Cascaded Noise-Shaping Modulators for Oversampled Data Conversion

Size: px
Start display at page:

Download "Cascaded Noise-Shaping Modulators for Oversampled Data Conversion"

Transcription

1 Cascaded Noise-Shaping Modulators for Oversampled Data Conversion Bruce A. Wooley Stanford University B. Wooley, Stanford,

2 Outline Oversampling modulators for A/D conversion Cascaded noise-shaping architectures Embedded quantization Distributed noise shaping zeros Bandpass cascaded modulator Digital cascaded modulators with semi-digital reconstruction for D/A conversion B. Wooley, Stanford,

3 Analog-to-Digital Conversion Digital Processor Filtering Sampling Quantization Processing Quantization Model: e Q [n] p(e Q ) Σ 1/ - /2 /2 B. Wooley, Stanford,

4 Noise Shaping N B S Q (f) -f S /2 -f B f B f S /2 Quantizer resolution increased by 3 db per octave of OVERSAMPLING N B S Q (f) Quantizer resolution increased through NOISE SHAPING -f S /2 -f B f B f S /2 B. Wooley, Stanford,

5 Oversampling Modulators Embed quantizer in a feedback loop to achieve larger improvement in resolution with increasing M Feedback used for PREDICTION ( Modulation) or NOISE SHAPING (Σ Modulation) Noise shaping modulators are more robust and easier to implement than predictive modulators B. Wooley, Stanford,

6 Sigma-Delta (Delta-Sigma) Modulation E Q (z) Integrator X(z) Σ z -1 1 z -1 A/D Y(z) D/A Yz ( ) = z 1 Xz ( ) ( 1 z 1 )E Q ( z) B. Wooley, Stanford,

7 Σ Modulator Response (w/ 1-bit Quantization) 0.6 Modulator Input, Quantizer Output Time (t/t) B. Wooley, Stanford,

8 Noise Shaping Noise Shaping Function Ideal Digital Lowpass Filter First-Order Noise Shaping f B f N f S /2 Frequency B. Wooley, Stanford,

9 Noise Differencing Modulators (of order L) Yz ( ) = z 1 Xz ( ) ( 1 z 1 ) L E Q ( z) Noise Shaping LP Filter L=3 L=2 L=1 f B f N f S /2 Frequency B. Wooley, Stanford,

10 Sigma-Delta Modulator Dynamic Range Dynamic Range (db) L=3 L=2 L= Oversampling Ratio B. Wooley, Stanford,

11 Higher-Order Noise Shaping Modulators The order of the noise shaping can be increased using either or Single quantizer modulators Multi-loop noise differencing Single-loop with multi-order filter Cascaded (multistage) modulators B. Wooley, Stanford,

12 Single-Quantizer Σ Modulation E(z) X(z) A(z) Y(z) F(z) Yz ( ) = H X ( z)xz ( ) H E ( z)ez ( ) where and H X ( z) Az ( ) Az ( ) = , H 1 A( z)fz ( ) E ( z) H X ( z) = , Fz ( ) H E ( z) = = 1 H E ( z) H X ( z) A( z)fz ( ) B. Wooley, Stanford,

13 Noise Differencing Modulators Class of modulators where: H X ( z) = z 1 and H E ( z) = ( 1 z 1 ) L L = 1: H E ( z) = ( 1 z 1 ) Az ( ) L = 2: H E ( z) = ( 1 z 1 ) 2 Az ( ) = Fz ( ) = 1 = z z 1 z ( 1 z 1 ) 2 Fz ( ) = 2 z 1 ( 1 ) B. Wooley, Stanford,

14 Second-Order Implementation X Σ Σ z 1 A(z) Σ z 1 E Σ Y F(z) Σ Σ z 1 E X Σ Σ z 1 Σ Σ z 1 Σ Y Unity Transfer Function z 1 Σ Σ z 1 B. Wooley, Stanford,

15 B. Wooley, Stanford, X Y E Σ Σ Σ z 1 Σ z 1 Σ 2 X Y E Σ Σ Σ z 1 Σ 2 1 Σ z 1 2 Second-Order Σ Modulator

16 Second-Order Noise Differencing Σ Modulator (with 1-bit quantization) Can scale only w/ 1-bit quantizer x(nt) Σ 1 2 INTEGRATOR 1 Σ DELAY Σ 1 2 INTEGRATOR 2 Σ DELAY QUANTIZER 1-bit A/D y(nt) q(nt) D/A Key building block for cascaded modulators B. Wooley, Stanford,

17 Cascaded Σ Modulators Quantizer error quantized by subsequent stage and then filtered and subtracted digitally Cancellation of lower-order noise shaping terms depends on matching of analog and digital paths No potential instability B. Wooley, Stanford,

18 Cascaded Oversampling ADC Analog In x Σ e y Delay Σ Digital Out ADC Digital Difference Matches noise shaping of quantization error in first stage B. Wooley, Stanford,

19 Maximum Dynamic Range Improvement 80.0 Dynamic Range Improvement (db) Simulation Closed form equation Independent of OSR Coefficient Mismatch (%) B. Wooley, Stanford,

20 Third-Order (2-1) Cascaded Modulator x 2 nd order Σ y 1 Error Cancellation y e 1 1 st order Σ y 2 Y 1 =z 2 X (1 z 1 ) 2 E 1 Y 2 =z 1 E 1 (1 z 1 ) E 2 Y=z 1 Y 1 (1 z 1 ) 2 Y 2 =z 3 X (1 z 1 ) 3 E 2 B. Wooley, Stanford,

21 Matching Error in 2-1 Cascade 10 Loss in Dynamic Range (db) Calculated Simulated Matching Error (%) B. Wooley, Stanford,

22 2-1 Spectrum with Mismatch 0 Spectral Power (db) Frequency (khz) B. Wooley, Stanford,

23 Advantages of 2-1 Cascade Low sensitivity to precision of analog path Suppression of spurious noise tones resulting from correlation of quantization noise with input Considerable design flexibility No potential instability B. Wooley, Stanford,

24 Digitizing MHz-Bandwidth Signals Oversampling modulators dominate precision A/D conversion at modest signal bandwidths e.g. digital audio exploit large oversampling ratios Challenge is to digitize signals where the oversampling ratio is constrained by technology (MHz bandwidths) Possible approaches based on cascade architectures include multibit quantization in second stage merged quantization distributed noise shaping zeros multilevel quantization with digital linearization B. Wooley, Stanford,

25 Lowpass Cascade Architecture X(z) 0.4 z 1 z z 1 1 z 1 Y 1 (z) Y 2 (z) ADC Y 1 (z) Y 2 (z) Digital Error Cancellation Y(z) B. Wooley, Stanford,

26 Embedded Quantization * X(z) 0.4 z -1 z z -1 1 z -1 1-bit DAC Y(z) ADC X(z) 0.4 z -1 z z -1 m bit ADC Y(z) 1 z -1 1-bit DAC * A. Tabatabaei, 99 VLSI Ckt Symp B. Wooley, Stanford,

27 Model of Merged Quantizer Modulator Y 2 (z) X(z) 0.4 z 1 z z 1 1 z 1 Y 1 (z) B. Wooley, Stanford,

28 Implementation of Embedded ADC m-bit DAC z -1 1 z -1 m-bit ADC Noise Shaped Error e z -1 B. Wooley, Stanford,

29 Lowpass Modulator with Embedded ADC * 4-bit DAC z z z -1 z z -1 4-bit ADC 1-bit DAC Delay unaltered Stability maintained by 4-bit quantization B. Wooley, Stanford,

30 2-2 Cascaded Modulator Analog input Quantization noise Lowpass Σ Modulator Lowpass Σ Modulator Digital output Quantization Error Cancellation Input 2.5 Σ Σ 1-bit output Σ Quantization noise B. Wooley, Stanford,

31 Noise Transfer Function for 2-2 Lowpass Cascade 0 Signal Band NTF (db) 40 OSR = f s /32 0 f s /32 NTF for a two-stage lowpass cascade (2-2): NTF = N 1 N 2 = (N LP ) 2 NTF > 0 db for OSR < 8 B. Wooley, Stanford,

32 Distribute Zeros Across the Signal Band 0 Signal Band NTF (db) f s /32 0 f s /32 Cascade lowpass and bandpass stages: Reduces inband noise NTF = N 1 N 2 = N LP N BP B. Wooley, Stanford,

33 Lowpass-Bandpass Cascaded Modulator * X(n) NTF (db) Lowpass Σ Modulator Y 1 (n) NTF (db) f s /32 0 f s /32 fs/32 0 f s /32 Q(n) Bandpass Σ Modulator Y 2 (n) Digital Error Cancellation Y(n) = 0 NTF (db) f s/32 0 f s/32 * A. Tabatabaei, JSSC 12/00 B. Wooley, Stanford,

34 Bandpass Second Stage ω s cos nt 2M s ω s cos nt 2M s Lowpass Σ Modulator Lowpass Filter ω s sin nt 2M s ω s sin nt 2M s Lowpass Σ Modulator Lowpass Filter 0 Analog Digital fs/32 0 f s /32 B. Wooley, Stanford,

35 2-2-2/2 Lowpass Modulator Analog input 2nd-order Σ 1-bit Output Quantization noise 2nd-order Σ ω s sin nt 2M s ω s cos nt 2M s 2nd-order Σ 2nd-order Σ B. Wooley, Stanford,

36 Bandpass Stage Mixer Φ1 f LO = f s /32 CK8 CK8 Φ2 Φ2 C8 Vcm Φ1 Φsin CK1 Φ2 C1 Vin Φsin CK1 Φ2 Φ2 Vcm Vout Φsin CK1 Φ2 Φ2 Φsin CK1 Φ2 C1 Vcm Φ1 Φ1 CK8 Φ2 CK1 CK2 CK3 CK8 Φ2 C8 Φ1 CK8 Φsin B. Wooley, Stanford,

37 f s /4 Two-Path Bandpass Modulator IF signal Φ 1 Φ 2 1, 1,1, 1,... 1, 1,1, 1,... 2nd-order Σ 2nd-order Σ 2nd-order Σ 2nd-order Σ ω s sin nt 2M s ω s cos nt 2M s ω s sin nt 2M s 2nd-order Σ 2nd-order Σ 2nd-order Σ 2nd-order Σ B. Wooley, Stanford,

38 Chip Micrograph Third Stage (I) Third Stage (Q) First Stage Second Stage Mixers Clock generator Second Stage Mixers First Stage Third Stage (I) Third Stage (Q) B. Wooley, Stanford,

39 Measured SNR and SNDR 80.0 Signal-to-NoiseDistortion (db) SNR SNDR Input Signal Level (db) B. Wooley, Stanford,

40 Measured Output Spectrum First Two Stages All Stages Output Spectrum (db) Output Spectrum (db) db Quantization Noise Mirror Input Signal MHz Frequency (MHz) B. Wooley, Stanford,

41 Performance Summary Sampling rate Passband Oversampling ratio Dynamic range Max SNDR Power supply Power dissipation Technology Area 64 MS/s 2 MHz centered at 16 MHz db 70 db 2.5 V 140 mw 0.24-µm, 5-metal CMOS 2 mm 1.7 mm B. Wooley, Stanford,

42 Bandpass Oversampling D/A Conversion * Consider the use of bandpass oversampling D/A conversion in wireless communications transmitters Move IF into the digital domain to eliminate dc offset I & Q mismatch Merge D/A conversion, noise shaping, reconstruction and IF mixing Explore the use of cascaded digital noise shaping for D/A conversion * D. Barkin, 03 VLSI Ckt Symp B. Wooley, Stanford,

43 Traditional Transmitter Architecture cos ωt I M FIR/ROM DAC LPF Out Q M FIR/ROM DAC LPF sin ωt Digital Analog B. Wooley, Stanford,

44 Cascaded Bandpass Oversampling DAC cos(ωt) = [ 1, 0, -1, 0,... ] I M Noise Shaping DAC Filtering Analog IF Output Q M Noise Shaping Digital Analog sin(ωt) = [ 0, 1, 0, -1,... ] Mix to IF (at f s /4) following cascaded noise shapers Error cancellation performed at IF B. Wooley, Stanford,

45 Lowpass Cascaded Noise Shaping Digital Input 2 nd Order Σ Modulator 1 Signal Stage 1 Error 3 rd Order Σ Modulator Noise Estimate 4 (1 - z -1 ) 2 2 nd order differentiator matches noise shaping in first stage B. Wooley, Stanford,

46 DAC Architecture I Cascaded Σ Modulator 1 4 (1 - z -1 ) 2-1,1 φ 1 φ 1 DAC Filtering Q Cascaded Σ Modulator 1 4 (1 - z -1 ) 2 1,-1 φ 2 φ 2 f s /2 f s I & Q modulators operate at f s /2, saving power B. Wooley, Stanford,

47 Discrete Time Continuous Time Interface Signal 1-1,1 Semi-Digital Filter Noise Estimate -1,1 Digital (1 - z -1 ) Filter Control Digital Analog Semi-digital filtering for reconstruction of signal Digital filter reduces out-of-band quantization noise Digital filter transfer function matches that of semi-digital filter B. Wooley, Stanford,

48 Semi-Digital Filter * Digital Input 1 z -1 z -1 z -1 a 1 a 2 a N Mismatch among current sources alters the transfer function but doesn t introduce nonlinearity Area limits number of taps and precision of coefficients Analog Output Good for 1-bit signal path but not multi-bit noise estimation path * D.Su, et al., JSSC, 1993 B. Wooley, Stanford,

49 Bandpass Data Weighted Averaging 1 Semi-Digital Filter -1,1-1,1 Digital (1 - z -1 ) 2 4 Filter 11 6 BP DWA Pointer Calc Control f s /2 Notch f s /4 Notch I & Q pointer calculations are independent I Q Time --> * T. Shui, et al., ISCAS, 1998 B. Wooley, Stanford,

50 Bandpass DAC Die Photo Noise Shapers Digital Filters Decoder Current Source Array Semi-digital Bias B. Wooley, Stanford,

51 DAC Output Spectrum Power Spectral Density (db) (4 bit) Digital Noise Shaper Output Measured DAC Output 46 db Frequency (MHz) B. Wooley, Stanford,

52 SNDR and SFDR 100 SFDR & SNDR (db) Measured SFDR Measured SNDR Signal Power (db) B. Wooley, Stanford,

53 DAC Performance Technology Supply: Modulators and Filters Other Center Frequency Bandwidth Peak SNDR Dynamic Range Peak Out-of-Band Noise Suppression 1-p, 5-m 0.25-µm CMOS 1.5 V 2.5 V 50 MHz 6.25MHz 76 db 85 db 46 db Mirror for -6dB input 90 db down Active Area 2.1 mm 2 Power: Modulators and Filters Thermometer Decoders Current Source Array 30 mw 70 mw 115 mw B. Wooley, Stanford,

54 Summary Cascades of first- and second-order noise-shaping modulator stages can be used for A/D and D/A conversion lowpass and bandpass data conversion dynamic range enhancement at low oversampling ratios If properly designed, advantages include no potential instability decorrelation of quantization noise and input low sensitivity to analog precision B. Wooley, Stanford,

55 What s ahead? Challenges in data conversion interface design Impact of technology scaling on analog; ITRS presents problems w.r.t. leakage, output resistance and gain Demand for increased performance driven by increased use of digital signal processing Still room for innovation in architecture and circuits Some ongoing research Very low voltage (V DD 1.2V) oversampling A/D and D/A conversion Oversampling D/A conversion for DSL Continuous-time oversampling modulators for broadband applications B. Wooley, Stanford,

Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University

Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University Bruce A. Wooley - 1 - Copyright 2005, Stanford University Outline Oversampling modulators for A-to-D conversion

More information

Lecture 390 Oversampling ADCs Part I (3/29/10) Page 390-1

Lecture 390 Oversampling ADCs Part I (3/29/10) Page 390-1 Lecture 390 Oversampling ADCs Part I (3/29/0) Page 390 LECTURE 390 OVERSAMPLING ADCS PART I LECTURE ORGANIZATION Outline Introduction Deltasigma modulators Summary CMOS Analog Circuit Design, 2 nd Edition

More information

EE247 Lecture 24. EE247 Lecture 24

EE247 Lecture 24. EE247 Lecture 24 EE247 Lecture 24 Administrative EE247 Final exam: Date: Wed. Dec. 15 th Time: -12:30pm-3:30pm- Location: 289 Cory Closed book/course notes No calculators/cell phones/pdas/computers Bring one 8x11 paper

More information

Oversampling Converters

Oversampling Converters Oversampling Converters Behzad Razavi Electrical Engineering Department University of California, Los Angeles Outline Basic Concepts First- and Second-Order Loops Effect of Circuit Nonidealities Cascaded

More information

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012 INF4420 ΔΣ data converters Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no) Outline Oversampling Noise shaping Circuit design issues Higher order noise shaping Introduction So far we have considered

More information

Summary Last Lecture

Summary Last Lecture Interleaved ADCs EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations

More information

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1 MASH 2- MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN Yu hang, Ning Xie, Hui Wang and Yejun He College of Information Engineering, Shenzhen University, Shenzhen, Guangdong 58060, China kensouren@yahoo.com.cn

More information

EE247 Lecture 26. This lecture is taped on Wed. Nov. 28 th due to conflict of regular class hours with a meeting

EE247 Lecture 26. This lecture is taped on Wed. Nov. 28 th due to conflict of regular class hours with a meeting EE47 Lecture 6 This lecture is taped on Wed. Nov. 8 th due to conflict of regular class hours with a meeting Any questions regarding this lecture could be discussed during regular office hours or in class

More information

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 26. EE247 Lecture 26 EE247 Lecture 26 Administrative Project submission: Project reports due Dec. 5th Please make an appointment with the instructor for a 15minute meeting on Monday Dec. 8 th Prepare to give a 3 to 7 minute

More information

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 26. EE247 Lecture 26 EE247 Lecture 26 Administrative EE247 Final exam: Date: Mon. Dec. 18 th Time: 12:30pm-3:30pm Location: 241 Cory Hall Extra office hours: Thurs. Dec. 14 th, 10:30am-12pm Closed book/course notes No calculators/cell

More information

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Jinseok Koh Wireless Analog Technology Center Texas Instruments Inc. Dallas, TX Outline Fundamentals for ADCs Over-sampling and Noise

More information

ADVANCES in VLSI technology result in manufacturing

ADVANCES in VLSI technology result in manufacturing INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2013, VOL. 59, NO. 1, PP. 99 104 Manuscript received January 8, 2013; revised March, 2013. DOI: 10.2478/eletel-2013-0012 Rapid Prototyping of Third-Order

More information

ECEN 610 Mixed-Signal Interfaces

ECEN 610 Mixed-Signal Interfaces Spring 2014 S. Hoyos-ECEN-610 1 ECEN 610 Mixed-Signal Interfaces Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Oversampling ADC Spring 2014 S. Hoyos-ECEN-610 2 Spring 2014 S. Hoyos-ECEN-610

More information

CHAPTER. delta-sigma modulators 1.0

CHAPTER. delta-sigma modulators 1.0 CHAPTER 1 CHAPTER Conventional delta-sigma modulators 1.0 This Chapter presents the traditional first- and second-order DSM. The main sources for non-ideal operation are described together with some commonly

More information

Lecture #6: Analog-to-Digital Converter

Lecture #6: Analog-to-Digital Converter Lecture #6: Analog-to-Digital Converter All electrical signals in the real world are analog, and their waveforms are continuous in time. Since most signal processing is done digitally in discrete time,

More information

Summary Last Lecture

Summary Last Lecture EE47 Lecture 5 Pipelined ADCs (continued) How many bits per stage? Algorithmic ADCs utilizing pipeline structure Advanced background calibration techniques Oversampled ADCs Why oversampling? Pulse-count

More information

DSP Based Corrections of Analog Components in Digital Receivers

DSP Based Corrections of Analog Components in Digital Receivers fred harris DSP Based Corrections of Analog Components in Digital Receivers IEEE Communications, Signal Processing, and Vehicular Technology Chapters Coastal Los Angeles Section 24-April 2008 It s all

More information

The Case for Oversampling

The Case for Oversampling EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations nd order ΣΔ

More information

A stability-improved single-opamp third-order ΣΔ modulator by using a fully-passive noise-shaping SAR ADC and passive adder

A stability-improved single-opamp third-order ΣΔ modulator by using a fully-passive noise-shaping SAR ADC and passive adder A stability-improved single-opamp third-order ΣΔ modulator by using a fully-passive noise-shaping SAR ADC and passive adder Zhijie Chen, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology,

More information

Analog-to-Digital Converters

Analog-to-Digital Converters EE47 Lecture 3 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations nd order ΣΔ

More information

Multirate DSP, part 3: ADC oversampling

Multirate DSP, part 3: ADC oversampling Multirate DSP, part 3: ADC oversampling Li Tan - May 04, 2008 Order this book today at www.elsevierdirect.com or by calling 1-800-545-2522 and receive an additional 20% discount. Use promotion code 92562

More information

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs Advanced AD/DA converters Overview Why ΔΣ DACs ΔΣ DACs Architectures for ΔΣ DACs filters Smoothing filters Pietro Andreani Dept. of Electrical and Information Technology Lund University, Sweden Advanced

More information

TUNABLE MISMATCH SHAPING FOR QUADRATURE BANDPASS DELTA-SIGMA DATA CONVERTERS. Waqas Akram and Earl E. Swartzlander, Jr.

TUNABLE MISMATCH SHAPING FOR QUADRATURE BANDPASS DELTA-SIGMA DATA CONVERTERS. Waqas Akram and Earl E. Swartzlander, Jr. TUNABLE MISMATCH SHAPING FOR QUADRATURE BANDPASS DELTA-SIGMA DATA CONVERTERS Waqas Akram and Earl E. Swartzlander, Jr. Department of Electrical and Computer Engineering University of Texas at Austin Austin,

More information

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters 0 Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters F. Maloberti University of Pavia - Italy franco.maloberti@unipv.it 1 Introduction Summary Sigma-Delta

More information

EE247 Lecture 27. EE247 Lecture 27

EE247 Lecture 27. EE247 Lecture 27 EE247 Lecture 27 Administrative EE247 Final exam: Date: Wed. Dec. 19 th Time: 12:30pm-3:30pm Location: 70 Evans Hall Extra office hours: Thurs. Dec. 13 th, 10:am2pm Closed course notes/books No calculators/cell

More information

Electronics A/D and D/A converters

Electronics A/D and D/A converters Electronics A/D and D/A converters Prof. Márta Rencz, Gábor Takács, Dr. György Bognár, Dr. Péter G. Szabó BME DED December 1, 2014 1 / 26 Introduction The world is analog, signal processing nowadays is

More information

THE USE of multibit quantizers in oversampling analogto-digital

THE USE of multibit quantizers in oversampling analogto-digital 966 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 57, NO. 12, DECEMBER 2010 A New DAC Mismatch Shaping Technique for Sigma Delta Modulators Mohamed Aboudina, Member, IEEE, and Behzad

More information

Improved offline calibration for DAC mismatch in low OSR Sigma Delta ADCs with distributed feedback

Improved offline calibration for DAC mismatch in low OSR Sigma Delta ADCs with distributed feedback Improved offline calibration for DAC mismatch in low OSR Sigma Delta ADCs with distributed feedback Maarten De Bock, Amir Babaie-Fishani and Pieter Rombouts This document is an author s draft version submitted

More information

A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS

A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS UT Mixed-Signal/RF Integrated Circuits Seminar Series A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS Pio Balmelli April 19 th, Austin TX 2 Outline VDSL specifications Σ A/D converter features Broadband

More information

OVERSAMPLING analog-to-digital converters (ADCs)

OVERSAMPLING analog-to-digital converters (ADCs) 918 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 4, APRIL 2005 A Third-Order 61 Modulator in 0.18-m CMOS With Calibrated Mixed-Mode Integrators Jae Hoon Shim, Student Member, IEEE, In-Cheol Park,

More information

A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology

A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology M. Annovazzi, V. Colonna, G. Gandolfi, STMicroelectronics Via Tolomeo, 2000 Cornaredo (MI), Italy vittorio.colonna@st.com

More information

BandPass Sigma-Delta Modulator for wideband IF signals

BandPass Sigma-Delta Modulator for wideband IF signals BandPass Sigma-Delta Modulator for wideband IF signals Luca Daniel (University of California, Berkeley) Marco Sabatini (STMicroelectronics Berkeley Labs) maintain the same advantages of BaseBand converters

More information

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications RESEARCH ARTICLE OPEN ACCESS Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications Sharon Theresa George*, J. Mangaiyarkarasi** *(Department of Information and Communication

More information

Lecture 9, ANIK. Data converters 1

Lecture 9, ANIK. Data converters 1 Lecture 9, ANIK Data converters 1 What did we do last time? Noise and distortion Understanding the simplest circuit noise Understanding some of the sources of distortion 502 of 530 What will we do today?

More information

AN ABSTRACT OF THE DISSERTATION OF

AN ABSTRACT OF THE DISSERTATION OF AN ABSTRACT OF THE DISSERTATION OF Ruopeng Wang for the degree of Doctor of Philosophy in Electrical and Computer Engineering presented on June 5, 006. Title: A Multi-Bit Delta Sigma Audio Digital-to-Analog

More information

Linearity Enhancement Algorithms for I-Q Signal Generation

Linearity Enhancement Algorithms for I-Q Signal Generation B6-1 10:15-10:45 Nov. 6, 2015 (Fri) 1 /55 Invited paper Linearity Enhancement Algorithms for I-Q Signal Generation - DWA and Self-Calibration Techniques - M. Murakami H. Kobayashi S. N. B. Mohyar T. Miki

More information

Basic Concepts and Architectures

Basic Concepts and Architectures CMOS Sigma-Delta Converters From Basics to State-of of-the-art Basic Concepts and Architectures Rocío del Río, R Belén Pérez-Verdú and José M. de la Rosa {rocio,belen,jrosa}@imse.cnm.es KTH, Stockholm,

More information

Band- Pass ΣΔ Architectures with Single and Two Parallel Paths

Band- Pass ΣΔ Architectures with Single and Two Parallel Paths H. Caracciolo, I. Galdi, E. Bonizzoni, F. Maloberti: "Band-Pass ΣΔ Architectures with Single and Two Parallel Paths"; IEEE Int. Symposium on Circuits and Systems, ISCAS 8, Seattle, 18-21 May 8, pp. 1656-1659.

More information

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering.

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering. NPTEL Syllabus VLSI Data Conversion Circuits - Video course COURSE OUTLINE This course covers the analysis and design of CMOS Analog-to-Digital and Digital-to-Analog Converters,with about 7 design assigments.

More information

A Multi-bit Delta-Sigma Modulator with a Passband Tunable from DC to Half the Sampling Frequency. Kentaro Yamamoto

A Multi-bit Delta-Sigma Modulator with a Passband Tunable from DC to Half the Sampling Frequency. Kentaro Yamamoto A Multi-bit Delta-Sigma Modulator with a Passband Tunable from DC to Half the Sampling Frequency by Kentaro Yamamoto A thesis submitted in conformity with the requirements for the degree of Master of Applied

More information

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers 6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Bandwidth Constraints

More information

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS by Yves Geerts Alcatel Microelectronics, Belgium Michiel Steyaert KU Leuven, Belgium and Willy Sansen KU Leuven,

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies A. Pena Perez, V.R. Gonzalez- Diaz, and F. Maloberti, ΣΔ Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies, IEEE Proceeding of Latin American Symposium on Circuits and Systems, Feb.

More information

I-Q Signal Generation Techniques for Communication IC Testing and ATE Systems

I-Q Signal Generation Techniques for Communication IC Testing and ATE Systems 2016 IEEE International Test Conference I-Q Signal Generation Techniques for Communication IC Testing and ATE Systems M. Murakami, H. Kobayashi, S. N. B. Mohyar O. Kobayashi, T. Miki, J. Kojima Gunma University

More information

EE247 Lecture 25. Oversampled ADCs (continued)

EE247 Lecture 25. Oversampled ADCs (continued) EE247 Lecture 25 Oversampled ADCs (continued) Higher order ΣΔ modulators Last lecture Cascaded ΣΔ modulators (MASH) (continued) Single-loop single-quantizer modulators with multi-order filtering in the

More information

Performance Improvement of Delta-Sigma ADC/DAC/TDC Using Digital Technique

Performance Improvement of Delta-Sigma ADC/DAC/TDC Using Digital Technique 群馬大学 小林研究室 S38-1 Data Converters 15:45-16:15 PM Nov. 2, 2018 (Fri) Performance mprovement of Delta-Sigma ADC/DAC/TDC Using Digital Technique Haruo Kobayashi J.-L. Wei, M. Murakami, J. Kojima, N. Kushita,

More information

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter Brian L. Young youngbr@eecs.oregonstate.edu Oregon State University June 6, 28 I. INTRODUCTION The goal of the Spring 28, ECE 627 project

More information

Telecommunication Electronics

Telecommunication Electronics Politecnico di Torino ICT School Telecommunication Electronics C5 - Special A/D converters» Logarithmic conversion» Approximation, A and µ laws» Differential converters» Oversampling, noise shaping Logarithmic

More information

Low-Complexity High-Order Vector-Based Mismatch Shaping in Multibit ΔΣ ADCs Nan Sun, Member, IEEE, and Peiyan Cao, Student Member, IEEE

Low-Complexity High-Order Vector-Based Mismatch Shaping in Multibit ΔΣ ADCs Nan Sun, Member, IEEE, and Peiyan Cao, Student Member, IEEE 872 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 58, NO. 12, DECEMBER 2011 Low-Complexity High-Order Vector-Based Mismatch Shaping in Multibit ΔΣ ADCs Nan Sun, Member, IEEE, and Peiyan

More information

Oversampling Data Converters Tuesday, March 15th, 9:15 11:40

Oversampling Data Converters Tuesday, March 15th, 9:15 11:40 Oversampling Data Converters Tuesday, March 15th, 9:15 11:40 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Last time and today, Tuesday 15th of March:

More information

National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer

National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer Kaustubh Wagle and Niels Knudsen National Instruments, Austin, TX Abstract Single-bit delta-sigma

More information

A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC

A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC Zhijie Chen, Masaya Miyahara, Akira Matsuzawa Tokyo Institute of Technology Symposia on VLSI Technology and Circuits Outline Background

More information

On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators

On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators By Du Yun Master Degree in Electrical and Electronics Engineering 2013 Faculty of Science and Technology University

More information

Design And Simulation Of First Order Sigma Delta ADC In 0.13um CMOS Technology Jaydip H. Chaudhari PG Student L. C. Institute of Technology, Bhandu

Design And Simulation Of First Order Sigma Delta ADC In 0.13um CMOS Technology Jaydip H. Chaudhari PG Student L. C. Institute of Technology, Bhandu Design And Simulation Of First Order Sigma Delta ADC In 0.13um CMOS Technology Jaydip H. Chaudhari PG Student L. C. Institute of Technology, Bhandu Gireeja D. Amin Assistant Professor L. C. Institute of

More information

Integrated Microsystems Laboratory. Franco Maloberti

Integrated Microsystems Laboratory. Franco Maloberti University of Pavia Integrated Microsystems Laboratory Power Efficient Data Convertes Franco Maloberti franco.maloberti@unipv.it OUTLINE Introduction Managing the noise power budget Challenges of State-of-the-art

More information

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE Mehdi Taghizadeh and Sirus Sadughi Department of Electrical Engineering, Science and Research Branch,

More information

A VERY HIGH SPEED BANDPASS CONTINUOUS TIME SIGMA DELTA MODULATOR FOR RF RECEIVER FRONT END A/D CONVERSION K. PRAVEEN JAYAKAR THOMAS

A VERY HIGH SPEED BANDPASS CONTINUOUS TIME SIGMA DELTA MODULATOR FOR RF RECEIVER FRONT END A/D CONVERSION K. PRAVEEN JAYAKAR THOMAS A VERY HIGH SPEED BANDPASS CONTINUOUS TIME SIGMA DELTA MODULATOR FOR RF RECEIVER FRONT END A/D CONVERSION K. PRAVEEN JAYAKAR THOMAS (B. Tech., Madras Institute of Technology, Anna University) A THESIS

More information

Pipeline vs. Sigma Delta ADC for Communications Applications

Pipeline vs. Sigma Delta ADC for Communications Applications Pipeline vs. Sigma Delta ADC for Communications Applications Noel O Riordan, Mixed-Signal IP Group, S3 Semiconductors noel.oriordan@s3group.com Introduction The Analog-to-Digital Converter (ADC) is a key

More information

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing Fundamentals of Data Converters DAVID KRESS Director of Technical Marketing 9/14/2016 Analog to Electronic Signal Processing Sensor (INPUT) Amp Converter Digital Processor Actuator (OUTPUT) Amp Converter

More information

Choosing the Best ADC Architecture for Your Application Part 3:

Choosing the Best ADC Architecture for Your Application Part 3: Choosing the Best ADC Architecture for Your Application Part 3: Hello, my name is Luis Chioye, I am an Applications Engineer with the Texas Instruments Precision Data Converters team. And I am Ryan Callaway,

More information

New RF-to-Digital Architectures for Broadband Communication Systems

New RF-to-Digital Architectures for Broadband Communication Systems New RF-to-Digital Architectures for Broadband Communication Systems Department of ECE, Texas A&M University Barcelona, May 2012 Barcelona -1- May 2012 Outline Introduction Multi-standard receivers: Front-End

More information

A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System

A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System 1266 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 7, JULY 2003 A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System Kambiz Kaviani, Student Member,

More information

Low-power Sigma-Delta AD Converters

Low-power Sigma-Delta AD Converters Low-power Sigma-Delta AD Converters Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 211 Table of contents Delta-sigma modulation The switch problem The

More information

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999 Analog-to-Digital Converter Survey & Analysis Update: July 16,1999 References: 1. R.H. Walden, Analog-to-digital converter survey and analysis, IEEE Journal on Selected Areas in Communications, vol. 17,

More information

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 26. EE247 Lecture 26 EE247 Lecture 26 Administrative Final exam: Date: Tues. Dec. 13 th Time: 12:3pm-3:3pm Location: 285 Cory Office hours this week: Tues: 2:3p to 3:3p Wed: 1:3p to 2:3p (extra) Thurs: 2:3p to 3:3p Closed

More information

3 rd order Sigma-delta modulator with delayed feed-forward path for low-power applications

3 rd order Sigma-delta modulator with delayed feed-forward path for low-power applications 3 rd order Sigma-delta modulator with delayed feed-forward path for low-power applications Min-woong Lee, Seong-ik Cho Electronic Engineering Chonbuk National University 567 Baekje-daero, deokjin-gu, Jeonju-si,

More information

Design of Bandpass Delta-Sigma Modulators: Avoiding Common Mistakes

Design of Bandpass Delta-Sigma Modulators: Avoiding Common Mistakes Design of Bandpass Delta-Sigma Modulators: Avoiding Common Mistakes R. Jacob Baker and Vishal Saxena Department of Electrical and Computer Engineering Boise State University 1910 University Dr., ET 201

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics D5 - Special A/D converters» Differential converters» Oversampling, noise shaping» Logarithmic conversion» Approximation, A and

More information

A 100-dB gain-corrected delta-sigma audio DAC with headphone driver

A 100-dB gain-corrected delta-sigma audio DAC with headphone driver Analog Integr Circ Sig Process (2007) 51:27 31 DOI 10.1007/s10470-007-9033-0 A 100-dB gain-corrected delta-sigma audio DAC with headphone driver Ruopeng Wang Æ Sang-Ho Kim Æ Sang-Hyeon Lee Æ Seung-Bin

More information

Analog and RF circuit techniques in nanometer CMOS

Analog and RF circuit techniques in nanometer CMOS Analog and RF circuit techniques in nanometer CMOS Bram Nauta University of Twente The Netherlands http://icd.ewi.utwente.nl b.nauta@utwente.nl UNIVERSITY OF TWENTE. Outline Introduction Balun-LNA-Mixer

More information

A 102-dB-SNR mixed CT/DT ADC with capacitor digital self-calibration for RC spread compensation

A 102-dB-SNR mixed CT/DT ADC with capacitor digital self-calibration for RC spread compensation Vol. 32, No. 8 Journal of Semiconductors August 2011 A 102-dB-SNR mixed CT/DT ADC with capacitor digital self-calibration for RC spread compensation Liu Yan( 刘岩 ), Hua Siliang( 华斯亮 ), Wang Donghui( 王东辉

More information

A 250-kHz 94-dB Double-Sampling 61 Modulation A/D Converter With a Modified Noise Transfer Function

A 250-kHz 94-dB Double-Sampling 61 Modulation A/D Converter With a Modified Noise Transfer Function IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 10, OCTOBER 2003 1657 A 250-kHz 94-dB Double-Sampling 61 Modulation A/D Converter With a Modified Noise Transfer Function Pieter Rombouts, Member, IEEE,

More information

A Mostly Digital Variable-Rate Continuous- Time ADC Modulator

A Mostly Digital Variable-Rate Continuous- Time ADC Modulator A Mostly Digital Variable-Rate Continuous- Time ADC Modulator Gerry Taylor 1,2, Ian Galton 1 1 University of California at San Diego, La Jolla, CA 2 Analog Devices, San Diego, CA INTEGRATED SIGNAL PROCESSING

More information

Chapter 2 Basics of Sigma-Delta Modulation

Chapter 2 Basics of Sigma-Delta Modulation Chapter 2 Basics of Sigma-Delta Modulation The principle of sigma-delta modulation, although widely used nowadays, was developed over a time span of more than 25 years. Initially the concept of oversampling

More information

Implementation of Binary DAC and Two step ADC Quantizer for CTDS using gpdk45nm

Implementation of Binary DAC and Two step ADC Quantizer for CTDS using gpdk45nm International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Implementation of Binary DAC and Two step ADC Quantizer for CTDS using gpdk45nm Mr.T.Satyanarayana 1, Mr.K.Ashok

More information

Materials in this course have been contributed by Fernando Medeiro, José M. de la Rosa, Rocío del Río, Belén Pérez-Verdú and

Materials in this course have been contributed by Fernando Medeiro, José M. de la Rosa, Rocío del Río, Belén Pérez-Verdú and CMOS Sigma-Delta Converters From Basics to State-of-the-Art Circuits and Errors Angel Rodríguez-Vázquez angel@imse.cnm.es Barcelona, 29-30 / Septiembre / 2010 Materials in this course have been contributed

More information

MITOPENCOURSEWARE High-Speed Communication Circuits and Systems Lecture 29 Lowpass and Bandpass Delta-Sigma Modulation.

MITOPENCOURSEWARE High-Speed Communication Circuits and Systems Lecture 29 Lowpass and Bandpass Delta-Sigma Modulation. MITOPENCOURSEWARE MASSACUSETTS INSTITUTE OF TECHNOLOGY 6.976 High-Speed Communication Circuits and Systems Lecture 29 Lowpass and Bandpass Delta-Sigma Modulation Richard Schreier ANALOG DEVICES Copyright

More information

A Segmented DAC based Sigma-Delta ADC by Employing DWA

A Segmented DAC based Sigma-Delta ADC by Employing DWA A Segmented DAC based Sigma-Delta ADC by Employing DWA Sakineh Jahangirzadeh 1 and Ebrahim Farshidi 1 1 Electrical Department, Faculty of Engnerring, Shahid Chamran University of Ahvaz, Ahvaz, Iran May

More information

Fundamentals of Data Conversion: Part I.1

Fundamentals of Data Conversion: Part I.1 Fundamentals of Data Conversion: Part I.1 Sebastian Hoyos http://ece.tamu.edu/~hoyos/ Several of these slides were provided by Dr. Jose Silva-Martinez and Dr. Jun Zhou Outline Fundamentals of Analog-to-Digital

More information

Low-Voltage Low-Power Switched-Current Circuits and Systems

Low-Voltage Low-Power Switched-Current Circuits and Systems Low-Voltage Low-Power Switched-Current Circuits and Systems Nianxiong Tan and Sven Eriksson Dept. of Electrical Engineering Linköping University S-581 83 Linköping, Sweden Abstract This paper presents

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 11: February 20, 2018 Data Converters, Noise Shaping Lecture Outline! Review: Multi-Rate Filter Banks " Quadrature Mirror Filters! Data Converters " Anti-aliasing

More information

A 1.55 GHz to 2.45 GHz Center Frequency Continuous-Time Bandpass Delta-Sigma Modulator for Frequency Agile Transmitters

A 1.55 GHz to 2.45 GHz Center Frequency Continuous-Time Bandpass Delta-Sigma Modulator for Frequency Agile Transmitters RMO2C A 1.55 GHz to 2.45 GHz Center Frequency Continuous-Time Bandpass Delta-Sigma Modulator for Frequency Agile Transmitters RFIC 2009 Martin Schmidt, Markus Grözing, Stefan Heck, Ingo Dettmann, Manfred

More information

FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1

FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1 FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1 Many of these slides were provided by Dr. Sebastian Hoyos January 2019 Texas A&M University 1 Spring, 2019 Outline Fundamentals of Analog-to-Digital

More information

Two- Path Band- Pass Σ- Δ Modulator with 40- MHz IF 72- db DR at 1- MHz Bandwidth Consuming 16 mw

Two- Path Band- Pass Σ- Δ Modulator with 40- MHz IF 72- db DR at 1- MHz Bandwidth Consuming 16 mw I. Galdi, E. Bonizzoni, F. Maloberti, G. Manganaro, P. Malcovati: "Two-Path Band- Pass Σ-Δ Modulator with 40-MHz IF 72-dB DR at 1-MHz Bandwidth Consuming 16 mw"; 33rd European Solid State Circuits Conf.,

More information

Highly Linear Noise-Shaped Pipelined ADC Utilizing a Relaxed Accuracy Front-End

Highly Linear Noise-Shaped Pipelined ADC Utilizing a Relaxed Accuracy Front-End Highly Linear Noise-Shaped Pipelined ADC Utilizing a Relaxed Accuracy Front-End 1 O. Rajaee 1 and U. Moon 2 1 Qualcomm Inc., San Diego, CA, USA 2 School of EECS, Oregon State University, Corvallis, OR,

More information

BANDPASS delta sigma ( ) modulators are used to digitize

BANDPASS delta sigma ( ) modulators are used to digitize 680 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 10, OCTOBER 2005 A Time-Delay Jitter-Insensitive Continuous-Time Bandpass 16 Modulator Architecture Anurag Pulincherry, Michael

More information

Data Conversion Techniques (DAT115)

Data Conversion Techniques (DAT115) Data Conversion Techniques (DAT115) Hand in Report Second Order Sigma Delta Modulator with Interleaving Scheme Group 14N Remzi Yagiz Mungan, Christoffer Holmström [ 1 20 ] Contents 1. Task Description...

More information

Appendix A Comparison of ADC Architectures

Appendix A Comparison of ADC Architectures Appendix A Comparison of ADC Architectures A comparison of continuous-time delta-sigma (CT ), pipeline, and timeinterleaved (TI) SAR ADCs which target wide signal bandwidths (greater than 100 MHz) and

More information

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns 1224 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 12, DECEMBER 2008 Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A.

More information

Design Examples. MEAD March Richard Schreier. ANALOG DEVICES R. SCHREIER ANALOG DEVICES, INC.

Design Examples. MEAD March Richard Schreier. ANALOG DEVICES R. SCHREIER ANALOG DEVICES, INC. Design Examples MEAD March 008 Richard Schreier Richard.Schreier@analog.com ANALOG DEVICES Catalog nd -Order Lowpass Architecture: Single-bit, switched-capacitor Application: General-purpose, low-frequency

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion Florian Erdinger Lehrstuhl für Schaltungstechnik und Simulation Technische Informatik der Uni Heidelberg VLSI Design - Mixed Mode Simulation F. Erdinger, ZITI, Uni Heidelberg

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 25.4 A 1.8V 14b 10MS/s Pipelined ADC in 0.18µm CMOS with 99dB SFDR Yun Chiu, Paul R. Gray, Borivoje Nikolic University of California, Berkeley,

More information

A 2.5 V 109 db DR ADC for Audio Application

A 2.5 V 109 db DR ADC for Audio Application 276 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.10, NO.4, DECEMBER, 2010 A 2.5 V 109 db DR ADC for Audio Application Gwangyol Noh and Gil-Cho Ahn Abstract A 2.5 V feed-forward second-order deltasigma

More information

D/A Resolution Impact on a Poly-phase Multipath Transmitter

D/A Resolution Impact on a Poly-phase Multipath Transmitter D/A Resolution Impact on a Poly-phase Multipath Transmitter Saqib Subhan, Eric A. M. Klumperink, Bram Nauta IC Design group, CTIT, University of Twente Enschede, The Netherlands s.subhan@utwente.nl Abstract

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 12: February 21st, 2017 Data Converters, Noise Shaping (con t) Lecture Outline! Data Converters " Anti-aliasing " ADC " Quantization " Practical DAC! Noise Shaping

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

Chapter 2 DDSM and Applications

Chapter 2 DDSM and Applications Chapter DDSM and Applications. Principles of Delta-Sigma Modulation In order to explain the concept of noise shaping in detail, we start with a stand-alone quantizer (see Fig..a) with a small number of

More information

AN ABSTRACT OF THE THESIS OF. Title: Effects and Compensation of the Analog Integrator Nonidealities in Dual- GAL- C. Temes

AN ABSTRACT OF THE THESIS OF. Title: Effects and Compensation of the Analog Integrator Nonidealities in Dual- GAL- C. Temes AN ABSTRACT OF THE THESIS OF Yaohua Yang for the degree of Master of Science in Electrical & Computer Engineering presented on February 20, 1993. Title: Effects and Compensation of the Analog Integrator

More information

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K. EE247 Lecture 22 Pipelined ADCs Combining the bits Stage implementation Circuits Noise budgeting Figures of merit (FOM) and trends for ADCs How to use/not use FOM Oversampled ADCs EECS 247 Lecture 22:

More information