EE247 Lecture 27. EE247 Lecture 27

Size: px
Start display at page:

Download "EE247 Lecture 27. EE247 Lecture 27"

Transcription

1 EE247 Lecture 27 Administrative EE247 Final exam: Date: Wed. Dec. 19 th Time: 12:30pm-3:30pm Location: 70 Evans Hall Extra office hours: Thurs. Dec. 13 th, 10:am2pm Closed course notes/books No calculators/cell phones/pdas/computers Bring two 8x11 paper with your own notes Final exam covers the entire course material unless specified otherwise EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 1 Administrative Project submission: EE247 Lecture 27 Deadline postponed to Thurs. Dec. 13 th If you have chosen to do the project, please make an appointment with the instructor: Thurs. Dec. 13 th, After 12:30 for 15mins each project report to present the results EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 2

2 EE247 Lecture 27 Oversampled ADCs (continued) 2 nd order ΣΔ modulator Practical implementation Effect of various building block nonidealities on the ΣΔ performance Integrator maximum signal handling capability (last lecture) Integrator finite DC gain (last lecture) Comparator hysteresis (last lecture) Integrator non-linearity (last lecture) Effect of KT/C noise Finite opamp bandwidth Opamp slew limited settling Implementation example Higher order ΣΔ modulators Cascaded modulators (multi-stage) Single-loop single-quantizer modulators with multi-order filtering in the forward path EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 3 2 nd Order ΣΔ Effect of Integrator KT/C noise V i φ 1 φ 2 Cs - + CI V o 2 2KT vn = Cs 2 kt 1 kt vn / f = 2 = 4 Cs fs /2 Cs fs Total in-band noise: 2 n input referred v 2kT = Cs M kt = 4 f Cs fs B For the example of digital audio with 16-bit (96dB) & M=256 (110dB SQNR) Cs=1pF 7μVrms noise If FS=2V p-p-d then thermal 01dB degrades overall SNR by ~10dB Cs=1pF, CI=2pF much smaller capacitor area (~1/M) compared to Nyquist ADC Since thermal noise provides some level of dithering better not choose much larger capacitors! EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 4

3 2 nd Order ΣΔ Effect of Finite Opamp Bandwidth Vi+ Vi- s φ1 φ 2 C I C - + Vo Unity-gain-freq. Input/Output z-transform = f u =1/τ V o φ 2 settling error T=1/f s time Assumptions: Opamp does not slew Opamp has only one pole exponential settling EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 5 2 nd Order ΣΔ Effect of Finite Opamp Bandwidth ΣΔ does not require high opamp bandwidth T/τ >2 or f u > 2f s adequate Note: Bandwidth requirements significantly more relaxed compared to Nyquist rate ADCs Ref: B.E. Boser et. al, The Design of Sigma-Delta Modulation A/D Converters, JSSC, Dec EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 6

4 2 nd Order ΣΔ Effect of Slew Limited Settling Clock φ 1 φ 2 Vo-ideal Vo-real Slewing Slewing EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 7 2 nd Order ΣΔ Effect of Slew Limited Settling Input Signal = -5dB T/τ =2 Assumption: Opamp settling includes a single-pole setting of τ =1/2f s + slewing Low slew rate degrades SNR rapidly- increases quantization noise and also causes signal distortion Minimum slew rate of S min R ~1.2 (Δ x f s ) required Ref: B.E. Boser et. al, The Design of Sigma-Delta Modulation A/D Converters, JSSC, Dec EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 8

5 2 nd Order ΣΔ Implementation Example: Digital Audio Application In Ref.: 5V supply, Δ = 4Vp-p-d, f s =12.8MHz M=256 theoretical quantization Minimum capacitor values computed based on 04dB noise wrt maximum signal Max. inband KT/C noise = 7μVrms ( thermal noise dominates provide dithering & reduce limit cycle oscillations) C1=(2kT)/(M v 2 n )=1pF C2=2C1 Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp , April EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 9 2 nd Order ΣΔ Implementation Example: Integrator Opamp Class A/B type opamp High slew-rate S.C. common-mode feedback Input referred noise (both thermal and 1/f) important for high resolution performance Minimum required DC gain> M=256, usually DC gain designed to be much higher to suppress nonlinearities (particularly, for class A/B amps) Minimum required slew rate of 1.2(Δ.f s ) 65V/usec Minimum opamp settling time constant 1/2fs~30nsec Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp , April EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 10

6 2 nd Order ΣΔ Implementation Example: Comparator Comparator simple design Minimum acceptable hysteresis or offset (based on analysis) Δ/25 160mV Since offset requirement not stringent No preamp needed, basically a latch with reset Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp , April EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 11 2 nd Order ΣΔ Implementation Example: Subcircuit Performance Our computed Over-Design Factor minimum required DC Gain 48dB x8 (compensates non-linear open-loop gain) Unity-gain freq =2fs=25MHz x2 Slew rate = 65V/usec x5 Output range 1.7Δ=6.8V! X0.9 Settling time constant= 30nsec x4 Comparator offset 160mV x12 Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp , April EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 12

7 2 nd Order ΣΔ Implementation Example: Digital Audio Applications Measured SNDR M=256, 0dB=4V p-p-d f sampling : 12.8MHz Signal Frequency: 2.8kHz Note: The Nyquist ADC tests such as INL and DNL test do not apply to ΣΔ modulator type ADCS Maximum -3dB wrt to Δ Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp , April EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 13 2 nd Order ΣΔ Implementation Example: Digital Audio Applications Measured Performance Summary (Does Not Include Decimator) Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp , April EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 14

8 2 nd Order ΣΔ Implementation Example: Digital Audio Applications Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp , April EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 15 2 nd Order ΣΔ Implementation Example: Digital Audio Applications Measured & simulated spurious tones performance as a function of DC input signal Sampling rate=12.8mhz, M=256 Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp , April EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 16

9 2 nd Order ΣΔ Implementation Example: Digital Audio Applications Sampling rate=12.8mhz, M=256 Measured & simulated noise tone performance for near zero DC worst case input Δ Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp , April EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 17 2 nd Order ΣΔ Implementation Example: Digital Audio Applications Measured & simulated worst-case noise DC input of Δ Both indicate maximum 22.5kHz around 00dB level Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp , April EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 18

10 Higher Order ΣΔ Modulator Dynamic Range ( L + ) 2L 2π ( ) 1 1 L Y( z) = z X( z) + 1 z E( z), L ΣΔ order S S S S X Q X Q 2 Δ 2L 2 1 = sinusoidal input, STF = π 1 Δ = 2L + 1 2L+ 1 M L+ 1 = M ( L + ) 2L 2π 32 1 DR = 10log M DR 2L ( L + 1) = 10log 2 2L +( L ) 2π logm 2X increase in M (6L+3)dB or (L+0.5)-bit increase in DR EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 19 ΣΔ Modulator Dynamic Range As a Function of Modulator Order L=3 L=2 L=1 Potential stability issues for L >2 EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 20

11 Higher Order ΣΔ Modulators Extending ΣΔ Modulators to higher orders by adding integrators in the forward path (similar to 2 nd order) Issues with stability Two different architectural approaches used to implement ΣΔ modulators of order >2 1. Cascade of lower order modulators (multi-stage) 2. Single-loop single-quantizer modulators with multi-order filtering in the forward path EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 21 Higher Order ΣΔ Modulators (1) Cascade of 2-Stages ΣΔ Modulators Main ΣΔ quantizes the signal The 1 st stage quantization error is then quantized by the 2 nd quantizer The quantized error is then subtracted from the results in the digital domain EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 22

12 2 nd Order (1) Cascaded ΣΔ Modulators 2 nd order noise shaping EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 23 3 rd Order Cascaded ΣΔ Modulators (a) Cascade of 1 ΣΔs Can implement 3 rd order noise shaping with 1 This is also called MASH (multi-stage noise shaping) EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 24

13 3rd Order Cascaded ΣΔ Modulators (b) Cascade of 2 ΣΔs Advantages of 2 cascade: Low sensitivity to precision matching of analog/digital paths Low spurious limit cycle tone levels No potential instability 3rd order noise shaping EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 25 Sensitivity of Cascade of (1) ΣΔ Modulators to Matching of Analog & Digital Paths Matching of ~ 1% 28dB loss in DR Matching of ~ 0.1% 2dB loss in DR EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 26

14 Sensitivity of Cascade of (2) ΣΔ Modulators to Matching Error Accuracy of < + 3% 2dB loss in DR Main advantage of 2 cascade compared to 1 topology: Low sensitivity to matching of analog/digital paths (in excess of one order of magnitude less sensitive compared to (1)!) EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 27 2 Cascaded ΣΔ Modulators Accuracy of < + 3% 2dB loss in DR Ref: L. A. Williams III and B. A. Wooley, "A third-order sigma-delta modulator with extended dynamic range," IEEE Journal of Solid-State Circuits, vol. 29, pp , March EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 28

15 2 Cascaded ΣΔ Modulators Effect of gain parameters on signal-to-noise ratio EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 29 Comparison of 2 nd order & Cascaded (2) ΣΔ Modulator Reference Architecture Dynamic Range Peak SNDR Oversampling rate Differential input range Power Dissipation Active Area Digital Audio Application, f N =50kHz (Does not include Decimator) Brandt,JSSC 4/91 2 nd order 98dB (16-bits) 94dB 256 (theoretical SNR=109dB) 4Vppd 5V supply 13.8mW 0.39mm 2 ( 1μ tech.) Williams, JSSC 3/94 (2+1) Order 104dB (17-bits) 98dB 128 (theoretical SNR=128dB) 8Vppd 5V supply 47.2mW 5.2mm 2 ( 1μ tech.) EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 30

16 2 Cascaded ΣΔ Modulators Measured Dynamic Range Versus Oversampling Ratio Theoretical 21dB/Octave 3dB/Octave Ref: L. A. Williams III and B. A. Wooley, "A third-order sigma-delta modulator with extended dynamic range," IEEE Journal of Solid-State Circuits, vol. 29, pp , March EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 31 Higher Order ΣΔ Modulators (1) Cascaded Modulators Summary Cascade two or more stable ΣΔ stages Quantization error of each stage is quantized by the succeeding stage and subtracted digitally Order of noise shaping equals sum of the orders of the stages Quantization noise cancellation depends on the precision of analog/digital signal paths Quantization noise further randomized less limit cycle oscillation problems Typically, no potential instability EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 32

17 Higher Order ΣΔ Modulators (2) Multi-Order Filter E(z) X(z) Σ H() z Σ Y(z) H( z) 1 Y( z) = X( z) + E( z) 1 + H( z) 1 + H( z) Y( z) 1 NTF = = E( z ) 1 + H( z ) Zeros of NTF (poles of H(z)) can be strategically positioned to suppress in-band noise spectrum Approach: Design NTF first and solve for H(z) EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 33 Example: Modulator Specification Example: Audio ADC Dynamic range DR 18 Bits Signal bandwidth B 20 khz Nyquist frequency f N 44.1 khz Modulator order L 5 Oversampling ratio M = f s /f N 64 Sampling frequency f s MHz The order L and oversampling ratio M are chosen based on SQNR > 120dB EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 34

18 Noise Transfer Function, NTF(z) % stop-band attenuation Rstop=80dB, L=5... L=5; Rstop = 80; B=20000; [b,a] = cheby2(l, Rstop, B, 'high'); % normalize b = b/b(1); NTF = filt(b, a,...); Chebychev 2 filter chosen zeros in stop-band NTF [db] Frequency [Hz] EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 35 Loop-Filter Characteristics H(z) Y( z) 1 NTF = = Ez ( ) 1 + Hz ( ) 1 H( z) = 1 NFT Loopfilter H [db] Frequency [Hz] EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 36

19 Modulator Topology Simulation Model Filter b1 b2 X I1 K1 z 1 - z I2 K2 z 1 - z I3 K3 z 1 - z I4 I5 K4 z K5 z 1 - z 1 - z a1 I_1 a2 I_2 a3 I_3 a4 I_4 a5 I_5 Q DAC Gain g Comparator Y +1 EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 37 Filter Coefficients a1=1; a2=1/2; a3=1/4; a4=1/8; a5=1/8; k1=1; k2=1; k3=1/2; k4=1/4; k5=1/8; b1=1/1024; b2=1/16/64; g =1; Ref: Nav Sooch, Don Kerth, Eric Swanson, and Tetsuro Sugimoto, Phase Equalization System for a Digital-to-Analog Converter Using Separate Digital and Analog Sections, U.S. Patent , 1990, figure 3 and table 1 EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 38

20 5 th Order Noise Shaping Simulation Results Output Spectrum [dbwn] / Int. Noise [dbfs] Signal Notice tones around f s / Output Spectrum 60 Integrated Noise (20 averages) Frequency [ f / f s ] Mostly quantization noise, except at low frequencies Let s zoom into the baseband portion EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 39 5 th Order Noise Shaping Output Spectrum [dbwn] / Int. Noise [dbfs] Output Spectrum Integrated Noise (20 averaged) 20 Quantization noise 30dBFS 40 band edge! 60 Band-Edge Frequency [ f / f N ] SQNR > 120dB Sigma-delta modulators are usually designed for negligible quantization noise Other error sources dominate, e.g. thermal noise are allowed to dominate & thus provide dithering to eliminate limit cycle oscillations EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 40

21 In-Band Noise Shaping Magnitude [db] Output Phase Spectrum [degrees] Loop Filter H(z) maxima align up with noise minima Output Spectrum Integrated Noise (20 averages) Frequency [f/fn] Frequency [f/f N ] Lot s of gain in the loop filter pass-band Forward path filter not necessarily stable! Remember that: NTF ~ 1/H small within passband since H is large STF=H/(1+H) ~1 within passband EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 41 Internal Node Voltages Loop filter peak voltages [V] i1 i2 i3 i4 i5 q Integrator outputs Quantizer input Input [dbv] Internal signal amplitudes are weak function of input level (except near overload) Maximum peak-topeak voltage swing approach +0V! Exceed supply voltage! Solutions: Reduce V ref?? Node scaling EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 42

22 Node Scaling Example: 3 rd Integrator Output Voltage Scaled by α K3 * α, b1 /α, a3 / α, K4 / α, b2 * α b1 V new =V old * α b2 X K1 z 1 - z I1 I_1 K2 z 1 - z I2 K3 z 1 - z I3 I_2 I_3 K4 z K5 z 1 - z 1 - z I4 I5 I_4 I_5 a1 a2 a3 a4 a5 Q DAC Gain g Comparator Y EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 43 Node Voltage Scaling Loop filter peak voltages [V] Input [dbv] Integrator output range reasonable for new parameters But: maximum input signal limited to -5dB (-7dB with safety) fix? α=1/10 k1=1/10; k2=1; k3=1/4; k4=1/4; k5=1/8; a1= 1; a2=1/2; a3=1/2; a4=1/4; a5=1/4; b1=1/512; b2=1/16/64; g =1; EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 44

23 Input Range Scaling Increasing the DAC levels by using higher value for g reduces the analog to digital conversion gain: D V IN ( z) H ( z) = ( z) 1+ gh ( z) g OUT 1 v IN Σ Loop Filter H(z) Comparator d OUT +1 or g Increasing v IN & g by the same factor leaves 1-Bit data unchanged EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 45 Scaled Stage 1 Model Loop filter peak voltages [V] g modified: From 1 to 2.5; Overload input shifted up by 8dB Input [dbv] EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 46

24 Stability Analysis e(kt) x(kt) Σ H(z) q(kt) G eff Σ y(kt) Quantizer Model Approach: linearize quantizer and use linear system theory! One way of performing stability analysis use RLocus in Matlab with H(z) as argument and Geff as variable Effective quantizer gain 2 G 2 = y eff q 2 Can obtain G eff from simulation Ref: R. W. Adams and R. Schreier, Stability Theory for ΔΣ Modulators, in Delta-Sigma Data Converters- S. Norsworthy et al. (eds), IEEE Press, 1997 EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 47 G H( z) STF = 1 + G H( z) ( ) ( ) N z H z = D( z) G N( z) STF = D ( z ) + G N ( z ) Stability Analysis Zeros of STF same as zeros of H(z) Poles of STF vary with G For G=0 (no feedback) poles of the STF same as poles of H(z) For G=large, poles of STF move towards zeros of H(z) Ref: R. W. Adams and R. Schreier, Stability Theory for ΔΣ Modulators, in Delta-Sigma Data Converters- S. Norsworthy et al. (eds), IEEE Press, 1997 EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 48

25 Modulator z-plane Root-Locus z-plane Root Locus 0.4 Increasing G eff G eff = 4.5 As G eff increases, poles of STF move from poles of H(z) (G eff = 0) to zeros of H(z) (G eff = ) Unit Circle Pole-locations inside unit-circle correspond to stable STF and NTF Need G eff > 4.5 for stability EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 49 Effective Quantizer Gain, Geff Effective Quantizer Gain G eff =4.5 stable Input [dbv] Large inputs comparator input grows Output is fixed (±1) G eff drops modulator unstable for large inputs unstable Solution: Limit input amplitude Detect instability (long sequence of +1 or ) and reset integrators Note that signals grow slowly for nearly stable systems use long simulations EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 50

26 5 th Order Modulator Final Parameter Values 1/512 1/16/64 b1 b2 X Stable input range ~ ±1V 1/10 1 1/4 1/4 1/8 K1 z K2 z K3 z K4 z K5 z 1 - z 1 - z 1 - z 1 - z 1 - z I1 I2 I3 I4 I5 I_1 I_2 I_3 I_4 I_5 a11 1 a2 12 a3 1/2 a4 1/4 a5 1/4 ±2.5V DAC Gain Comparator g Stable input range ~ ±1V Q Y EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 51 Summary Oversampled ADCs decouple SQNR from circuit complexity and accuracy If a 1-Bit DAC is used, the converter is to 1st order, inherently linear independent of component matching Typically, used for high resolution & low frequency applications e.g. digital audio 2nd order ΣΔ used extensively due to lower levels of limit cycle related spurious tones compared to 1st order ΣΔ modulators of order greater than 2: Cascaded (multi-stage) modulators Single-loop, single-quantizer modulators with multi-order filtering in the forward path EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 52

27 Bandpass ΔΣ Modulator v IN + _ Resonator dout DAC Replace the integrator in 1 st order lowpass ΣΔ with a resonator 2 nd order bandpass ΣΔ EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 53 Bandpass ΔΣ Modulator Example: 6 th Order Measured output for a bandpass ΣΔ (prior to digital filtering) Quantization Noise Input Sinusoid Key Point: NTF notch type shape STF bandpass shape Ref: Paolo Cusinato, et. al, A 3.3-V CMOS 10.7-MHz Sixth-Order Bandpass Modulator with 74-dB Dynamic Range, ΙΕΕΕ JSSCC, VOL. 36, NO. 4, APRIL 2001 EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 54

28 Bandpass ΣΔ Characteristics Oversampling ratio defined as f s /2B where B = signal bandwidth Typically, sampling frequency is chosen to be f s =4xf center where f center bandpass filter center frequency STF has a bandpass shape while NTF has a notch shape To achieve same resolution as lowpass, need twice as many integrators EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 55 Bandpass ΣΔ Modulator Dynamic Range As a Function of Modulator Order (K) K=6 21dB/Octave K=4 15dB/Octave K=2 9dB/Octave Bandpass ΣΔ resolution for order K is the same as lowpass ΣΔ resolution with order L= K/2 EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 56

29 Example: Sixth-Order Bandpass ΣΔ Modulator Simulated noise transfer function Simulated signal transfer function Ref: Paolo Cusinato, et. al, A 3.3-V CMOS 10.7-MHz Sixth-Order Bandpass Modulator with 74-dB Dynamic Range, ΙΕΕΕ JSSCC, VOL. 36, NO. 4, APRIL 2001 EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 57 Example: Sixth-Order Bandpass ΣΔ Modulator Features & Measured Performance Summary f s =4xf center B OSR=f s /2B Ref: Paolo Cusinato, et. al, A 3.3-V CMOS 10.7-MHz Sixth-Order Bandpass Modulator with 74-dB Dynamic Range, ΙΕΕΕ JSSCC, VOL. 36, NO. 4, APRIL 2001 EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 58

30 Summary Oversampled ADCs Noise shaping utilized to reduce baseband quantization noise power Reduced precision requirement for analog building blocks compared to Nyquist rate converters Relaxed transition band requirements for analog anti-aliasing filters Utilizes low cost, low power digital filtering Speed is traded for resolution Typically used for lower frequency applications compared to Nyquist rate ADCs EECS 247 Lecture 27: Oversampling Data Converters 2007 H. K. Page 59

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 26. EE247 Lecture 26 EE247 Lecture 26 Administrative Project submission: Project reports due Dec. 5th Please make an appointment with the instructor for a 15minute meeting on Monday Dec. 8 th Prepare to give a 3 to 7 minute

More information

EE247 Lecture 24. EE247 Lecture 24

EE247 Lecture 24. EE247 Lecture 24 EE247 Lecture 24 Administrative EE247 Final exam: Date: Wed. Dec. 15 th Time: -12:30pm-3:30pm- Location: 289 Cory Closed book/course notes No calculators/cell phones/pdas/computers Bring one 8x11 paper

More information

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 26. EE247 Lecture 26 EE247 Lecture 26 Administrative EE247 Final exam: Date: Mon. Dec. 18 th Time: 12:30pm-3:30pm Location: 241 Cory Hall Extra office hours: Thurs. Dec. 14 th, 10:30am-12pm Closed book/course notes No calculators/cell

More information

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 26. EE247 Lecture 26 EE247 Lecture 26 Administrative Final exam: Date: Tues. Dec. 13 th Time: 12:3pm-3:3pm Location: 285 Cory Office hours this week: Tues: 2:3p to 3:3p Wed: 1:3p to 2:3p (extra) Thurs: 2:3p to 3:3p Closed

More information

EE247 Lecture 25. Oversampled ADCs (continued)

EE247 Lecture 25. Oversampled ADCs (continued) EE247 Lecture 25 Oversampled ADCs (continued) Higher order ΣΔ modulators Last lecture Cascaded ΣΔ modulators (MASH) (continued) Single-loop single-quantizer modulators with multi-order filtering in the

More information

The Case for Oversampling

The Case for Oversampling EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations nd order ΣΔ

More information

EE247 Lecture 26. This lecture is taped on Wed. Nov. 28 th due to conflict of regular class hours with a meeting

EE247 Lecture 26. This lecture is taped on Wed. Nov. 28 th due to conflict of regular class hours with a meeting EE47 Lecture 6 This lecture is taped on Wed. Nov. 8 th due to conflict of regular class hours with a meeting Any questions regarding this lecture could be discussed during regular office hours or in class

More information

Summary Last Lecture

Summary Last Lecture Interleaved ADCs EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations

More information

Analog-to-Digital Converters

Analog-to-Digital Converters EE47 Lecture 3 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations nd order ΣΔ

More information

Summary Last Lecture

Summary Last Lecture EE47 Lecture 5 Pipelined ADCs (continued) How many bits per stage? Algorithmic ADCs utilizing pipeline structure Advanced background calibration techniques Oversampled ADCs Why oversampling? Pulse-count

More information

BandPass Sigma-Delta Modulator for wideband IF signals

BandPass Sigma-Delta Modulator for wideband IF signals BandPass Sigma-Delta Modulator for wideband IF signals Luca Daniel (University of California, Berkeley) Marco Sabatini (STMicroelectronics Berkeley Labs) maintain the same advantages of BaseBand converters

More information

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Jinseok Koh Wireless Analog Technology Center Texas Instruments Inc. Dallas, TX Outline Fundamentals for ADCs Over-sampling and Noise

More information

Tones. EECS 247 Lecture 21: Oversampled ADC Implementation 2002 B. Boser 1. 1/512 1/16-1/64 b1. 1/10 1 1/4 1/4 1/8 k1z -1 1-z -1 I1. k2z -1.

Tones. EECS 247 Lecture 21: Oversampled ADC Implementation 2002 B. Boser 1. 1/512 1/16-1/64 b1. 1/10 1 1/4 1/4 1/8 k1z -1 1-z -1 I1. k2z -1. Tones 5 th order Σ modulator DC inputs Tones Dither kt/c noise EECS 47 Lecture : Oversampled ADC Implementation B. Boser 5 th Order Modulator /5 /6-/64 b b b b X / /4 /4 /8 kz - -z - I kz - -z - I k3z

More information

CHAPTER. delta-sigma modulators 1.0

CHAPTER. delta-sigma modulators 1.0 CHAPTER 1 CHAPTER Conventional delta-sigma modulators 1.0 This Chapter presents the traditional first- and second-order DSM. The main sources for non-ideal operation are described together with some commonly

More information

Oversampling Converters

Oversampling Converters Oversampling Converters Behzad Razavi Electrical Engineering Department University of California, Los Angeles Outline Basic Concepts First- and Second-Order Loops Effect of Circuit Nonidealities Cascaded

More information

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1 MASH 2- MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN Yu hang, Ning Xie, Hui Wang and Yejun He College of Information Engineering, Shenzhen University, Shenzhen, Guangdong 58060, China kensouren@yahoo.com.cn

More information

Lecture #6: Analog-to-Digital Converter

Lecture #6: Analog-to-Digital Converter Lecture #6: Analog-to-Digital Converter All electrical signals in the real world are analog, and their waveforms are continuous in time. Since most signal processing is done digitally in discrete time,

More information

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter Brian L. Young youngbr@eecs.oregonstate.edu Oregon State University June 6, 28 I. INTRODUCTION The goal of the Spring 28, ECE 627 project

More information

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012 INF4420 ΔΣ data converters Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no) Outline Oversampling Noise shaping Circuit design issues Higher order noise shaping Introduction So far we have considered

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Final Exam EECS 247 H. Khorramabadi Tues., Dec. 14, 2010 FALL 2010 Name: SID: Total number of

More information

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion Cascaded Noise-Shaping Modulators for Oversampled Data Conversion Bruce A. Wooley Stanford University B. Wooley, Stanford, 2004 1 Outline Oversampling modulators for A/D conversion Cascaded noise-shaping

More information

Oversampling Data Converters Tuesday, March 15th, 9:15 11:40

Oversampling Data Converters Tuesday, March 15th, 9:15 11:40 Oversampling Data Converters Tuesday, March 15th, 9:15 11:40 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Last time and today, Tuesday 15th of March:

More information

A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology

A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology M. Annovazzi, V. Colonna, G. Gandolfi, STMicroelectronics Via Tolomeo, 2000 Cornaredo (MI), Italy vittorio.colonna@st.com

More information

Second-Order Sigma-Delta Modulator in Standard CMOS Technology

Second-Order Sigma-Delta Modulator in Standard CMOS Technology SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 1, No. 3, November 2004, 37-44 Second-Order Sigma-Delta Modulator in Standard CMOS Technology Dragiša Milovanović 1, Milan Savić 1, Miljan Nikolić 1 Abstract:

More information

Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University

Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University Bruce A. Wooley - 1 - Copyright 2005, Stanford University Outline Oversampling modulators for A-to-D conversion

More information

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K. EE247 Lecture 22 Pipelined ADCs Combining the bits Stage implementation Circuits Noise budgeting Figures of merit (FOM) and trends for ADCs How to use/not use FOM Oversampled ADCs EECS 247 Lecture 22:

More information

ECEN 610 Mixed-Signal Interfaces

ECEN 610 Mixed-Signal Interfaces Spring 2014 S. Hoyos-ECEN-610 1 ECEN 610 Mixed-Signal Interfaces Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Oversampling ADC Spring 2014 S. Hoyos-ECEN-610 2 Spring 2014 S. Hoyos-ECEN-610

More information

A 2.5 V 109 db DR ADC for Audio Application

A 2.5 V 109 db DR ADC for Audio Application 276 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.10, NO.4, DECEMBER, 2010 A 2.5 V 109 db DR ADC for Audio Application Gwangyol Noh and Gil-Cho Ahn Abstract A 2.5 V feed-forward second-order deltasigma

More information

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE Mehdi Taghizadeh and Sirus Sadughi Department of Electrical Engineering, Science and Research Branch,

More information

Lecture 390 Oversampling ADCs Part I (3/29/10) Page 390-1

Lecture 390 Oversampling ADCs Part I (3/29/10) Page 390-1 Lecture 390 Oversampling ADCs Part I (3/29/0) Page 390 LECTURE 390 OVERSAMPLING ADCS PART I LECTURE ORGANIZATION Outline Introduction Deltasigma modulators Summary CMOS Analog Circuit Design, 2 nd Edition

More information

EE247 Lecture 20. Comparator architecture examples Flash ADC sources of error Sparkle code Meta-stability

EE247 Lecture 20. Comparator architecture examples Flash ADC sources of error Sparkle code Meta-stability EE247 Lecture 2 ADC Converters ADC architectures (continued) Comparator architectures Latched comparators Latched comparators incorporating preamplifier Sample-data comparators Offset cancellation Comparator

More information

Understanding Delta-Sigma Data Converters

Understanding Delta-Sigma Data Converters Understanding Delta-Sigma Data Converters Richard Schreier Analog Devices, Inc. Gabor C. Temes Oregon State University OlEEE IEEE Press iwiley- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Foreword

More information

Summary Last Lecture

Summary Last Lecture EE247 Lecture 23 Converters Techniques to reduce flash complexity Interpolating (continued) Folding Multi-Step s Two-Step flash Pipelined s EECS 247 Lecture 23: Data Converters 26 H.K. Page 1 Summary Last

More information

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering.

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering. NPTEL Syllabus VLSI Data Conversion Circuits - Video course COURSE OUTLINE This course covers the analysis and design of CMOS Analog-to-Digital and Digital-to-Analog Converters,with about 7 design assigments.

More information

Design Examples. MEAD March Richard Schreier. ANALOG DEVICES R. SCHREIER ANALOG DEVICES, INC.

Design Examples. MEAD March Richard Schreier. ANALOG DEVICES R. SCHREIER ANALOG DEVICES, INC. Design Examples MEAD March 008 Richard Schreier Richard.Schreier@analog.com ANALOG DEVICES Catalog nd -Order Lowpass Architecture: Single-bit, switched-capacitor Application: General-purpose, low-frequency

More information

Summary Last Lecture

Summary Last Lecture EE247 Lecture 23 Converters Techniques to reduce flash complexity Interpolating (continued) Folding Multi-Step s Two-Step flash Pipelined s EECS 247 Lecture 23: Data Converters 26 H.K. Page Summary Last

More information

Design and Implementation of a Sigma Delta ADC By: Moslem Rashidi, March 2009

Design and Implementation of a Sigma Delta ADC By: Moslem Rashidi, March 2009 Design and Implementation of a Sigma Delta ADC By: Moslem Rashidi, March 2009 Introduction The first thing in design an ADC is select architecture of ADC that is depend on parameters like bandwidth, resolution,

More information

Advanced AD/DA converters. Higher-Order ΔΣ Modulators. Overview. General single-stage DSM. General single-stage DSM II ( 1

Advanced AD/DA converters. Higher-Order ΔΣ Modulators. Overview. General single-stage DSM. General single-stage DSM II ( 1 Advanced AD/DA converters Overview Higher-order single-stage modulators Higher-Order ΔΣ Modulators Stability Optimization of TF zeros Higher-order multi-stage modulators Pietro Andreani Dept. of Electrical

More information

Advanced AD/DA converters. Higher-Order ΔΣ Modulators. Overview. General single-stage DSM II. General single-stage DSM

Advanced AD/DA converters. Higher-Order ΔΣ Modulators. Overview. General single-stage DSM II. General single-stage DSM Advanced AD/DA converters Overview Higher-order single-stage modulators Higher-Order ΔΣ Modulators Stability Optimization of TF zeros Higher-order multi-stage modulators Pietro Andreani Dept. of Electrical

More information

Appendix A Comparison of ADC Architectures

Appendix A Comparison of ADC Architectures Appendix A Comparison of ADC Architectures A comparison of continuous-time delta-sigma (CT ), pipeline, and timeinterleaved (TI) SAR ADCs which target wide signal bandwidths (greater than 100 MHz) and

More information

Electronic Noise. Analog Dynamic Range

Electronic Noise. Analog Dynamic Range Electronic Noise Dynamic range in the analog domain Resistor noise Amplifier noise Maximum signal levels Tow-Thomas Biquad noise example Implications on power dissipation EECS 247 Lecture 4: Dynamic Range

More information

Data Conversion Techniques (DAT115)

Data Conversion Techniques (DAT115) Data Conversion Techniques (DAT115) Hand in Report Second Order Sigma Delta Modulator with Interleaving Scheme Group 14N Remzi Yagiz Mungan, Christoffer Holmström [ 1 20 ] Contents 1. Task Description...

More information

Administrative. Questions can also be asked via . EECS 247- Lecture 26 Bandpass Oversampled ADCs- Systems 2009 Page 1.

Administrative. Questions can also be asked via  . EECS 247- Lecture 26 Bandpass Oversampled ADCs- Systems 2009 Page 1. Administrative Project : Discussions & report submission on Frid. Dec. 4 th (make appointment via sign-up sheet) Student presentations Dec. 3 rd & Dec. 8 th Office hours @ 567 Cory : Tues. Dec. 8 th, 4

More information

A Multi-bit Delta-Sigma Modulator with a Passband Tunable from DC to Half the Sampling Frequency. Kentaro Yamamoto

A Multi-bit Delta-Sigma Modulator with a Passband Tunable from DC to Half the Sampling Frequency. Kentaro Yamamoto A Multi-bit Delta-Sigma Modulator with a Passband Tunable from DC to Half the Sampling Frequency by Kentaro Yamamoto A thesis submitted in conformity with the requirements for the degree of Master of Applied

More information

EE247 Lecture 11. Switched-Capacitor Filters (continued) Effect of non-idealities Bilinear switched-capacitor filters Filter design summary

EE247 Lecture 11. Switched-Capacitor Filters (continued) Effect of non-idealities Bilinear switched-capacitor filters Filter design summary EE47 Lecture 11 Switched-Capacitor Filters (continued) Effect of non-idealities Bilinear switched-capacitor filters Filter design summary Comparison of various filter topologies Data Converters EECS 47

More information

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications RESEARCH ARTICLE OPEN ACCESS Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications Sharon Theresa George*, J. Mangaiyarkarasi** *(Department of Information and Communication

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion Florian Erdinger Lehrstuhl für Schaltungstechnik und Simulation Technische Informatik der Uni Heidelberg VLSI Design - Mixed Mode Simulation F. Erdinger, ZITI, Uni Heidelberg

More information

A K-Delta-1-Sigma Modulator for Wideband Analog-to-Digital Conversion

A K-Delta-1-Sigma Modulator for Wideband Analog-to-Digital Conversion A K-Delta-1-Sigma Modulator for Wideband Analog-to-Digital Conversion Abstract : R. Jacob Baker and Vishal Saxena Department of Electrical and Computer Engineering Boise State University jbaker@boisestate.edu

More information

Design of Bandpass Delta-Sigma Modulators: Avoiding Common Mistakes

Design of Bandpass Delta-Sigma Modulators: Avoiding Common Mistakes Design of Bandpass Delta-Sigma Modulators: Avoiding Common Mistakes R. Jacob Baker and Vishal Saxena Department of Electrical and Computer Engineering Boise State University 1910 University Dr., ET 201

More information

Summary of Last Lecture

Summary of Last Lecture EE47 Lecture 7 DAC Converters (continued) Dynamic element matching DAC reconstruction filter ADC Converters Sampling Sampling switch considerations Thermal noise due to switch resistance Sampling switch

More information

Administrative. No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed.

Administrative. No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed. Administrative No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed. EECS 247 Lecture 2 Nyquist Rate ADC: Architecture & Design 27 H.K. Page EE247 Lecture 2 ADC Converters Sampling (continued)

More information

Design of Pipeline Analog to Digital Converter

Design of Pipeline Analog to Digital Converter Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analog-to-digital converter (ADC) architecture is the most popular topology

More information

Pipeline vs. Sigma Delta ADC for Communications Applications

Pipeline vs. Sigma Delta ADC for Communications Applications Pipeline vs. Sigma Delta ADC for Communications Applications Noel O Riordan, Mixed-Signal IP Group, S3 Semiconductors noel.oriordan@s3group.com Introduction The Analog-to-Digital Converter (ADC) is a key

More information

EE247 Lecture 11. Switched-Capacitor Filters (continued) Effect of non-idealities Bilinear switched-capacitor filters Filter design summary

EE247 Lecture 11. Switched-Capacitor Filters (continued) Effect of non-idealities Bilinear switched-capacitor filters Filter design summary EE247 Lecture 11 Switched-Capacitor Filters (continued) Effect of non-idealities Bilinear switched-capacitor filters Filter design summary Comparison of various filter topologies Data Converters EECS 247

More information

ADVANCES in VLSI technology result in manufacturing

ADVANCES in VLSI technology result in manufacturing INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2013, VOL. 59, NO. 1, PP. 99 104 Manuscript received January 8, 2013; revised March, 2013. DOI: 10.2478/eletel-2013-0012 Rapid Prototyping of Third-Order

More information

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs Advanced AD/DA converters Overview Why ΔΣ DACs ΔΣ DACs Architectures for ΔΣ DACs filters Smoothing filters Pietro Andreani Dept. of Electrical and Information Technology Lund University, Sweden Advanced

More information

BANDPASS delta sigma ( ) modulators are used to digitize

BANDPASS delta sigma ( ) modulators are used to digitize 680 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 10, OCTOBER 2005 A Time-Delay Jitter-Insensitive Continuous-Time Bandpass 16 Modulator Architecture Anurag Pulincherry, Michael

More information

Band- Pass ΣΔ Architectures with Single and Two Parallel Paths

Band- Pass ΣΔ Architectures with Single and Two Parallel Paths H. Caracciolo, I. Galdi, E. Bonizzoni, F. Maloberti: "Band-Pass ΣΔ Architectures with Single and Two Parallel Paths"; IEEE Int. Symposium on Circuits and Systems, ISCAS 8, Seattle, 18-21 May 8, pp. 1656-1659.

More information

Paper presentation Ultra-Portable Devices

Paper presentation Ultra-Portable Devices Paper presentation Ultra-Portable Devices Paper: Lourans Samid, Yiannos Manoli, A Low Power and Low Voltage Continuous Time Δ Modulator, ISCAS, pp 4066-4069, 23 26 May, 2005. Presented by: Dejan Radjen

More information

3 rd order Sigma-delta modulator with delayed feed-forward path for low-power applications

3 rd order Sigma-delta modulator with delayed feed-forward path for low-power applications 3 rd order Sigma-delta modulator with delayed feed-forward path for low-power applications Min-woong Lee, Seong-ik Cho Electronic Engineering Chonbuk National University 567 Baekje-daero, deokjin-gu, Jeonju-si,

More information

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies A. Pena Perez, V.R. Gonzalez- Diaz, and F. Maloberti, ΣΔ Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies, IEEE Proceeding of Latin American Symposium on Circuits and Systems, Feb.

More information

How to turn an ADC into a DAC: A 110dB THD, 18mW DAC using sampling of the output and feedback to reduce distortion

How to turn an ADC into a DAC: A 110dB THD, 18mW DAC using sampling of the output and feedback to reduce distortion How to turn an ADC into a DAC: A 110dB THD, 18mW DAC using sampling of the output and feedback to reduce distortion Axel Thomsen, Design Manager Silicon Laboratories Inc. Austin, TX 1 Why this talk? A

More information

Materials in this course have been contributed by Fernando Medeiro, José M. de la Rosa, Rocío del Río, Belén Pérez-Verdú and

Materials in this course have been contributed by Fernando Medeiro, José M. de la Rosa, Rocío del Río, Belén Pérez-Verdú and CMOS Sigma-Delta Converters From Basics to State-of-the-Art Circuits and Errors Angel Rodríguez-Vázquez angel@imse.cnm.es Barcelona, 29-30 / Septiembre / 2010 Materials in this course have been contributed

More information

CMOS High Speed A/D Converter Architectures

CMOS High Speed A/D Converter Architectures CHAPTER 3 CMOS High Speed A/D Converter Architectures 3.1 Introduction In the previous chapter, basic key functions are examined with special emphasis on the power dissipation associated with its implementation.

More information

Summary of Last Lecture

Summary of Last Lecture EE247 Lecture 2 ADC Converters (continued) Successive approximation ADCs (continued) Flash ADC Flash ADC sources of error Sparkle code Meta-stability Comparator design EECS 247 Lecture 2: Data Converters

More information

Chapter 2: Digitization of Sound

Chapter 2: Digitization of Sound Chapter 2: Digitization of Sound Acoustics pressure waves are converted to electrical signals by use of a microphone. The output signal from the microphone is an analog signal, i.e., a continuous-valued

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 5: Data Conversion ADC Background/Theory Examples Background Physical systems are typically analogue To apply digital signal processing, the analogue signal

More information

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999 Analog-to-Digital Converter Survey & Analysis Update: July 16,1999 References: 1. R.H. Walden, Analog-to-digital converter survey and analysis, IEEE Journal on Selected Areas in Communications, vol. 17,

More information

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5 FYS3240 PC-based instrumentation and microcontrollers Signal sampling Spring 2015 Lecture #5 Bekkeng, 29.1.2015 Content Aliasing Nyquist (Sampling) ADC Filtering Oversampling Triggering Analog Signal Information

More information

Lecture 9, ANIK. Data converters 1

Lecture 9, ANIK. Data converters 1 Lecture 9, ANIK Data converters 1 What did we do last time? Noise and distortion Understanding the simplest circuit noise Understanding some of the sources of distortion 502 of 530 What will we do today?

More information

A 12 Bit Third Order Continuous Time Low Pass Sigma Delta Modulator for Audio Applications

A 12 Bit Third Order Continuous Time Low Pass Sigma Delta Modulator for Audio Applications ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) IJECT Vo l. 2, Is s u e 4, Oc t. - De c. 2011 A 12 Bit Third Order Continuous Time Low Pass Sigma Delta Modulator for Audio Applications 1 Mohammed Arifuddin

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 12: February 21st, 2017 Data Converters, Noise Shaping (con t) Lecture Outline! Data Converters " Anti-aliasing " ADC " Quantization " Practical DAC! Noise Shaping

More information

Integrated Microsystems Laboratory. Franco Maloberti

Integrated Microsystems Laboratory. Franco Maloberti University of Pavia Integrated Microsystems Laboratory Power Efficient Data Convertes Franco Maloberti franco.maloberti@unipv.it OUTLINE Introduction Managing the noise power budget Challenges of State-of-the-art

More information

THE USE of multibit quantizers in oversampling analogto-digital

THE USE of multibit quantizers in oversampling analogto-digital 966 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 57, NO. 12, DECEMBER 2010 A New DAC Mismatch Shaping Technique for Sigma Delta Modulators Mohamed Aboudina, Member, IEEE, and Behzad

More information

A 102-dB-SNR mixed CT/DT ADC with capacitor digital self-calibration for RC spread compensation

A 102-dB-SNR mixed CT/DT ADC with capacitor digital self-calibration for RC spread compensation Vol. 32, No. 8 Journal of Semiconductors August 2011 A 102-dB-SNR mixed CT/DT ADC with capacitor digital self-calibration for RC spread compensation Liu Yan( 刘岩 ), Hua Siliang( 华斯亮 ), Wang Donghui( 王东辉

More information

Reconfigurable Low-Power Continuous-Time Sigma-Delta Converter for Multi- Standard Applications

Reconfigurable Low-Power Continuous-Time Sigma-Delta Converter for Multi- Standard Applications ECEN-60: Mixed-Signal Interfaces Instructor: Sebastian Hoyos ASSIGNMENT 6 Reconfigurable Low-Power Continuous-Time Sigma-Delta Converter for Multi- Standard Applications ) Please use SIMULINK to design

More information

Lecture 10, ANIK. Data converters 2

Lecture 10, ANIK. Data converters 2 Lecture, ANIK Data converters 2 What did we do last time? Data converter fundamentals Quantization noise Signal-to-noise ratio ADC and DAC architectures Overview, since literature is more useful explaining

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

NOISE IN SC CIRCUITS

NOISE IN SC CIRCUITS ECE37 Advanced Analog Circuits Lecture 0 NOISE IN SC CIRCUITS Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen Understanding of CMOS analog circuit

More information

Basic Concepts and Architectures

Basic Concepts and Architectures CMOS Sigma-Delta Converters From Basics to State-of of-the-art Basic Concepts and Architectures Rocío del Río, R Belén Pérez-Verdú and José M. de la Rosa {rocio,belen,jrosa}@imse.cnm.es KTH, Stockholm,

More information

ANALOG-TO-DIGITAL converters are key components

ANALOG-TO-DIGITAL converters are key components IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 1, JANUARY 1998 45 A Nyquist-Rate Delta Sigma A/D Converter Eric T. King, Aria Eshraghi, Member, IEEE, Ian Galton, Member, IEEE, and Terri S. Fiez, Senior

More information

Tuesday, March 22nd, 9:15 11:00

Tuesday, March 22nd, 9:15 11:00 Nonlinearity it and mismatch Tuesday, March 22nd, 9:15 11:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Last time and today, Tuesday 22nd of March:

More information

Two- Path Band- Pass Σ- Δ Modulator with 40- MHz IF 72- db DR at 1- MHz Bandwidth Consuming 16 mw

Two- Path Band- Pass Σ- Δ Modulator with 40- MHz IF 72- db DR at 1- MHz Bandwidth Consuming 16 mw I. Galdi, E. Bonizzoni, F. Maloberti, G. Manganaro, P. Malcovati: "Two-Path Band- Pass Σ-Δ Modulator with 40-MHz IF 72-dB DR at 1-MHz Bandwidth Consuming 16 mw"; 33rd European Solid State Circuits Conf.,

More information

EE247 Lecture 17. EECS 247 Lecture 17: Data Converters 2006 H.K. Page 1. Summary of Last Lecture

EE247 Lecture 17. EECS 247 Lecture 17: Data Converters 2006 H.K. Page 1. Summary of Last Lecture EE47 Lecture 7 DAC Converters (continued) DAC dynamic non-idealities DAC design considerations Self calibration techniques Current copiers Dynamic element matching DAC reconstruction filter ADC Converters

More information

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2017 Lecture #5

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2017 Lecture #5 FYS3240 PC-based instrumentation and microcontrollers Signal sampling Spring 2017 Lecture #5 Bekkeng, 30.01.2017 Content Aliasing Sampling Analog to Digital Conversion (ADC) Filtering Oversampling Triggering

More information

AN ABSTRACT OF THE THESIS OF. Title: Effects and Compensation of the Analog Integrator Nonidealities in Dual- GAL- C. Temes

AN ABSTRACT OF THE THESIS OF. Title: Effects and Compensation of the Analog Integrator Nonidealities in Dual- GAL- C. Temes AN ABSTRACT OF THE THESIS OF Yaohua Yang for the degree of Master of Science in Electrical & Computer Engineering presented on February 20, 1993. Title: Effects and Compensation of the Analog Integrator

More information

National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer

National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer Kaustubh Wagle and Niels Knudsen National Instruments, Austin, TX Abstract Single-bit delta-sigma

More information

Lecture Outline. ESE 531: Digital Signal Processing. Anti-Aliasing Filter with ADC ADC. Oversampled ADC. Oversampled ADC

Lecture Outline. ESE 531: Digital Signal Processing. Anti-Aliasing Filter with ADC ADC. Oversampled ADC. Oversampled ADC Lecture Outline ESE 531: Digital Signal Processing Lec 12: February 21st, 2017 Data Converters, Noise Shaping (con t)! Data Converters " Anti-aliasing " ADC " Quantization "! Noise Shaping 2 Anti-Aliasing

More information

Data Converters. Oversampling and Low-Order ΔΣ Modulators. Overview. Speed vs. accuracy of ADCs. Principle of oversampling. Principle of oversampling

Data Converters. Oversampling and Low-Order ΔΣ Modulators. Overview. Speed vs. accuracy of ADCs. Principle of oversampling. Principle of oversampling Data Converters Overview Principle of oversampling Oversampling and Low-Order ΔΣ Modulators Noise shaping st -order ΔΣ modulator nd -order ΔΣ modulator Pietro Andreani Dept. of Electrical and Information

More information

System-on-Chip. Oversampling and Low-Order ΔΣ Modulators. Overview. Principle of oversampling. Speed vs. accuracy of ADCs. Principle of oversampling

System-on-Chip. Oversampling and Low-Order ΔΣ Modulators. Overview. Principle of oversampling. Speed vs. accuracy of ADCs. Principle of oversampling System-on-Chip Overview Principle of oversampling Oversampling and Low-Order ΔΣ Modulators Noise shaping st -order ΣΔ modulator nd -order ΣΔ modulator Pietro Andreani Dept. of Electrical and Information

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 11: February 20, 2018 Data Converters, Noise Shaping Lecture Outline! Review: Multi-Rate Filter Banks " Quadrature Mirror Filters! Data Converters " Anti-aliasing

More information

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters 0 Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters F. Maloberti University of Pavia - Italy franco.maloberti@unipv.it 1 Introduction Summary Sigma-Delta

More information

LOW SAMPLING RATE OPERATION FOR BURR-BROWN

LOW SAMPLING RATE OPERATION FOR BURR-BROWN LOW SAMPLING RATE OPERATION FOR BURR-BROWN TM AUDIO DATA CONVERTERS AND CODECS By Robert Martin and Hajime Kawai PURPOSE This application bulletin describes the operation and performance of Burr-Brown

More information

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns 1224 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 12, DECEMBER 2008 Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A.

More information

On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators

On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators By Du Yun Master Degree in Electrical and Electronics Engineering 2013 Faculty of Science and Technology University

More information

! Multi-Rate Filter Banks (con t) ! Data Converters. " Anti-aliasing " ADC. " Practical DAC. ! Noise Shaping

! Multi-Rate Filter Banks (con t) ! Data Converters.  Anti-aliasing  ADC.  Practical DAC. ! Noise Shaping Lecture Outline ESE 531: Digital Signal Processing! (con t)! Data Converters Lec 11: February 16th, 2017 Data Converters, Noise Shaping " Anti-aliasing " ADC " Quantization "! Noise Shaping 2! Use filter

More information

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45 INF440 Noise and Distortion Jørgen Andreas Michaelsen Spring 013 1 / 45 Outline Noise basics Component and system noise Distortion Spring 013 Noise and distortion / 45 Introduction We have already considered

More information

Low-Voltage Low-Power Switched-Current Circuits and Systems

Low-Voltage Low-Power Switched-Current Circuits and Systems Low-Voltage Low-Power Switched-Current Circuits and Systems Nianxiong Tan and Sven Eriksson Dept. of Electrical Engineering Linköping University S-581 83 Linköping, Sweden Abstract This paper presents

More information

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

EE247 Lecture 11. Example: Switched-capacitor filters in CODEC integrated circuits. Switched-capacitor filter design summary

EE247 Lecture 11. Example: Switched-capacitor filters in CODEC integrated circuits. Switched-capacitor filter design summary EE47 Lecture 11 Filters (continued) Example: Switched-capacitor filters in CODEC integrated circuits Switched-capacitor filter design summary Comparison of various filter topologies New Topic: Data Converters

More information