Working with ADCs, OAs and the MSP430

Size: px
Start display at page:

Download "Working with ADCs, OAs and the MSP430"

Transcription

1 Working with ADCs, OAs and the MSP430 Bonnie Baker HPA Senior Applications Engineer Texas Instruments 2006 Texas Instruments Inc, Slide 1 Agenda An Overview of the MSP430 Data Acquisition System SAR Converters The INS and OUTS of the SAR converter Useful Applications Using Op Amps Op Amp Configurations Driving SAR Converters 2006 Texas Instruments Inc, Slide 2 1

2 Where to Find ADCs and Op Amps OP OP AMP MUX FILTER Voltage Reference Source A/D REF Sensor Interface Voltage Reference Source Buffer Gain Difference Amplifier Instrumentation Amplifier Filter Level Shift Anti-Alias Filter Band-pass Filter Programmable Gain Amp Instrumentation Amp A/D Converter Driver Voltage Reference Source DDS Synthesis μ C Valve Actuator Driver Line Driver 4-20mA Driver POWER AMP D/A 2006 Texas Instruments Inc, Slide 3 ADC Architectures There are many different ADC Architectures Successive Approximation (SAR) Sigma Delta (SD) Slope or Dual Slope Pipeline Flash...as in quick, not memory All converters in the MSP430 chips are SAR and Sigma Delta types SAR determines the digital word By approximating the input signal Using an iterative process How the Sigma Delta converter determines the digital word By oversampling Applying Digital Filtering 2006 Texas Instruments Inc, Slide 4 2

3 Op Amp Architectures The Different Types Op Amp Architectures Single Supply Rail to Rail In Rail to Rail Out CMOS or Bipolar Dual Supply All Op Amps (OAs) in the MSP430 chips are Single Supply, CMOS Our CMOS Op amp Easily Configured with the MSP430 Controller General Purpose, Buffer, Comparator, PGA, Differential Amp Easily Programmed for Optimized Gain Bandwidth etc 2006 Texas Instruments Inc, Slide 5 Agenda An Overview of the MSP430 Data Acquisition System SAR Converters The INS and OUTS of the SAR converter Useful Applications Using Op Amps Op Amp Configurations Driving SAR Converters 2006 Texas Instruments Inc, Slide 6 3

4 The SAR ADC Most Serial ADCs are SARs or Sigma Deltas The MSP439 SAR Converter SAR ADC = Successive Approximation Register, Analog-to-Digital Converter ADC12 12-bit Analog-to-Digital Converter SARs are Best for General Purpose Apps Very Prevalent for Signal Level Applications: Data Loggers, Temp Sensors, Bridge Sensors, General Purpose In the Market SARs Can be 8 to 18 bits of resolution Speed range: >10 ksps to < 5 Msps SAR Analog to Digital Converter Usually require a Low-pass Filter before Analog Input 2006 Texas Instruments Inc, Slide 7 System Integration Using an A/D MSP430 Input Signal Source Amp Filter Analog SAR to Digital Analog to Converter Digital Converter Micro- Controller Engine Output Filter DAC or PWM 2006 Texas Instruments Inc, Slide 8 4

5 SAR Converter Block Diagram V S S 1 R IN (2 kω) Cap array is both the sample cap and a DAC 16C 2C C C S C _ Shift Register S A R 1/2 V REF Control Logic V SS V REF 2006 Texas Instruments Inc, Slide 9 Successive Approximation Concept FS 3/4FS 1/2FS Bit = 1 TEST MSB Bit = 0 TEST MSB -1 Bit = 1 TEST MSB -2 Bit = 0 TEST LSB Analog input 1/4FS 0 DAC Output Time Digital Output Code = Texas Instruments Inc, Slide 10 5

6 ADC Ideal Transfer Function Digital Output Code Ideal transfer function /4 FS 1/2 FS 3/4 FS Analog Input Voltage FS 2006 Texas Instruments Inc, Slide 11 ADC with Offset and Gain Error Digital Output Code Actual transfer function Ideal transfer function y = a (1b)x where y=digital out x=analog in a=offset err b=gain err Every Ideal Code has Offset Error added Every ideal code is Multiplied by Gain Error /4 FS 1/2 FS 3/4 FS Analog Input Voltage FS 2006 Texas Instruments Inc, Slide 12 6

7 Offset/Gain Impact on Dynamic Range 4096 Digital Code OUT Analog Voltage IN Worse case Dynamic Range = 4082 bits = bits V REF Gain Error Offset Error ADC12 specifications Offset E O typ = ±2 LSB E O max = ±4 LSB Gain E G typ = ±1.1 LSB E G max = ±2 LSB (= ±0.0488%) 1 LSB = (V R -V R- )/ 2 12 Easy to calibrate 2006 Texas Instruments Inc, Slide 13 DNL and INL Errors 111 INL < 0 Actual transfer function 110 Digital Output Code DNL < 0 Ideal transfer function Analog Voltage In 2006 Texas Instruments Inc, Slide 14 7

8 INL/DNL/Noise Impact on Dynamic Range 4096 Digital Code OUT Analog Voltage IN INL, DNL rms ADC Noise V REF ADC12 specifications DNL error E D max = ±1.7 LSB INL error E I max = ±1 LSB 1 LSB = (V R -V R- )/ 2 12 INL, DNL and Noise errors move across the entire range Impacts the Effective Number of Bits (ENOB) Not Easily calibrated Effects Accuracy 2006 Texas Instruments Inc, Slide 15 ADC Input Impedance Analog Input D ESD V CC Mux Resistance R S D ESD Leakage current R I = 2kΩ Sample Cap C I = 40pF V SS Input Internal Impedance is Relatively Low A High Impedance Source Increases Sample Cap Charging Time Rise Time of Voltage on CI ~ (RS RI) * CI 2006 Texas Instruments Inc, Slide 16 8

9 Sample Cap Charging Time 1400 ns (min) Sample Period Start Conversion Conversion Complete SAMPCON ADC12OSC/ADC12DIV D ADC12MEMx 11 9 D D D D D D D D D D D Desired Voltage on C I V C Rise Time of (R S R I ) * C I Final Voltage on C I 2006 Texas Instruments Inc, Slide 17 Alternative High Resolution Devices ADC12 Resolution = 12 bits Minimum LSB size = VREF / 2n = 1.5 V / 212 = 366 mv # channels = 12 to 16 (depends on part number) ADS8341 Resolution = 16 bits Minimum LSB size = VREF / 2n = 2.7 V / 216 = 41.2 mv # channels = 4 ADS1100 Resolution = 16 bits Minimum LSB size = VREF / 2n = 2*2.7 V / 216 = 82.4 mv # channels = Texas Instruments Inc, Slide 18 9

10 Agenda An Overview of the MSP430 Data Acquisition System SAR Converters The INS and OUTS of the SAR converter Useful Applications Using Op Amps Op Amp Configurations Driving SAR Converters 2006 Texas Instruments Inc, Slide 19 Operational Amplifiers Most Prevalent Building Block in Analog Circuits Very Flexible - Large Variety of Functions Circuits We Will Talk About General Purpose Op amp Unity Gain Buffer Comparator PGA (Programmable Gain Amplifier) Differential Amplifier R IN R F 2006 Texas Instruments Inc, Slide 20 10

11 Where to Find Op Amps OP OP AMP MUX FILTER Voltage Reference Source A/D REF Sensor Interface Voltage Reference Source Buffer Gain Difference Amplifier Instrumentation Amplifier Filter Level Shift Anti-Alias Filter Band-pass Filter Programmable Gain Amp Instrumentation Amp A/D Converter Driver Voltage Reference Source DDS Synthesis μ C Valve Actuator Driver Line Driver 4-20mA Driver POWER AMP D/A 2006 Texas Instruments Inc, Slide 21 Ideal Op Amp POWER SUPPLY No min or max Voltage I SUPPLY = 0 Amps Power Supply Rejection = INPUT Input Current (I B ) = 0 Input Impedance (Z IN ) = Input Voltage ( ) no limits Zero Noise Zero DC error Common-Mode Rejection = - V DD V SS OUTPUT = V SS to V DD I OUT = Slew Rate = Z OUT = 0 Ω SIGNAL TRANSFER Open Loop Gain = Bandwidth = 0 Zero Harmonic Distortion $ Texas Instruments Inc, Slide 22 11

12 Open Loop vs Closed Loop Design OAFCx = 011 Open Loop Configuration In Comparator mode V REF OAFCx = 000 Closed Loop Configuration Always a Connection from Output to Inverting Input Gain is Dependant on Resistors R IN = High for > V REF Low for < V REF R F = ( 1 R F / R IN ) ( ) 2006 Texas Instruments Inc, Slide 23 Comparator Mode OAFCx = 011 Temperature Sensor V A (t) R NTC R PAR R REF Px.y R REF MSP430FG43x NTC R PAR Px.x V TH t = 0 t = t1 t = t2 Time V A C INT OAxI0 Comparator Timer V TH = 0.25V CC R NTC RPAR R REF = t NTC RPAR t REF 2006 Texas Instruments Inc, Slide 24 12

13 General Op amp Mode OAFCx = 000 OA0O OAxI1 MSP430FG43x V IN OAxI0 V REF 2006 Texas Instruments Inc, Slide 25 General Op amp Mode OAFCx = 000 Non-inverting Gain R F CAx MSP430FG43x V REF = 0.5V CC V R IN REF OA0O OA0I1 OA0I0 = (1 R F/ R IN ) V REF *R F /R IN 2006 Texas Instruments Inc, Slide 26 13

14 General Op amp Mode OAFCx = 000 Inverting Gain R IN R F V REF = 0.5V CC OA0O OA0I1 OA0I0 CAx MSP430FG43x V REF = 0.5V CC = V REF (1 R F/ R IN ) *R F /R IN 2006 Texas Instruments Inc, Slide 27 Data Acquisition System Analog Gain and Signal Conditioning Cell Analog Low Pass Filter (LPF) Analog to Digital Conversion (ADC) Digital Filter Input Signal Analog Output Signal Digital 2006 Texas Instruments Inc, Slide 28 Figure

15 Noise Reduction with a Low Pass Filter Noise Reduction or Anti-aliasing Filter R 23 C 22 R 21 R 22 - C 21 OA ADC12 V REF 2006 Texas Instruments Inc, Slide 29 Anti-alias Filter :: Nyquist Theorem Signal at the Input of the A/D Converter f ALIASED = f IN -Nf S Find N by making f ALIASED < f s / 2 Digital Representation at the Output of the Converter Analog Input N = 0 (1) (2) N = 1 N = 2 (3) N = 3 (4) (5) N = 4 f S /2 3f S /2 5f S /2 7f S /2 0 f S 2f S 3f S 4f S Sampled Output Representation N = 0 (2) (1) (4) (3) (5) 0 f S /2 f S 2006 Texas Instruments Inc, Slide 30 15

16 Filter Pro Software Filter synthesis tool for designing Multi-section filter Low-pass Filter High-pass active filter Supports 2nd to 10th order Multiple-feedback (MFB) Filter Topology Sallen-Key Filter Topology Texas Instruments Inc, Slide 31 Operational Amp Output Swing Rail-to-Rail Output Operation does not Exist How Close the Amplifier s Output can Come to the Power Supplies (or rails ) and still be Linear MSP430FG43x = (VSS 200mV) {min} to (VCC- 200mV) {max} = ( 1 R F / R IN ) R IN R F 2006 Texas Instruments Inc, Slide 32 16

17 Operational Amp Output Swing 10 Offset Voltage, V OS (mv) Output Voltage, (V) 2006 Texas Instruments Inc, Slide 33 Unity Gain Buffer Mode OAFCx = 001 OAxI0 MSP430FG43x OA ADC12 Op Amp Internally connected as a buffer Non-inverting input available on a Controller pin Op Amp Output connected directly to ADC Texas Instruments Inc, Slide 34 17

18 Op Amp Input Voltage Range RRIP ON = (VSS - 0.1V) {min} to (VCC 0.1) {max} Charge pump on input stage is turned on Great Feature, not all amps have this! RRIP OFF = (VSS - 0.1V) {min} to (VCC - 1.2) {max} (Appropriate for Gains > 2) 2006 Texas Instruments Inc, Slide 35 PGA Mode Non-inverting Mode OAFCx = 100 = G DACs or external R BOTTOM R R R R 2R - 2R MSP430FG44x Ax int/ext 4R 4R R TOP RRIP off OAxCTL x1 G= x1 G= x1 G= x1 G= x1 G= x1 G= x0 G= x0 G=1 AV SS RRIP on PGA Non-inverting 2006 Texas Instruments Inc, Slide 36 18

19 PGA Mode Inverting Mode OAFCx = 110 = G V REF (1 G) DACs or external R R BOTTOM R R V REF - R 2R 2R MSP430FG44x Ax int/ext 4R 4R R TOP RRIP off OAxCTL x1 G= x1 G= x1 G= x1 G= x1 G= x1 G= x1 G= x0 G=-0.33 PGA Inverting RRIP on 2006 Texas Instruments Inc, Slide 37 Bridge Network MSP430FG43x R 23 μcontroller V REF1 - C 22 Functions R L1 R L2 R L2 R L1 R 1 INA326 G = 2 (R 2 /R 1 ) = 245 R 21 R 22 C 21 - OA SAR ADC 12 bits LCL- 816G R 2 C 1 V REF Texas Instruments Inc, Slide 38 19

20 Summary 12-bit SAR Converter ADC12 12-bit Resolution and Accuracy Excellent Dynamic Range For more Resolution Discrete Options Operational Amplifier OA Standard Single Supply CMOS Op Amp Rail-to-rail Input Rail-to-rail Output Six Configurations or Modes For more Accuracy Discrete Options For more Complexity Discrete Options MSP430 Analog Options Very Useful! 2006 Texas Instruments Inc, Slide 39 20

Working with ADCs, OAs and the MSP430

Working with ADCs, OAs and the MSP430 Working with ADCs, OAs and the MSP430 Bonnie Baker HPA Senior Applications Engineer Texas Instruments 2006 Texas Instruments Inc, Slide 1 Agenda An Overview of the MSP430 Data Acquisition System SAR Converters

More information

MSP430 Teaching Materials

MSP430 Teaching Materials MSP430 Teaching Materials Chapter 9 Data Acquisition A/D Conversion Introduction Texas Instruments t Incorporated University of Beira Interior (PT) Pedro Dinis Gaspar, António Espírito Santo, Bruno Ribeiro,

More information

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing Fundamentals of Data Converters DAVID KRESS Director of Technical Marketing 9/14/2016 Analog to Electronic Signal Processing Sensor (INPUT) Amp Converter Digital Processor Actuator (OUTPUT) Amp Converter

More information

9. Data Acquisition. Chapter 9

9. Data Acquisition. Chapter 9 Chapter 9 9. Data Acquisition Microcontrollers offer a complete signal-chain on a chip for a wide range of applications. One of the most important interfaces between the microcontroller and the real word

More information

Octal Sample-and-Hold with Multiplexed Input SMP18

Octal Sample-and-Hold with Multiplexed Input SMP18 a FEATURES High Speed Version of SMP Internal Hold Capacitors Low Droop Rate TTL/CMOS Compatible Logic Inputs Single or Dual Supply Operation Break-Before-Make Channel Addressing Compatible With CD Pinout

More information

ADC Resolution: Myth and Reality

ADC Resolution: Myth and Reality ADC Resolution: Myth and Reality Mitch Ferguson, Applications Engineering Manager Class ID: CC19I Renesas Electronics America Inc. Mr. Mitch Ferguson Applications Engineering Manager Specializes support

More information

Brushless DC motor controller

Brushless DC motor controller NE/SA7 DESCRIPTION The NE/SA/SE7 is a three-phase brushless DC motor controller with a microprocessor-compatible serial input data port; 8-bit monotonic digital-to-analog converter; PWM comparator; oscillator;

More information

Select the Right Operational Amplifier for your Filtering Circuits

Select the Right Operational Amplifier for your Filtering Circuits Select the Right Operational Amplifier for your Filtering Circuits 2003 Microchip Technology Incorporated. All Rights Reserved. for Low Pass Filters 1 Hello, my name is Bonnie Baker, and I am with Microchip.

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

AD9772A - Functional Block Diagram

AD9772A - Functional Block Diagram F FEATURES single 3.0 V to 3.6 V supply 14-Bit DAC Resolution 160 MPS Input Data Rate 67.5 MHz Reconstruction Passband @ 160 MPS 74 dbc FDR @ 25 MHz 2 Interpolation Filter with High- or Low-Pass Response

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion Florian Erdinger Lehrstuhl für Schaltungstechnik und Simulation Technische Informatik der Uni Heidelberg VLSI Design - Mixed Mode Simulation F. Erdinger, ZITI, Uni Heidelberg

More information

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12.

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12. Analog Signals Signals that vary continuously throughout a defined range. Representative of many physical quantities, such as temperature and velocity. Usually a voltage or current level. Digital Signals

More information

Linear Technology Chronicle

Linear Technology Chronicle Linear Technology Chronicle High Performance Analog Solutions from Linear Technology Vol. 13 No. 5 Industrial Process Control LT1790-2.5 LTC2054 REMOTE THERMOCOUPLE CH0 CH1 CH7 CH8 CH15 COM REF 16-CHANNEL

More information

SECTION 8 ADCs FOR SIGNAL CONDITIONING Walt Kester, James Bryant, Joe Buxton

SECTION 8 ADCs FOR SIGNAL CONDITIONING Walt Kester, James Bryant, Joe Buxton SECTION 8 ADCs FOR SIGNAL CONDITIONING Walt Kester, James Bryant, Joe Buxton The trend in ADCs and DACs is toward higher speeds and higher resolutions at reduced power levels. Modern data converters generally

More information

2-Channel, Software-Selectable, True Bipolar Input, 1 MSPS, 12-Bit Plus Sign ADC AD7322

2-Channel, Software-Selectable, True Bipolar Input, 1 MSPS, 12-Bit Plus Sign ADC AD7322 -Channel, Software-Selectable, True Bipolar Input, 1 MSPS, 1-Bit Plus Sign ADC AD73 FEATURES 1-bit plus sign SAR ADC True bipolar input ranges Software-selectable input ranges ± 1 V, ± 5 V, ±.5 V, V to

More information

Analog-to-Digital i Converters

Analog-to-Digital i Converters CSE 577 Spring 2011 Analog-to-Digital i Converters Jaehyun Lim, Kyusun Choi Department t of Computer Science and Engineering i The Pennsylvania State University ADC Glossary DNL (differential nonlinearity)

More information

Sensor Interfacing and Operational Amplifiers Lab 3

Sensor Interfacing and Operational Amplifiers Lab 3 Name Lab Day Lab Time Sensor Interfacing and Operational Amplifiers Lab 3 Introduction: In this lab you will design and build a circuit that will convert the temperature indicated by a thermistor s resistance

More information

Design And Simulation Of First Order Sigma Delta ADC In 0.13um CMOS Technology Jaydip H. Chaudhari PG Student L. C. Institute of Technology, Bhandu

Design And Simulation Of First Order Sigma Delta ADC In 0.13um CMOS Technology Jaydip H. Chaudhari PG Student L. C. Institute of Technology, Bhandu Design And Simulation Of First Order Sigma Delta ADC In 0.13um CMOS Technology Jaydip H. Chaudhari PG Student L. C. Institute of Technology, Bhandu Gireeja D. Amin Assistant Professor L. C. Institute of

More information

500 ksps, 2-Channel, Software-Selectable, True Bipolar Input, 12-Bit Plus Sign ADC AD7321

500 ksps, 2-Channel, Software-Selectable, True Bipolar Input, 12-Bit Plus Sign ADC AD7321 5 ksps, -Channel, Software-Selectable, True Bipolar Input, 1-Bit Plus Sign ADC AD731 FEATURES 1-bit plus sign SAR ADC True bipolar input ranges Software-selectable input ranges ±1 V, ±5 V, ±.5 V, V to

More information

Data Converters 2. Selection Guides HIGH PERFORMANCE ANALOG

Data Converters 2. Selection Guides HIGH PERFORMANCE ANALOG 2 HIGH PERFORMANCE Selection Guides to Digital (ADCs) 1-Channel (ADCs)................................................... 2-2 6-Bit............................................................. 2-2 8-Bit.............................................................

More information

Differential Amplifiers

Differential Amplifiers Differential Amplifiers Benefits of Differential Signal Processing The Benefits Become Apparent when Trying to get the Most Speed and/or Resolution out of a Design Avoid Grounding/Return Noise Problems

More information

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER FEATURES 12-BICCURACY IN 8-PIN MINI-DIP AND 8-PIN SOIC FAST 3-WIRE SERIAL INTERFACE LOW INL AND DNL: ±1/2 LSB max GAIN ACCURACY TO ±1LSB

More information

8-Channel, Software-Selectable True Bipolar Input, 12-Bit Plus Sign ADC AD7328

8-Channel, Software-Selectable True Bipolar Input, 12-Bit Plus Sign ADC AD7328 8-Channel, Software-Selectable True Bipolar Input, 1-Bit Plus Sign ADC AD738 FEATURES 1-bit plus sign SAR ADC True bipolar input ranges Software-selectable input ranges ±1 V, ±5 V, ±.5 V, V to +1 V 1 MSPS

More information

Data Converters. Lecture Fall2013 Page 1

Data Converters. Lecture Fall2013 Page 1 Data Converters Lecture Fall2013 Page 1 Lecture Fall2013 Page 2 Representing Real Numbers Limited # of Bits Many physically-based values are best represented with realnumbers as opposed to a discrete number

More information

WebSeminar: Sept. 24, 2003

WebSeminar: Sept. 24, 2003 The New Digitally Controlled Programmable Gain Amplifier (PGA) 2003 Microchip Technology Incorporated. All Rights Reserved. MCP6S21/2/6/8 The New Digitally Controlled Amplifier (PGA) 1 The New Digitally

More information

INL PLOT REFIN DAC AMPLIFIER DAC REGISTER INPUT CONTROL LOGIC, REGISTERS AND LATCHES

INL PLOT REFIN DAC AMPLIFIER DAC REGISTER INPUT CONTROL LOGIC, REGISTERS AND LATCHES ICm ictm IC MICROSYSTEMS FEATURES 12-Bit 1.2v Low Power Single DAC With Serial Interface and Voltage Output DNL PLOT 12-Bit 1.2v Single DAC in 8 Lead TSSOP Package Ultra-Low Power Consumption Guaranteed

More information

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

Data Converter Basics

Data Converter Basics Data Converter Basics How to Use and Test Data-Acquisition Products Tom Hendrick, Texas Instruments, Inc. Workshop Agenda Data Converter Fundamentals Key concerns when choosing a data converter Data converter

More information

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048 5 MHz, General Purpose Voltage Feedback Op Amps AD8/AD88 FEATURES Wide Bandwidth AD8, G = + AD88, G = + Small Signal 5 MHz 6 MHz Large Signal ( V p-p) MHz 6 MHz 5.8 ma Typical Supply Current Low Distortion,

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 5: Data Conversion ADC Background/Theory Examples Background Physical systems are typically analogue To apply digital signal processing, the analogue signal

More information

Lecture 9, ANIK. Data converters 1

Lecture 9, ANIK. Data converters 1 Lecture 9, ANIK Data converters 1 What did we do last time? Noise and distortion Understanding the simplest circuit noise Understanding some of the sources of distortion 502 of 530 What will we do today?

More information

9-Bit, 30 MSPS ADC AD9049 REV. 0. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

9-Bit, 30 MSPS ADC AD9049 REV. 0. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM a FEATURES Low Power: 00 mw On-Chip T/H, Reference Single +5 V Power Supply Operation Selectable 5 V or V Logic I/O Wide Dynamic Performance APPLICATIONS Digital Communications Professional Video Medical

More information

AD7366-5/AD True Bipolar Input, 12-/14-Bit, 2-Channel, Simultaneous Sampling SAR ADCs FUNCTIONAL BLOCK DIAGRAM FEATURES GENERAL DESCRIPTION

AD7366-5/AD True Bipolar Input, 12-/14-Bit, 2-Channel, Simultaneous Sampling SAR ADCs FUNCTIONAL BLOCK DIAGRAM FEATURES GENERAL DESCRIPTION True Bipolar Input, 12-/14-Bit, 2-Channel, Simultaneous Sampling SAR ADCs FEATURES Dual 12-bit/14-bit, 2-channel ADCs True bipolar analog inputs Programmable input ranges ±10 V, ±5 V, 0 V to +10 V ±12

More information

Operational Amplifiers (Op Amps)

Operational Amplifiers (Op Amps) Operational Amplifiers (Op Amps) Introduction * An operational amplifier is modeled as a voltage controlled voltage source. * An operational amplifier has a very high input impedance and a very high gain.

More information

The need for Data Converters

The need for Data Converters The need for Data Converters ANALOG SIGNAL (Speech, Images, Sensors, Radar, etc.) PRE-PROCESSING (Filtering and analog to digital conversion) DIGITAL PROCESSOR (Microprocessor) POST-PROCESSING (Digital

More information

10-Bit, 40 MSPS/60 MSPS A/D Converter AD9050 REV. B. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

10-Bit, 40 MSPS/60 MSPS A/D Converter AD9050 REV. B. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM a FEATURES Low Power: 1 mw @ 0 MSPS, mw @ 0 MSPS On-Chip T/H, Reference Single + V Power Supply Operation Selectable V or V Logic I/O SNR: db Minimum at MHz w/0 MSPS APPLICATIONS Medical Imaging Instrumentation

More information

Selecting and Using High-Precision Digital-to-Analog Converters

Selecting and Using High-Precision Digital-to-Analog Converters Selecting and Using High-Precision Digital-to-Analog Converters Chad Steward DAC Design Section Leader Linear Technology Corporation Many applications, including precision instrumentation, industrial automation,

More information

Input Drive Circuitry for SAR ADCs. Section 8

Input Drive Circuitry for SAR ADCs. Section 8 for SAR ADCs Section 8 SAR ADCs in particular have input stages that have a very dynamic behavior. Designing circuitry to drive these loads is an interesting challenge. We ve been looking at this for some

More information

Common mode rejection ratio

Common mode rejection ratio Common mode rejection ratio Definition: Common mode rejection ratio represents the ratio of the differential voltage gaina d tothecommonmodevoltagegain,a cm : Common mode rejection ratio Definition: Common

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-1857; Rev ; 11/ EVALUATION KIT AVAILABLE General Description The low-power, 8-bit, dual-channel, analog-to-digital converters (ADCs) feature an internal track/hold (T/H) voltage reference (/), clock,

More information

Low Cost 10-Bit Monolithic D/A Converter AD561

Low Cost 10-Bit Monolithic D/A Converter AD561 a FEATURES Complete Current Output Converter High Stability Buried Zener Reference Laser Trimmed to High Accuracy (1/4 LSB Max Error, AD561K, T) Trimmed Output Application Resistors for 0 V to +10 V, 5

More information

Dual 8-Bit, 60 MSPS A/D Converter AD9059

Dual 8-Bit, 60 MSPS A/D Converter AD9059 Dual -Bit, 0 MSPS A/D Converter FEATURES Dual -Bit ADCs on a Single Chip Low Power: 00 mw Typical On-Chip. V Reference and Track-and-Hold V p-p Analog Input Range Single V Supply Operation V or V Logic

More information

Precision, Low-Power and Low-Noise Op Amp with RRIO

Precision, Low-Power and Low-Noise Op Amp with RRIO MAX41 General Description The MAX41 is a low-power, zero-drift operational amplifier available in a space-saving, 6-bump, wafer-level package (WLP). Designed for use in portable consumer, medical, and

More information

Understanding the ADC Input on the MSC12xx

Understanding the ADC Input on the MSC12xx Application Report SBAA111 February 2004 Understanding the ADC Input on the MSC12xx Russell Anderson Data Acquisition Products ABSTRACT The analog inputs of the MSC12xx are sampled continuously. This sampling

More information

Signal Chain. Selector Guide. Inside. Edition 3, April 2011

Signal Chain. Selector Guide. Inside. Edition 3, April 2011 Signal Chain Selector Guide VOLTAGE REFERENCE VOLTAGE REFERENCE µc MUX/SWITCH ACTIVE FILTER OP AMP ELECTRICAL ISOLATION DAC ACTIVE FILTER OP AMP ADC METER/ DIGITAL POTENTIO R RESISTOR-DIVIDE METER/ DIGITAL

More information

UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale

UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale UNIT III Data Acquisition & Microcontroller System Mr. Manoj Rajale Syllabus Interfacing of Sensors / Actuators to DAQ system, Bit width, Sampling theorem, Sampling Frequency, Aliasing, Sample and hold

More information

MSP430 Teaching Materials

MSP430 Teaching Materials MSP430 Teaching Materials Lecture 6 Data Acquisition Texas Instruments Incorporated University of Beira Interior (PT) Pedro Dinis Gaspar, António Espírito Santo, Bruno Ribeiro, Humberto Santos University

More information

10-Bit µp-compatible D/A converter

10-Bit µp-compatible D/A converter DESCRIPTION The is a microprocessor-compatible monolithic 10-bit digital-to-analog converter subsystem. This device offers 10-bit resolution and ±0.1% accuracy and monotonicity guaranteed over full operating

More information

2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps

2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps 2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps Instructor: Dr. Hong Ma Oct. 3, 2007 Fundamental Circuit: Source and Load Sources Power supply Signal Generator Sensor Amplifier output

More information

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface 19-2124; Rev 2; 7/3 12-Bit, Low-Power, Dual, Voltage-Output General Description The dual,12-bit, low-power, buffered voltageoutput, digital-to-analog converter (DAC) is packaged in a space-saving 8-pin

More information

LMC660 CMOS Quad Operational Amplifier

LMC660 CMOS Quad Operational Amplifier CMOS Quad Operational Amplifier General Description The LMC660 CMOS Quad operational amplifier is ideal for operation from a single supply. It operates from +5V to +15.5V and features rail-to-rail output

More information

Environmental ADC Interface P Team Members

Environmental ADC Interface P Team Members Environmental ADC Interface P14346 Team Members Caleb Stephens- Electrical Engineer Kevin Oswald- Electrical Engineer Ory Maimon- Electrical Engineer Edward Wlodarczyk- Electrical Engineer Marissa Fox-

More information

Designing of a 8-bits DAC in 0.35µm CMOS Technology For High Speed Communication Systems Application

Designing of a 8-bits DAC in 0.35µm CMOS Technology For High Speed Communication Systems Application Designing of a 8-bits DAC in 035µm CMOS Technology For High Speed Communication Systems Application Veronica Ernita Kristianti, Hamzah Afandi, Eri Prasetyo ibowo, Brahmantyo Heruseto and shinta Kisriani

More information

Electronics A/D and D/A converters

Electronics A/D and D/A converters Electronics A/D and D/A converters Prof. Márta Rencz, Gábor Takács, Dr. György Bognár, Dr. Péter G. Szabó BME DED December 1, 2014 1 / 26 Introduction The world is analog, signal processing nowadays is

More information

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016 Analog I/O ECE 153B Sensor & Peripheral Interface Design Introduction Anytime we need to monitor or control analog signals with a digital system, we require analogto-digital (ADC) and digital-to-analog

More information

Single-Supply, Low-Power, Serial 8-Bit ADCs

Single-Supply, Low-Power, Serial 8-Bit ADCs 19-1822; Rev 1; 2/2 Single-Supply, Low-Power, Serial 8-Bit ADCs General Description The / low-power, 8-bit, analog-todigital converters (ADCs) feature an internal track/hold (T/H), voltage reference, monitor,

More information

SPT Bit, 250 MSPS A/D Converter with Demuxed Outputs

SPT Bit, 250 MSPS A/D Converter with Demuxed Outputs 8-Bit, 250 MSPS A/D Converter with Demuxed Outputs Features TTL/CMOS/PECL input logic compatible High conversion rate: 250 MSPS Single +5V power supply Very low power dissipation: 425mW 350 MHz full power

More information

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating Analogue Integration AISC11 High Voltage and Temperature Auto Zero Op-Amp Cell Rev.1 12-1-5 Features High Voltage Operation: 4.5-3 V Precision, Auto-Zeroed Input Vos High Temperature Operation Low Quiescent

More information

High Speed System Applications

High Speed System Applications High Speed System Applications 1. High Speed Data Conversion Overview 2. Optimizing Data Converter Interfaces 3. DACs, DDSs, PLLs, and Clock Distribution 4. PC Board Layout and Design Tools Copyright 2006

More information

Current Output/Serial Input, 16-Bit DAC AD5543-EP

Current Output/Serial Input, 16-Bit DAC AD5543-EP Data Sheet Current Output/Serial Input, 16-Bit DAC FEATURES FUNCTIONAL BLOCK DIAGRAM 1/+2 LSB DNL ±3 LSB INL Low noise: 12 nv/ Hz Low power: IDD = 1 μa.5 μs settling time 4Q multiplying reference input

More information

DUAL OP AMP AND VOLTAGE REFERENCE General Description. Features

DUAL OP AMP AND VOLTAGE REFERENCE General Description. Features General Description The is a monolithic IC specifically designed to regulate the output current and voltage levels of switching battery chargers and power supplies. The device contains two Op Amps and

More information

DESCRIPTIO. LTC1446/LTC1446L Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8

DESCRIPTIO. LTC1446/LTC1446L Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8 Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES Dual DACs with 12-Bit Resolution SO-8 Package Rail-to-Rail Output Amplifiers 3V Operation (LTC1446L): I CC = 65µA Typ 5V Operation (LTC1446): I

More information

PIN CONFIGURATIONS FEATURES APPLICATION ORDERING INFORMATION. FE, N Packages

PIN CONFIGURATIONS FEATURES APPLICATION ORDERING INFORMATION. FE, N Packages DESCRIPTION The are monolithic sample-and-hold circuits which utilize high-voltage ion-implant JFET technology to obtain ultra-high DC accuracy with fast acquisition of signal and low droop rate. Operating

More information

14-Bit, 40/65 MSPS A/D Converter AD9244

14-Bit, 40/65 MSPS A/D Converter AD9244 a 14-Bit, 4/65 MSPS A/D Converter FEATURES 14-Bit, 4/65 MSPS ADC Low Power: 55 mw at 65 MSPS 3 mw at 4 MSPS On-Chip Reference and Sample-and-Hold 75 MHz Analog Input Bandwidth SNR > 73 dbc to Nyquist @

More information

Embedded Control. Week 3 (7/13/11)

Embedded Control. Week 3 (7/13/11) Embedded Control Week 3 (7/13/11) Week 3 15:00 Lecture Overview of analog signals Digital-to-analog conversion Analog-to-digital conversion 16:00 Lab NXT analog IO Overview of Analog Signals Continuous

More information

24-Bit, 312 ksps, 109 db Sigma-Delta ADC with On-Chip Buffers and Serial Interface AD7764

24-Bit, 312 ksps, 109 db Sigma-Delta ADC with On-Chip Buffers and Serial Interface AD7764 24-Bit, 312 ksps, 19 db Sigma-Delta ADC with On-Chip Buffers and Serial Interface AD7764 FEATURES High performance 24-bit - ADC 115 db dynamic range at 78 khz output data rate 19 db dynamic range at 312

More information

190μA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers VREF. DIO2026QN20 D2026 RoHS/Green -40 to +125 C QFN4*4-20 Tape & Reel, 5000

190μA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers VREF. DIO2026QN20 D2026 RoHS/Green -40 to +125 C QFN4*4-20 Tape & Reel, 5000 Rev 0.1 DIO2026 190μA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers Features Supply Voltage Range: 2.5V to 5.5V Supply Current: Typical 190μA per channel Rail-to-Rail Input and Output ±1mV Typical

More information

FEATURES DESCRIPTIO APPLICATIO S LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO

FEATURES DESCRIPTIO APPLICATIO S LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer ADC0808/ADC0809 8-Bit µp Compatible A/D Converters with 8-Channel Multiplexer General Description The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital

More information

OBSOLETE. Monolithic 12-Bit 2 MHz A/D Converter AD671 REV. B FUNCTIONAL BLOCK DIAGRAM

OBSOLETE. Monolithic 12-Bit 2 MHz A/D Converter AD671 REV. B FUNCTIONAL BLOCK DIAGRAM a FEATURES 12-Bit Resolution 2-Pin Skinny DIP Package Conversion Time: 500 ns max J/K/S-500 Conversion Time: 750 ns max J/K/S-750 Low Power: 75 mw Unipolar (0 V to +5 V, 0 V to +10 V) and Bipolar Input

More information

6-Bit A/D converter (parallel outputs)

6-Bit A/D converter (parallel outputs) DESCRIPTION The is a low cost, complete successive-approximation analog-to-digital (A/D) converter, fabricated using Bipolar/I L technology. With an external reference voltage, the will accept input voltages

More information

FUNCTIONAL BLOCK DIAGRAM DIGITAL VIDEO ENGINE

FUNCTIONAL BLOCK DIAGRAM DIGITAL VIDEO ENGINE FEATURES CMOS DUAL CHANNEL 10bit 40MHz DAC LOW POWER DISSIPATION: 180mW(+3V) DIFFERENTIAL NONLINEARITY ERROR: 0.5LSB SIGNAL-to-NOISE RATIO: 59dB SPURIOUS-FREE DYNAMIC RANGE:69dB BUILD-IN DIGITAL ENGINE

More information

EE 330 Lecture 34. Guest Lecture. Why are there so many Op Amps?

EE 330 Lecture 34. Guest Lecture. Why are there so many Op Amps? EE 330 Lecture 34 Guest Lecture Why are there so many Op Amps? by Jerry Doorenbos of Texas Instruments 1 Op Amp Technology Overview Developed by Art Kay, Thomas Kuehl, and Tim Green Precision Amplifiers

More information

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps AD9631/AD9632

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps AD9631/AD9632 a Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps / FEATURES Wide Bandwidth, G = +, G = +2 Small Signal 32 MHz 25 MHz Large Signal (4 V p-p) 75 MHz 8 MHz Ultralow Distortion (SFDR), Low Noise

More information

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820 8-Bit, high-speed, µp-compatible A/D converter with DESCRIPTION By using a half-flash conversion technique, the 8-bit CMOS A/D offers a 1.5µs conversion time while dissipating a maximum 75mW of power.

More information

LT MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp. Description. Features. Applications. Typical Application

LT MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp. Description. Features. Applications. Typical Application Features n Stable in Gain A (A = ) n MHz Gain Bandwidth Product n /μs Slew Rate n Settling Time: 8ns ( Step, ) n Specified at and Supplies n Low Distortion, 9.dB for khz, P-P n Maximum Input Offset oltage:

More information

SPT BIT, 30 MSPS, TTL, A/D CONVERTER

SPT BIT, 30 MSPS, TTL, A/D CONVERTER 12-BIT, MSPS, TTL, A/D CONVERTER FEATURES Monolithic 12-Bit MSPS Converter 6 db SNR @ 3.58 MHz Input On-Chip Track/Hold Bipolar ±2.0 V Analog Input Low Power (1.1 W Typical) 5 pf Input Capacitance TTL

More information

Redefining high resolution and low noise in Delta-Sigma ADC applications

Redefining high resolution and low noise in Delta-Sigma ADC applications Redefining high resolution and low noise in Delta-Sigma ADC applications Agenda Redefining high resolution and low noise in Delta-Sigma ADC applications How do Precision Delta-Sigma (ΔΣ) ADCs work? Introduction

More information

LM6118/LM6218 Fast Settling Dual Operational Amplifiers

LM6118/LM6218 Fast Settling Dual Operational Amplifiers Fast Settling Dual Operational Amplifiers General Description The LM6118/LM6218 are monolithic fast-settling unity-gain-compensated dual operational amplifiers with ±20 ma output drive capability. The

More information

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER ADVANCED LINEAR DEVICES, INC. ALD276A/ALD276B ALD276 DUAL ULTRA MICROPOWER RAILTORAIL CMOS OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The ALD276 is a dual monolithic CMOS micropower high slewrate operational

More information

FUNCTIONAL BLOCK DIAGRAM 8-BIT AUX DAC 8-BIT AUX DAC 10-BIT AUX DAC LATCH LATCH LATCH

FUNCTIONAL BLOCK DIAGRAM 8-BIT AUX DAC 8-BIT AUX DAC 10-BIT AUX DAC LATCH LATCH LATCH a FEATURES Single +5 V Supply Receive Channel Differential or Single-Ended Analog Inputs Auxiliary Set of Analog I & Q Inputs Two Sigma-Delta A/D Converters Choice of Two Digital FIR Filters Root-Raised-Cosine

More information

Analog to Digital in a Few Simple. Steps. A Guide to Designing with SAR ADCs. Senior Applications Engineer Texas Instruments Inc

Analog to Digital in a Few Simple. Steps. A Guide to Designing with SAR ADCs. Senior Applications Engineer Texas Instruments Inc Analog to Digital in a Few Simple Steps A Guide to Designing with SAR ADCs Miro Oljaca Senior Applications Engineer Texas Instruments Inc Tucson, Arizona USA moljaca@ti.com Miro Oljaca Feb 2010 SAR ADC

More information

4-Channel, 625 ksps, 12-Bit Parallel ADC with a Sequencer AD7934-6

4-Channel, 625 ksps, 12-Bit Parallel ADC with a Sequencer AD7934-6 4-Channel, 625 ksps, 12-Bit Parallel ADC with a Sequencer AD7934-6 FEATURES Throughput rate: 625 ksps Specified for VDD of 2.7 V to 5.25 V Power consumption 3.6 mw maximum at 625 ksps with 3 V supplies

More information

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1 Outline Background Chip Architecture

More information

Acquisition Time: Refer to Figure 1 when comparing SAR, Pipeline, and Delta-Sigma converter acquisition time. Signal Noise. Data Out Pipeline ADC

Acquisition Time: Refer to Figure 1 when comparing SAR, Pipeline, and Delta-Sigma converter acquisition time. Signal Noise. Data Out Pipeline ADC Application Report SBAA147A August 2006 Revised January 2008 A Glossary of Analog-to-Digital Specifications and Performance Characteristics Bonnie Baker... Data Acquisition Products ABSTRACT This glossary

More information

DATASHEET HI5805. Features. Applications. Ordering Information. Pinout. 12-Bit, 5MSPS A/D Converter. FN3984 Rev 7.00 Page 1 of 12.

DATASHEET HI5805. Features. Applications. Ordering Information. Pinout. 12-Bit, 5MSPS A/D Converter. FN3984 Rev 7.00 Page 1 of 12. 12-Bit, 5MSPS A/D Converter NOT RECOMMENDED FOR NEW DESIGNS NO RECOMMENDED REPLACEMENT contact our Technical Support Center at 1-888-INTERSIL or www.intersil.com/tsc DATASHEET FN3984 Rev 7.00 The HI5805

More information

5 V Integrated High Speed ADC/Quad DAC System AD7339

5 V Integrated High Speed ADC/Quad DAC System AD7339 a FEATURES 8-Bit A/D Converter Two 8-Bit D/A Converters Two 8-Bit Serial D/A Converters Single +5 V Supply Operation On-Chip Reference Power-Down Mode 52-Lead PQFP Package 5 V Integrated High Speed ADC/Quad

More information

PART MAX5304EUA TOP VIEW OUT 8 CONTROL INPUT REGISTER. Maxim Integrated Products 1

PART MAX5304EUA TOP VIEW OUT 8 CONTROL INPUT REGISTER. Maxim Integrated Products 1 19-1562; Rev ; 1/99 1-Bit Voltage-Output General Description The combines a low-power, voltage-output, 1-bit digital-to-analog converter () and a precision output amplifier in an 8-pin µmax package. It

More information

7545B. 12-Bit Buffered Multiplying Digital to Analog Converter FEATURES: DESCRIPTION: 7545B BLOCK DIAGRAM

7545B. 12-Bit Buffered Multiplying Digital to Analog Converter FEATURES: DESCRIPTION: 7545B BLOCK DIAGRAM 12-Bit Buffered Multiplying FEATURES: BLOCK DIAGRAM DESCRIPTION: RAD-PAK patented shielding against natural space radiation Total dose hardness: - > 50 krad (Si), depending upon space mission Excellent

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

MAX V, 50MHz, Low-Offset, Low-Power, Rail-to-Rail I/O Op Amp

MAX V, 50MHz, Low-Offset, Low-Power, Rail-to-Rail I/O Op Amp EVALUATION KIT AVAILABLE MAX4428 1.8V, 5MHz, Low-Offset, General Description The MAX4428 offers a unique combination of high speed, precision, low noise, and low-voltage operation making it ideally suited

More information

36V, Precision, Low-Power, 90µA, Dual Op Amp

36V, Precision, Low-Power, 90µA, Dual Op Amp EVALUATION KIT AVAILABLE MAX44248 36V, Precision, Low-Power, 9µA, Dual Op Amp General Description The MAX44248 is an ultra-precision, low-noise, zero-drift dual operational amplifier featuring very low-power

More information

LC2 MOS Complete 12-Bit Multiplying DAC AD7845

LC2 MOS Complete 12-Bit Multiplying DAC AD7845 a FEATURES 12-Bit CMOS MDAC with Output Amplifier 4-Quadrant Multiplication Guaranteed Monotonic (T MIN to T MAX ) Space-Saving 0.3" DIPs and 24- or 28-Terminal Surface Mount Packages Application Resistors

More information

ADC1002S General description. 2. Features. 3. Applications. Single 10 bits ADC, up to 20 MHz

ADC1002S General description. 2. Features. 3. Applications. Single 10 bits ADC, up to 20 MHz Rev. 03 2 July 2012 Product data sheet 1. General description The is a 10-bit high-speed Analog-to-Digital Converter (ADC) for professional video and other applications. It converts with 3.0 V to 5.25

More information

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 19-1560; Rev 1; 7/05 +2.7V to +5.5V, Low-Power, Triple, Parallel General Description The parallel-input, voltage-output, triple 8-bit digital-to-analog converter (DAC) operates from a single +2.7V to +5.5V

More information

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage Programmable Gain Difference Amplifier FEATURES High common-mode input voltage range ±12 V at VS = ±15 V Gain range.1 to 1 Operating temperature range: 4 C to ±85 C Supply voltage

More information

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2 FEATURES Ultralow noise.9 nv/ Hz.4 pa/ Hz. nv/ Hz at Hz Ultralow distortion: 93 dbc at 5 khz Wide supply voltage range: ±5 V to ±6 V High speed 3 db bandwidth: 65 MHz (G = +) Slew rate: 55 V/µs Unity gain

More information

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS LOW POWER CONSUMPTION WIDE COMMON-MODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT OUTPUT SHORT-CIRCUIT

More information

MCP601/1R/2/3/4. 2.7V to 6.0V Single Supply CMOS Op Amps. Features. Description. Typical Applications. Available Tools.

MCP601/1R/2/3/4. 2.7V to 6.0V Single Supply CMOS Op Amps. Features. Description. Typical Applications. Available Tools. MCP60/R///4.7V to 6.0V Single Supply CMOS Op Amps Features Single-Supply:.7V to 6.0V Rail-to-Rail Output Input Range Includes Ground Gain Bandwidth Product:.8 MHz Unity-Gain Stable Low Quiescent Current:

More information

Energy Metering IC with SPI Interface and Active Power Pulse Output. 24-Lead SSOP HPF HPF1. Serial Control And Output Buffers HPF1

Energy Metering IC with SPI Interface and Active Power Pulse Output. 24-Lead SSOP HPF HPF1. Serial Control And Output Buffers HPF1 Energy Metering IC with SPI Interface and Active Power Pulse Output Features Supports IEC 6253 International Energy Metering Specification and legacy IEC 136/ 6136/687 Specifications Digital waveform data

More information