digital Fractional-N Frequency Synthesizers. IEEE Distinguished Lecture Lehigh Valley SSCS Chapter

High Performance Digital Fractional-N Frequency Synthesizers. IEEE Distinguished Lecture Lehigh Valley SSCS Chapter High Performance Digital Fractional-N Frequency Synthesizers IEEE Distinguished Lecture Lehigh Valley SSCS Chapter Michael H. Perrott October 2013 Copyright 2013 by Michael H. Perrott All rights reserved.

More information

Short Course On Phase-Locked Loops IEEE Circuit and System Society, San Diego, CA. Digital Frequency Synthesizers

Short Course On Phase-Locked Loops IEEE Circuit and System Society, San Diego, CA. Digital Frequency Synthesizers Short Course On Phase-Locked Loops IEEE Circuit and System Society, San Diego, CA Digital Frequency Synthesizers Michael H. Perrott September 6, 2009 Copyright 2009 by Michael H. Perrott All rights reserved.

More information

Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL

Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL 2.1 Background High performance phase locked-loops (PLL) are widely used in wireless communication systems to provide

More information

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03 Lecture 010 Introduction to Synthesizers (5/5/03) Page 010-1 LECTURE 010 INTRODUCTION TO FREQUENCY SYNTHESIZERS (References: [1,5,9,10]) What is a Synthesizer? A frequency synthesizer is the means by which

More information

A Low Area, Switched-Resistor Loop Filter Technique for Fractional-N Synthesizers Applied to a MEMS-based Programmable Oscillator

A Low Area, Switched-Resistor Loop Filter Technique for Fractional-N Synthesizers Applied to a MEMS-based Programmable Oscillator A Low Area, Switched-Resistor Loop Filter Technique for Fractional-N Synthesizers Applied to a MEMS-based Programmable Oscillator ISSCC 00, Session 3. M.H. Perrott, S. Pamarti, E. Hoffman, F.S. Lee, S.

More information

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Multiple Reference Clock Generator

Multiple Reference Clock Generator A White Paper Presented by IPextreme Multiple Reference Clock Generator Digitial IP for Clock Synthesis August 2007 IPextreme, Inc. This paper explains the concept behind the Multiple Reference Clock Generator

More information

Integrated Circuit Design for High-Speed Frequency Synthesis

Integrated Circuit Design for High-Speed Frequency Synthesis Integrated Circuit Design for High-Speed Frequency Synthesis John Rogers Calvin Plett Foster Dai ARTECH H O US E BOSTON LONDON artechhouse.com Preface XI CHAPTER 1 Introduction 1 1.1 Introduction to Frequency

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 5: Data Conversion ADC Background/Theory Examples Background Physical systems are typically analogue To apply digital signal processing, the analogue signal

More information

Short Course On Phase-Locked Loops and Their Applications Day 5, AM Lecture. Advanced PLL Examples (Part I)

Short Course On Phase-Locked Loops and Their Applications Day 5, AM Lecture. Advanced PLL Examples (Part I) Short Course On Phase-Locked Loops and Their Applications Day 5, AM Lecture Advanced PLL Examples (Part I) Michael Perrott August 15, 2008 Copyright 2008 by Michael H. Perrott All rights reserved. Outline

More information

CHAPTER. delta-sigma modulators 1.0

CHAPTER. delta-sigma modulators 1.0 CHAPTER 1 CHAPTER Conventional delta-sigma modulators 1.0 This Chapter presents the traditional first- and second-order DSM. The main sources for non-ideal operation are described together with some commonly

More information

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012 INF4420 ΔΣ data converters Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no) Outline Oversampling Noise shaping Circuit design issues Higher order noise shaping Introduction So far we have considered

More information

Choosing Loop Bandwidth for PLLs

Choosing Loop Bandwidth for PLLs Choosing Loop Bandwidth for PLLs Timothy Toroni SVA Signal Path Solutions April 2012 1 Phase Noise (dbc/hz) Choosing a PLL/VCO Optimized Loop Bandwidth Starting point for setting the loop bandwidth is

More information

6.976 High Speed Communication Circuits and Systems Lecture 21 MSK Modulation and Clock and Data Recovery Circuits

6.976 High Speed Communication Circuits and Systems Lecture 21 MSK Modulation and Clock and Data Recovery Circuits 6.976 High Speed Communication Circuits and Systems Lecture 21 MSK Modulation and Clock and Data Recovery Circuits Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott

More information

Techniques for High-Performance Digital Frequency Synthesis and Phase Control. Chun-Ming Hsu

Techniques for High-Performance Digital Frequency Synthesis and Phase Control. Chun-Ming Hsu Techniques for High-Performance Digital Frequency Synthesis and Phase Control by Chun-Ming Hsu Bachelor of Science in Engineering National Taiwan University, June 1997 Master of Science National Taiwan

More information

Chapter 2 DDSM and Applications

Chapter 2 DDSM and Applications Chapter DDSM and Applications. Principles of Delta-Sigma Modulation In order to explain the concept of noise shaping in detail, we start with a stand-alone quantizer (see Fig..a) with a small number of

More information

Direct Digital Synthesis Primer

Direct Digital Synthesis Primer Direct Digital Synthesis Primer Ken Gentile, Systems Engineer ken.gentile@analog.com David Brandon, Applications Engineer David.Brandon@analog.com Ted Harris, Applications Engineer Ted.Harris@analog.com

More information

Summary Last Lecture

Summary Last Lecture Interleaved ADCs EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2012

ECEN620: Network Theory Broadband Circuit Design Fall 2012 ECEN620: Network Theory Broadband Circuit Design Fall 2012 Lecture 20: CDRs Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Exam 2 is on Friday Nov. 9 One double-sided 8.5x11

More information

The Case for Oversampling

The Case for Oversampling EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations nd order ΣΔ

More information

Section 1. Fundamentals of DDS Technology

Section 1. Fundamentals of DDS Technology Section 1. Fundamentals of DDS Technology Overview Direct digital synthesis (DDS) is a technique for using digital data processing blocks as a means to generate a frequency- and phase-tunable output signal

More information

A Wide Tuning Range (1 GHz-to-15 GHz) Fractional-N All-Digital PLL in 45nm SOI

A Wide Tuning Range (1 GHz-to-15 GHz) Fractional-N All-Digital PLL in 45nm SOI 7- A Wide Tuning Range ( GHz-to-5 GHz) Fractional-N All-Digital PLL in 45nm SOI Alexander Rylyakov, Jose Tierno, George English 2, Michael Sperling 2, Daniel Friedman IBM T. J. Watson Research Center Yorktown

More information

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion Cascaded Noise-Shaping Modulators for Oversampled Data Conversion Bruce A. Wooley Stanford University B. Wooley, Stanford, 2004 1 Outline Oversampling modulators for A/D conversion Cascaded noise-shaping

More information

High Speed Communication Circuits and Systems Lecture 14 High Speed Frequency Dividers

High Speed Communication Circuits and Systems Lecture 14 High Speed Frequency Dividers High Speed Communication Circuits and Systems Lecture 14 High Speed Frequency Dividers Michael H. Perrott March 19, 2004 Copyright 2004 by Michael H. Perrott All rights reserved. 1 High Speed Frequency

More information

THE UNIVERSITY OF NAIROBI

THE UNIVERSITY OF NAIROBI THE UNIVERSITY OF NAIROBI ELECTRICAL AND INFORMATION ENGINEERING DEPARTMENT FINAL YEAR PROJECT. PROJECT NO. 085. TITLE: A PHASE-LOCKED LOOP FREQUENCY SYNTHESIZER BY: TUNDULI W. MICHAEL F17/2143/2004. SUPERVISOR:

More information

Modeling And Implementation of All-Digital Phase-Locked Loop Based on Vernier Gated Ring Oscillator Time-to-Digital Converter

Modeling And Implementation of All-Digital Phase-Locked Loop Based on Vernier Gated Ring Oscillator Time-to-Digital Converter Master s Thesis Modeling And Implementation of All-Digital Phase-Locked Loop Based on Vernier Gated Ring Oscillator Time-to-Digital Converter Ji Wang Department of Electrical and Information Technology,

More information

MULTI-BIT DELTA-SIGMA MODULATION TECHNIQUE FOR FRACTIONAL-N FREQUENCY SYNTHESIZERS WOOGEUN RHEE

MULTI-BIT DELTA-SIGMA MODULATION TECHNIQUE FOR FRACTIONAL-N FREQUENCY SYNTHESIZERS WOOGEUN RHEE MULTI-BIT DELTA-SIGMA MODULATION TECHNIQUE FOR FRACTIONAL-N FREQUENCY SYNTHESIZERS BY WOOGEUN RHEE B.S., Seoul National University, 1991 M.S., University of California at Los Angeles, 1993 THESIS Submitted

More information

A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER

A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER 3 A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER Milan STORK University of West Bohemia UWB, P.O. Box 314, 30614 Plzen, Czech Republic stork@kae.zcu.cz Keywords: Coincidence, Frequency mixer,

More information

A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation. Outline

A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation. Outline A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation Ashok Swaminathan,2, Kevin J. Wang, Ian Galton University of California, San Diego, CA 2 NextWave Broadband, San

More information

Phase-Locked Loops and Their Applications. Advanced PLL Examples (Part II)

Phase-Locked Loops and Their Applications. Advanced PLL Examples (Part II) Short Course On Phase-Locked Loops and Their Applications Day 5, PM Lecture Advanced PLL Examples (Part II) Michael Perrott August 15, 2008 Copyright 2008 by Michael H. Perrott All rights reserved. Outline

More information

A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection

A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection Somnath Kundu 1, Bongjin Kim 1,2, Chris H. Kim 1 1

More information

DSM Fractional-N PLLs Spur Optimization

DSM Fractional-N PLLs Spur Optimization 1. Introduction DSM Fractional-N PLLs Spur Optimization Peregrine s Delta-Sigma modulated (DSM) Fractional-N PLLs include PE9763, PE83363 and some of new products yet to be released. They all have excellent

More information

A Modeling Approach for 6 1 Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis

A Modeling Approach for 6 1 Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis 1028 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 8, AUGUST 2002 A Modeling Approach for 6 1 Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis Michael H. Perrott, Mitchell

More information

Telecommunication Electronics

Telecommunication Electronics Politecnico di Torino ICT School Telecommunication Electronics C5 - Special A/D converters» Logarithmic conversion» Approximation, A and µ laws» Differential converters» Oversampling, noise shaping Logarithmic

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN60: Network Theory Broadband Circuit Design Fall 014 Lecture 13: Frequency Synthesizer Examples Sam Palermo Analog & Mixed-Signal Center Texas A&M University Agenda Frequency Synthesizer Examples Design

More information

Chapter 2 Architectures for Frequency Synthesizers

Chapter 2 Architectures for Frequency Synthesizers Chapter 2 Architectures for Frequency Synthesizers 2.1 Overview This chapter starts with an overview of the conventional frequency synthesis techniques as well as the hybrid architectures that can be used

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 010 Lecture 7: PLL Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project Preliminary Report

More information

Low Phase Noise, High Bandwidth Frequency Synthesis Techniques. Scott Edward Meninger

Low Phase Noise, High Bandwidth Frequency Synthesis Techniques. Scott Edward Meninger Low Phase Noise, High Bandwidth Frequency Synthesis Techniques by Scott Edward Meninger Bachelor of Science in Electrical Engineering and Computer Science Boston University, June 1996 Master of Science

More information

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper Watkins-Johnson Company Tech-notes Copyright 1981 Watkins-Johnson Company Vol. 8 No. 6 November/December 1981 Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper All

More information

EE247 Lecture 26. This lecture is taped on Wed. Nov. 28 th due to conflict of regular class hours with a meeting

EE247 Lecture 26. This lecture is taped on Wed. Nov. 28 th due to conflict of regular class hours with a meeting EE47 Lecture 6 This lecture is taped on Wed. Nov. 8 th due to conflict of regular class hours with a meeting Any questions regarding this lecture could be discussed during regular office hours or in class

More information

SPUR REDUCTION TECHNIQUES IN DIRECT DIGITAL SYNTHESIZERS

SPUR REDUCTION TECHNIQUES IN DIRECT DIGITAL SYNTHESIZERS Published in the Proceedings of the 1993 International Frequency Control Symposium. SPUR REDUCTION TECHNIQUES IN DIRECT DIGITAL SYNTHESIZERS Victor S. Reinhardt Hughes Space and Communications Company

More information

Behavior Model of Noise Phase in a Phase Locked Loop Employing Sigma Delta Modulator

Behavior Model of Noise Phase in a Phase Locked Loop Employing Sigma Delta Modulator Behavior Model of Noise Phase in a Phase Locked Loop Employing Sigma Delta Modulator Tayebeh Ghanavati Nejad 1 and Ebrahim Farshidi 2 1,2 Electrical Department, Faculty of Engineering, Shahid Chamran University

More information

ECEN720: High-Speed Links Circuits and Systems Spring 2017

ECEN720: High-Speed Links Circuits and Systems Spring 2017 ECEN720: High-Speed Links Circuits and Systems Spring 2017 Lecture 12: CDRs Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project Preliminary Report #2 due Apr. 20 Expand

More information

Design of Bandpass Delta-Sigma Modulators: Avoiding Common Mistakes

Design of Bandpass Delta-Sigma Modulators: Avoiding Common Mistakes Design of Bandpass Delta-Sigma Modulators: Avoiding Common Mistakes R. Jacob Baker and Vishal Saxena Department of Electrical and Computer Engineering Boise State University 1910 University Dr., ET 201

More information

EE247 Lecture 24. EE247 Lecture 24

EE247 Lecture 24. EE247 Lecture 24 EE247 Lecture 24 Administrative EE247 Final exam: Date: Wed. Dec. 15 th Time: -12:30pm-3:30pm- Location: 289 Cory Closed book/course notes No calculators/cell phones/pdas/computers Bring one 8x11 paper

More information

MAX2769/MAX2769C PLL Loop Filter Calculator User Guide UG6444; Rev 0; 6/17

MAX2769/MAX2769C PLL Loop Filter Calculator User Guide UG6444; Rev 0; 6/17 MAX2769/MAX2769C PLL Loop Filter Calculator User Guide UG6444; Rev 0; 6/17 Abstract This document briefly covers PLL basics and explains how to use the PLL loop filter spreadsheet calculator for the MAX2769/MAX2769C.

More information

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN 5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE 802.11a/b/g WLAN Manolis Terrovitis, Michael Mack, Kalwant Singh, and Masoud Zargari 1 Atheros Communications, Sunnyvale, California 1 Atheros

More information

Analog-to-Digital Converters

Analog-to-Digital Converters EE47 Lecture 3 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations nd order ΣΔ

More information

Lecture 390 Oversampling ADCs Part I (3/29/10) Page 390-1

Lecture 390 Oversampling ADCs Part I (3/29/10) Page 390-1 Lecture 390 Oversampling ADCs Part I (3/29/0) Page 390 LECTURE 390 OVERSAMPLING ADCS PART I LECTURE ORGANIZATION Outline Introduction Deltasigma modulators Summary CMOS Analog Circuit Design, 2 nd Edition

More information

FREQUENCY synthesizers based on phase-locked loops

FREQUENCY synthesizers based on phase-locked loops IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 8, AUGUST 2007 725 Reduced Complexity MASH Delta Sigma Modulator Zhipeng Ye, Student Member, IEEE, and Michael Peter Kennedy,

More information

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 26. EE247 Lecture 26 EE247 Lecture 26 Administrative EE247 Final exam: Date: Mon. Dec. 18 th Time: 12:30pm-3:30pm Location: 241 Cory Hall Extra office hours: Thurs. Dec. 14 th, 10:30am-12pm Closed book/course notes No calculators/cell

More information

Summary Last Lecture

Summary Last Lecture EE47 Lecture 5 Pipelined ADCs (continued) How many bits per stage? Algorithmic ADCs utilizing pipeline structure Advanced background calibration techniques Oversampled ADCs Why oversampling? Pulse-count

More information

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD Teerachot Siriburanon, Tomohiro Ueno, Kento Kimura, Satoshi Kondo, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan

More information

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs Advanced AD/DA converters Overview Why ΔΣ DACs ΔΣ DACs Architectures for ΔΣ DACs filters Smoothing filters Pietro Andreani Dept. of Electrical and Information Technology Lund University, Sweden Advanced

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 16: CDRs Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project descriptions are posted on the website Preliminary

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 7: Phase Detector Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements & Agenda HW2 is due Oct 6 Exam

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

2. ADC Architectures and CMOS Circuits

2. ADC Architectures and CMOS Circuits /58 2. Architectures and CMOS Circuits Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es

More information

Bluetooth based Synthesizer for Wireless Sensor Measurement Applicable in Health Net Environment

Bluetooth based Synthesizer for Wireless Sensor Measurement Applicable in Health Net Environment Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 3 [10] September 2014: 99-104 2014 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal

More information

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 26. EE247 Lecture 26 EE247 Lecture 26 Administrative Project submission: Project reports due Dec. 5th Please make an appointment with the instructor for a 15minute meeting on Monday Dec. 8 th Prepare to give a 3 to 7 minute

More information

Lecture #6: Analog-to-Digital Converter

Lecture #6: Analog-to-Digital Converter Lecture #6: Analog-to-Digital Converter All electrical signals in the real world are analog, and their waveforms are continuous in time. Since most signal processing is done digitally in discrete time,

More information

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs.

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs. Frequency Synthesizers for RF Transceivers Domine Leenaerts Philips Research Labs. Purpose Overview of synthesizer architectures for RF transceivers Discuss the most challenging RF building blocks Technology

More information

Other Effects in PLLs. Behzad Razavi Electrical Engineering Department University of California, Los Angeles

Other Effects in PLLs. Behzad Razavi Electrical Engineering Department University of California, Los Angeles Other Effects in PLLs Behzad Razavi Electrical Engineering Department University of California, Los Angeles Example of Up and Down Skew and Width Mismatch Approximating the pulses on the control line by

More information

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver Hamid Rategh Center for Integrated Systems Stanford University OUTLINE Motivation Introduction

More information

Ten-Tec Orion Synthesizer - Design Summary. Abstract

Ten-Tec Orion Synthesizer - Design Summary. Abstract Ten-Tec Orion Synthesizer - Design Summary Lee Jones 7/21/04 Abstract Design details of the low phase noise, synthesized, 1 st local oscillator of the Ten-Tec model 565 Orion transceiver are presented.

More information

National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer

National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer Kaustubh Wagle and Niels Knudsen National Instruments, Austin, TX Abstract Single-bit delta-sigma

More information

Glossary of VCO terms

Glossary of VCO terms Glossary of VCO terms VOLTAGE CONTROLLED OSCILLATOR (VCO): This is an oscillator designed so the output frequency can be changed by applying a voltage to its control port or tuning port. FREQUENCY TUNING

More information

ADVANCES in VLSI technology result in manufacturing

ADVANCES in VLSI technology result in manufacturing INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2013, VOL. 59, NO. 1, PP. 99 104 Manuscript received January 8, 2013; revised March, 2013. DOI: 10.2478/eletel-2013-0012 Rapid Prototyping of Third-Order

More information

Fractional N Frequency Synthesis

Fractional N Frequency Synthesis Fractional N Frequency Synthesis 1.0 Introduction The premise of fractional N frequency synthesis is to use a feedback (N) counter that can assume fractional values. In many applications, this allows a

More information

An analytical phase noise model of charge pump mismatch in sigma-delta frequency synthesizer

An analytical phase noise model of charge pump mismatch in sigma-delta frequency synthesizer Analog Integr Circ Sig Process (2006) 48:223 229 DOI 10.1007/s10470-006-7832-3 An analytical phase noise model of charge pump mismatch in sigma-delta frequency synthesizer Xiaojian Mao Huazhong Yang Hui

More information

ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE

ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE Christopher D. Ziomek Emily S. Jones ZTEC Instruments, Inc. 7715 Tiburon Street NE Albuquerque, NM 87109 Abstract Comprehensive waveform generation is an

More information

Literature Number: SNAP002

Literature Number: SNAP002 Literature Number: SNAP002 PLL Fundamentals Part 2: PLL Behavior Dean Banerjee Overview General PLL Performance Concepts PLL Loop Theory Lock Time Spurs Phase Noise Fractional PLL Performance Concepts

More information

ACTIVE SWITCHED-CAPACITOR LOOP FILTER. A Dissertation JOOHWAN PARK

ACTIVE SWITCHED-CAPACITOR LOOP FILTER. A Dissertation JOOHWAN PARK FRACTIONAL-N PLL WITH 90 o PHASE SHIFT LOCK AND ACTIVE SWITCHED-CAPACITOR LOOP FILTER A Dissertation by JOOHWAN PARK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

Hybrid Frequency Synthesizer Combines Octave Tuning Range and Millihertz Steps

Hybrid Frequency Synthesizer Combines Octave Tuning Range and Millihertz Steps Hybrid Frequency Synthesizer Combines Octave Tuning Range and Millihertz Steps DDS and PLL techniques are combined in this high-resolution synthesizer By Benjamin Sam Analog Devices Northwest Laboratories

More information

Lecture 7: Components of Phase Locked Loop (PLL)

Lecture 7: Components of Phase Locked Loop (PLL) Lecture 7: Components of Phase Locked Loop (PLL) CSCE 6933/5933 Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages,

More information

A Multiphase Compensation Method with Dynamic Element Matching Technique in Σ- Fractional-N Frequency Synthesizers

A Multiphase Compensation Method with Dynamic Element Matching Technique in Σ- Fractional-N Frequency Synthesizers JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.8, NO.3, SEPTEMBER, 008 179 A Multiphase Compensation Method with Dynamic Element Matching Technique in Σ- Fractional-N Frequency Synthesizers Zuow-Zun

More information

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter Brian L. Young youngbr@eecs.oregonstate.edu Oregon State University June 6, 28 I. INTRODUCTION The goal of the Spring 28, ECE 627 project

More information

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter J. Park, F. Maloberti: "Fractional-N PLL with 90 Phase Shift Lock and Active Switched-Capacitor Loop Filter"; Proc. of the IEEE Custom Integrated Circuits Conference, CICC 2005, San Josè, 21 September

More information

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12.

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12. Analog Signals Signals that vary continuously throughout a defined range. Representative of many physical quantities, such as temperature and velocity. Usually a voltage or current level. Digital Signals

More information

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz Datasheet The LNS is an easy to use 18 GHz synthesizer that exhibits outstanding phase noise and jitter performance in a 3U rack mountable chassis.

More information

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators RF Signal Generators SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators SG380 Series RF Signal Generators DC to 2 GHz, 4 GHz or 6 GHz 1 µhz resolution AM, FM, ΦM, PM and sweeps OCXO timebase

More information

1. Clearly circle one answer for each part.

1. Clearly circle one answer for each part. TB 1-9 / Exam Style Questions 1 EXAM STYLE QUESTIONS Covering Chapters 1-9 of Telecommunication Breakdown 1. Clearly circle one answer for each part. (a) TRUE or FALSE: Absolute bandwidth is never less

More information

Minimizing Spurious Tones in Digital Delta-Sigma Modulators

Minimizing Spurious Tones in Digital Delta-Sigma Modulators Minimizing Spurious Tones in Digital Delta-Sigma Modulators ANALOG CIRCUITS AND SIGNAL PROCESSING Series Editors: Mohammed Ismail Mohamad Sawan For other titles published in this series, go to http://www.springer.com/series/7381

More information

Tutorial: Quartz Crystal Oscillators & Phase- Locked Loops

Tutorial: Quartz Crystal Oscillators & Phase- Locked Loops Tutorial: Quartz Crystal Oscillators & Phase- Locked Loops Greg Armstrong (IDT) Dominik Schneuwly (Oscilloquartz) June 13th, 2016 1 Content 1. Quartz Crystal Oscillator (XO) Technology Quartz Crystal Overview

More information

Phase-Locked Loop Related Terminology & Definitions

Phase-Locked Loop Related Terminology & Definitions 9 Jan 2008 U14063 PLL Terminology.doc 1 Phase-Locked Loop Related Terminology & Definitions References 1. Crawford, J.A., Advanced Phase-Lock Techniques, Artech House, 2007. 2. Crawford, J.A., Frequency

More information

Application Note #5 Direct Digital Synthesis Impact on Function Generator Design

Application Note #5 Direct Digital Synthesis Impact on Function Generator Design Impact on Function Generator Design Introduction Function generators have been around for a long while. Over time, these instruments have accumulated a long list of features. Starting with just a few knobs

More information

Phase Noise and Tuning Speed Optimization of a MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution

Phase Noise and Tuning Speed Optimization of a MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution Phase Noise and Tuning Speed Optimization of a 5-500 MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution BRECHT CLAERHOUT, JAN VANDEWEGE Department of Information Technology (INTEC) University of

More information

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Engineering, Technology & Applied Science Research Vol. 7, No. 2, 2017, 1473-1477 1473 A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Hamidreza Esmaeili Taheri Department of Electronics

More information

Digital Waveform with Jittered Edges. Reference edge. Figure 1. The purpose of this discussion is fourfold.

Digital Waveform with Jittered Edges. Reference edge. Figure 1. The purpose of this discussion is fourfold. Joe Adler, Vectron International Continuous advances in high-speed communication and measurement systems require higher levels of performance from system clocks and references. Performance acceptable in

More information

A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique

A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique Lei Lu, Lingbu Meng, Liang Zou, Hao Min and Zhangwen Tang Fudan University,

More information

Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface

Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface SPECIFICATIONS PXIe-5645 Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface Contents Definitions...2 Conditions... 3 Frequency...4 Frequency Settling Time... 4 Internal Frequency Reference...

More information

Oversampling Converters

Oversampling Converters Oversampling Converters Behzad Razavi Electrical Engineering Department University of California, Los Angeles Outline Basic Concepts First- and Second-Order Loops Effect of Circuit Nonidealities Cascaded

More information

THE serial advanced technology attachment (SATA) is becoming

THE serial advanced technology attachment (SATA) is becoming IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 11, NOVEMBER 2007 979 A Low-Jitter Spread Spectrum Clock Generator Using FDMP Ding-Shiuan Shen and Shen-Iuan Liu, Senior Member,

More information

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Jinseok Koh Wireless Analog Technology Center Texas Instruments Inc. Dallas, TX Outline Fundamentals for ADCs Over-sampling and Noise

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics D5 - Special A/D converters» Differential converters» Oversampling, noise shaping» Logarithmic conversion» Approximation, A and

More information