1.0 Folded-Cascode OTA

Size: px
Start display at page:

Download "1.0 Folded-Cascode OTA"

Transcription

1 1.0 Folded-Cascode OTA DD DD IL IB o bias M2 i M1 M2 bias o i M1 IL (a) Telescopic Cascode (b) Folded Cascode g m2 gs2 G1 D1 S2 D2 i g m1 i g ds1 g mb2 bs2 g ds2 g IL o S1 (c) Equivalent Circuit of Telescopic Cascode g m2 gs2 G1 D1 S2 D2 i g m1 i g ds1 g IB g mb2 bs2 g ds2 g IL o S1 (d) Equivalent Circuit of Folded Cascode 1

2 DD b1 i M1 M2 b2 o b3 M3 b4 M4 Folded Cascode With Cascode Load 2

3 MB1 T0 + dd2.5 MB2 MB3 b11.2 R* MB0 (Wp/Lp)/n T + T + n (m2) MB4 MB5 b20.53 MB5 MB4 (Wn/Ln)/n MB0 T + n (m3) T + MB1 b MB2 T0 + MB3 b ss-2.5 R*380k (external resistor, adjusted to achieve the desired bias voltages as shown) (Wn/Ln)(18L/6L) (Wn/Ln)/7(6L/14L) (Wp/Lp)(54L/6L) (Wp/Lp)/7(9L/7L) Where the divisor n7 3

4 dd2.5 b1 b2 M4 T + M3 M6 M5 M8 M7 + in - b3 M1 M1 M3 T + M2 M2 M5 M7 o b4 T0 + M4 *OTE: All transistors are 3 -terminal type (D,G,S) with MOS bulk (B) connected to SS, and MOS bulk (B) connected to DD M6 ss-2.5 (Wn/Ln)(18L/6L) (Wp/Lp)(54L/6L) M8 * Filename"wsotadc1.cir" * Wide-swing OTA * Simulation using subckt * MOS input stage > poor negative CMR * OTA inputs in 1 0 DC 0 Xwsota WSOTA.SUBCKT WSOTA in+ in- out * ower supplies DD vdd 0 DC 2.5 SS vss 0 DC -2.5 * WminLmin6 Lambda for linear analog circuit.aram Wn10.8U, Ln3.6U.ARAM Wp32.4U, Lp3.6U.ARAM Wn73.6U, Ln78.4U.ARAM Wp75.4U, Lp74.2U.ARAM IB10UA * Biasing Circuit to generates vb1, vb2, vb3, vb4 MB1 vb1 vb1 vdd vdd MOS1 W{Wp} L{Lp} 4

5 MB2 m1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB3 vb2 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB4 m3 m2 m1 vdd MOS1 W{Wp} L{Lp} MB5 vss m2 vb2 vb2 MOS1 W{Wp} L{Lp} MB0 m2 m2 vb1 vb1 MOS1 W{Wp7} L{Lp7} MB0 m3 m3 vb4 vss MOS1 W{Wn7} L{Ln7} MB1 vdd m3 vb3 vss MOS1 W{Wn} L{Ln} MB2 vb4 vb4 vss vss MOS1 W{Wn} L{Ln} MB3 vb3 vb4 vss vss MOS1 W{Wn} L{Ln} ISS m2 vss {IB} * Wide Swing OTA Implementation M1 n1 in+ n3 vss MOS1 W{Wn} L{Ln} M2 n2 in- n3 vss MOS1 W{Wn} L{Ln} M3 n3 vb3 n7 vss MOS1 W{Wn} L{Ln} M4 n7 vb4 vss vss MOS1 W{Wn} L{Ln} M5 n4 vb3 n5 vss MOS1 W{Wn} L{Ln} M7 out vb3 n6 vss MOS1 W{Wn} L{Ln} M6 n5 n4 vss vss MOS1 W{Wn} L{Ln} M8 n6 n4 vss vss MOS1 W{Wn} L{Ln} M6 n1 vb1 vdd vdd MOS1 W{Wp} L{Lp} M8 n2 vb1 vdd vdd MOS1 W{Wp} L{Lp} M5 n4 vb2 n1 vdd MOS1 W{Wp} L{Lp} M7 out vb2 n2 vdd MOS1 W{Wp} L{Lp}.EDS.MODEL MOS1 MOS TO1 K40U + GAMMA1.0 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS1 MOS TO-1 K15U + GAMMA0.6 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0200 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 * Analysis.DC in ROBE.ED 5

6 6

7 b1 T0 + M4 dd2.5 M6 M8 b2 T + M3 M5 M7 + in - b3 M1 M2 M5 M7 o b4 *OTE: All transistors are 3 -terminal type (D,G,S) with MOS bulk (B) connected to SS, and MOS bulk (B) connected to DD M6 ss-2.5 (Wn/Ln)(18L/6L) (Wp/Lp)(54L/6L) M8 * Filename"wsotadc2.cir" * Wide-swing OTA * Simulation using subckt * MOS input stage>poor positive input CMR * OTA inputs in 1 0 DC 0 Xwsota WSOTA *Xwsota WSOTA *S 3 0 DC 0.SUBCKT WSOTA in+ in- out * ower supplies DD vdd 0 DC 2.5 SS vss 0 DC -2.5 * WminLmin6 Lambda for linear analog circuit.aram Wn10.8U, Ln3.6U.ARAM Wp32.4U, Lp3.6U.ARAM Wn73.6U, Ln78.4U.ARAM Wp75.4U, Lp74.2U.ARAM IB10UA 7

8 * Biasing Circuit to generates vb1, vb2, vb3, vb4 MB1 vb1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB2 m1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB3 vb2 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB4 m3 m2 m1 vdd MOS1 W{Wp} L{Lp} MB5 vss m2 vb2 vb2 MOS1 W{Wp} L{Lp} MB0 m2 m2 vb1 vb1 MOS1 W{Wp7} L{Lp7} MB0 m3 m3 vb4 vss MOS1 W{Wn7} L{Ln7} MB1 vdd m3 vb3 vss MOS1 W{Wn} L{Ln} MB2 vb4 vb4 vss vss MOS1 W{Wn} L{Ln} MB3 vb3 vb4 vss vss MOS1 W{Wn} L{Ln} ISS m2 vss {IB} * Wide Swing OTA Implementation M5 n4 vb3 n5 vss MOS1 W{Wn} L{Ln} M7 out vb3 n6 vss MOS1 W{Wn} L{Ln} M6 n5 n4 vss vss MOS1 W{Wn} L{Ln} M8 n6 n4 vss vss MOS1 W{Wn} L{Ln} M6 n1 vb1 vdd vdd MOS1 W{Wp} L{Lp} M8 n2 vb1 vdd vdd MOS1 W{Wp} L{Lp} M5 n4 vb2 n1 vdd MOS1 W{Wp} L{Lp} M7 out vb2 n2 vdd MOS1 W{Wp} L{Lp} M1 n5 in+ n8 vdd MOS1 W{Wp} L{Lp} M2 n6 in- n8 vdd MOS1 W{Wp} L{Lp} M4 n9 vb1 vdd vdd MOS1 W{Wp} L{Lp} M3 n8 vb2 n9 vdd MOS1 W{Wp} L{Lp}.EDS.MODEL MOS1 MOS TO1 K40U + GAMMA1.0 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS1 MOS TO-1 K15U + GAMMA0.6 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0200 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 * Analysis.DC in ROBE.ED 8

9 2.0 Wide-Swing Folded-Cascode OTA The problem with differential amplifier with nmos input pair is that the positive CMR extends beyond DD, while the negative CMR is limited by the minimum voltage across the differential input. On the other hand the problem with differential amplifier with pmos input pair is that the positive CMR is limited by the minimum voltage across the differential input, while the negative CMR extend beyond SS. Figure 2 shows a wide-swing differential amplifier which extends the input CMR beyond the power supply rails by combining both the nmos and pmos input pairs differential amplifiers. The circuit utilized foldedcascode load to increase the output impedance to approach, the output impedance of ideal OTA. To increase the output impedance, (W/L)n3 and (W/L)p3*(W/L)n9 are chosen. To reduce the effect of length modulation (2*DL)1u, the minumum length L6u is chosen. Figure 1 shows the biasing circuit which generates the four biasing voltages for the wide-swing folded-cascode OTA. This biasing circuit has been discuss earlier. In the ideal case of ignoring the bulk effects, the ratio needed to achieve the desired biasing voltages is ¼. But with the bulk effects included this ratio needs to be adjusted to guarantee that a 1 current flows in M3, M4, M3, M4. Experimentation with the given circuit, the best ratio was found to be 1/7. The circuit was simulated to determine its specification: A 93,560 R o 1.095G G m A /R o 85.44u This transconductance value of 85.44u was used in all the examples, so that the response of both the ideal OTA and actual OTA implementations can be compared. The wide-swing characteristic is simulated by applying input ranging from 3.5v to 3.5v with a power rails of 2.5v and 2.5v.The wide swing characteristic is important when designing filter circuit with high Q in cascaded filter implementation, 1 Filenamewsota.doc 9

10 where the output of one stage is the input of the next stage. The high Q stage could easily drive the output voltage beyond the power rails. MB1 T0 + dd2.5 MB2 MB3 b1 MB0 (Wp/Lp)/n T + T + n (m2) MB4 MB5 b2 R MB5 MB4 (Wn/Ln)/n MB0 T + n (m3) T + MB1 b3 MB2 T0 + MB3 b4 ss-2.5 (Wn/Ln)(18L/6L) (Wn/Ln)/7(6L/14L) (Wp/Lp)(54L/6L) (Wp/Lp)/7(9L/7L) Where the divisor n7 Figure 1. Biasing circuit for the wide-swing folded-cascode OTA. 10

11 b1 b2 T0 + M4 T + M3 dd2.5 M6 M5 M8 M7 + in - b3 M1 M1 M3 T + M2 M2 M5 M7 o b4 T0 + M4 *OTE: All transistors are 3 -terminal type (D,G,S) with MOS bulk (B) connected to SS, and MOS bulk (B) connected to DD M6 ss-2.5 (Wn/Ln)(18L/6L) (Wp/Lp)(54L/6L) M8 Figure 2. Wide-swing folded-cascode OTA 11

12 Wide Swing OTA etlist Wide Swing Single Ended OTA Circuit * Filename "wsotatf.cir" * Wide-swing OTA * Simulation showing all components * WminLmin6 Lambda for linear analog circuit.aram Wn10.8U, Ln3.6U.ARAM Wp32.4U, Lp3.6U.ARAM Wn73.6U, Ln78.4U.ARAM Wp75.4U, Lp74.2U * ower supplies DD vdd 0 DC 2.5 SS vss 0 DC -2.5 * OTA inputs in in+ 0 DC 0 AC 1 b in- 0 DC 0 * Biasing Circuit to generates vb1, vb2, vb3, vb4 MB1 vb1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB2 m1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB3 vb2 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB4 m3 m2 m1 vdd MOS1 W{Wp} L{Lp} MB5 vss m2 vb2 vdd MOS1 W{Wp} L{Lp} MB0 m2 m2 vb1 vdd MOS1 W{Wp7} L{Lp7} MB0 m3 m3 vb4 vss MOS1 W{Wn7} L{Ln7} MB1 vdd m3 vb3 vss MOS1 W{Wn} L{Ln} MB2 vb4 vb4 vss vss MOS1 W{Wn} L{Ln} MB3 vb3 vb4 vss vss MOS1 W{Wn} L{Ln} ISS m2 vss * Wide Swing OTA Implementation M1 n1 in+ n3 vss MOS1 W{Wn} L{Ln} M2 n2 in- n3 vss MOS1 W{Wn} L{Ln} M5 n4 vb3 n5 vss MOS1 W{Wn} L{Ln} M7 3 vb3 n6 vss MOS1 W{Wn} L{Ln} M6 n5 n4 vss vss MOS1 W{Wn} L{Ln} M8 n6 n4 vss vss MOS1 W{Wn} L{Ln} M3 n3 vb3 n7 vss MOS1 W{Wn} L{Ln} M4 n7 vb4 vss vss MOS1 W{Wn} L{Ln} M6 n1 vb1 vdd vdd MOS1 W{Wp} L{Lp} M8 n2 vb1 vdd vdd MOS1 W{Wp} L{Lp} M5 n4 vb2 n1 vdd MOS1 W{Wp} L{Lp} M7 3 vb2 n2 vdd MOS1 W{Wp} L{Lp} M1 n5 in+ n8 vdd MOS1 W{Wp} L{Lp} M2 n6 in- n8 vdd MOS1 W{Wp} L{Lp} M4 n9 vb1 vdd vdd MOS1 W{Wp} L{Lp} M3 n8 vb2 n9 vdd MOS1 W{Wp} L{Lp}.MODEL MOS1 MOS TO1 K40U + GAMMA1.0 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS1 MOS TO-1 K15U + GAMMA0.6 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0200 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 * Analysis.AC DEC 10 1Hz 100MegHz.TF (3) in 12

13 .ROBE.O.ED OTA Frequency Response Theoretical gain calculation of the OTA At the operating point, the biasing currents are shown in Figure λ r r g g R R R g DS DS A m m (7) r (8) r (1) g (1) g O O O m λ g g R g m -g m m O (7)r (7)r //R (1) + g m λ R DS DS m m O (7) (8) (7) (7) O DS DS (7)r (7)r R R m 1 λi 1 λi 2β I 2β I O DSQ7 DSQ8 DS DS O (8) (8) R O + R DSQ DSQ O 1 (0.02)(5E - 6) 1 (0.02)(10E - 6) 2K 2K (W /L (W /L 10E6 (37.947E - 6)(10E6)(5E6) (40.249E - 6)(10E6)(5E6) (1.8935E9)( E9) 1.19E9 (1.8935E9) + ( E9) (1) (40.38E - 6 ) + (43.23E - 6) (83.61E - 6)(1.19E9) 9.9E4 p n 5E6 p n )I )I DSQ DSQ 2(40E - 6)(10.6/(3.6-1))(5E - 6) 2(15E - 6)(32.4/(3.6-1))(5E - 6) E E E - 6 The OTA is simulated, the results shown below are very closed to the calculated one E E

14 **** SMALL-SIGAL CHARACTERISTICS g A R (3)/in 9.356E+04 IUT RESISTACE AT in 1.000E+20 OUTUT RESISTACE AT (3) 1.095E E E9 m O 85.44µ OTA Transfer Characteristic * Filename"wsotadc.cir" * Wide-swing OTA * Simulation using subckt * OTA inputs in 1 0 DC 0 Xwsota WSOTA.SUBCKT WSOTA in+ in- out * ower supplies DD vdd 0 DC 2.5 SS vss 0 DC -2.5 * WminLmin6 Lambda for linear analog circuit.aram Wn10.8U, Ln3.6U.ARAM Wp32.4U, Lp3.6U.ARAM Wn73.6U, Ln78.4U.ARAM Wp75.4U, Lp74.2U.ARAM IB10UA * Biasing Circuit to generates vb1, vb2, vb3, vb4 MB1 vb1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB2 m1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB3 vb2 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB4 m3 m2 m1 vdd MOS1 W{Wp} L{Lp} MB5 vss m2 vb2 vb2 MOS1 W{Wp} L{Lp} MB0 m2 m2 vb1 vb1 MOS1 W{Wp7} L{Lp7} MB0 m3 m3 vb4 vss MOS1 W{Wn7} L{Ln7} MB1 vdd m3 vb3 vss MOS1 W{Wn} L{Ln} MB2 vb4 vb4 vss vss MOS1 W{Wn} L{Ln} MB3 vb3 vb4 vss vss MOS1 W{Wn} L{Ln} ISS m2 vss {IB} * Wide Swing OTA Implementation M1 n1 in+ n3 vss MOS1 W{Wn} L{Ln} M2 n2 in- n3 vss MOS1 W{Wn} L{Ln} M5 n4 vb3 n5 vss MOS1 W{Wn} L{Ln} M7 out vb3 n6 vss MOS1 W{Wn} L{Ln} M6 n5 n4 vss vss MOS1 W{Wn} L{Ln} M8 n6 n4 vss vss MOS1 W{Wn} L{Ln} M3 n3 vb3 n7 vss MOS1 W{Wn} L{Ln} M4 n7 vb4 vss vss MOS1 W{Wn} L{Ln} M6 n1 vb1 vdd vdd MOS1 W{Wp} L{Lp} M8 n2 vb1 vdd vdd MOS1 W{Wp} L{Lp} M5 n4 vb2 n1 vdd MOS1 W{Wp} L{Lp} M7 out vb2 n2 vdd MOS1 W{Wp} L{Lp} M1 n5 in+ n8 vdd MOS1 W{Wp} L{Lp} 14

15 M2 n6 in- n8 vdd MOS1 W{Wp} L{Lp} M4 n9 vb1 vdd vdd MOS1 W{Wp} L{Lp} M3 n8 vb2 n9 vdd MOS1 W{Wp} L{Lp}.EDS.MODEL MOS1 MOS TO1 K40U + GAMMA1.0 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS1 MOS TO-1 K15U + GAMMA0.6 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0200 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 * Analysis.DC in ROBE.ED Biasing The OTA Circuit The goal of the biasing circuit shown in Figure 11 is to generate the biasing voltages needed by the OTA circuit shown in Figure 12 so that the gate to source voltages of the four transistors M3, M4, M3, M4 are as shown.to generate the same current. That is, I D (3) I T D (4) I T0 D (3) I ( D T (4) ) ( T0 ) ; since T0 T0 Transistor M3 and M3 both have non-zero bulk to source voltage. Hence their threshold voltages increase. These values are computed as follows: 15

16 BS T BS T (3) (3) - (3) (3) (3) - (3) T0 T0 B + γ ( B γ ( φ S S φ + BS BS φ ) DD SS φ ) ( T0 ( T0 SS + γ ( DD + γ ( φ ) φ ) φ ) 1+ 1( φ ) 1 1( ) ) 1.19 The value of the biasing voltage can now be calculated from the OTA circuit. b4 b3 b2 b1 T0 T DD DD + T0 + + SS T ( 2.5) SS (0.34) + ( 2.5) DD + T ( ) ( 0.34) 0.82 The biasing circuit must determine the value of the divisor n to achieve the desired biasing voltages. b4 and b1 are satisfied by selecting the same transistor size as that of the OTA circuit. For b3 and b2, the value of n must be determined to achieve the biasing voltages. The voltage on the biasing circuit side is determined and equated to the corresponding required OTA bias voltage. This is illustrated as follows: n ( ) + n + b3 SS T0 Equating with corresponing equation in the OTA side, one obtains ( T0 + n 2) n T n + T0 T SS T T0 T + 2( ) SS T Similarly, b2 on both sides are equated to obtain n, this value should the same as that obtain for b3. T0 ss b2 DD + T0 + T + n - ( T ) DD + T0 + n Equating with corresponing equation in the OTA side, one obtains ( DD + n 2) n T T0 + n T0 T T0 DD + T + 2( ( 1) ) Figure 11 uses n7 in the final implementation. The circuit using the subckt netlist of OTA in wsotatf.cir is simulated to show the internal node voltages. These voltages are shown below: ODE OLTAGE ODE OLTAGE ODE OLTAGE ODE OLTAGE 16

17 ( 3) ( m1) ( m2) ( m3) ( n1) ( n2) ( n3) ( n4) ( n5) ( n6) ( n7) ( n8) ( n9) ( in+) ( in-) ( vb1) ( vb2).7197 ( vb3) ( vb4) ( vdd) ( vss) The desired and actual biasing voltages are compared in the following table: Biasing oltage Desired alue Actual alue with n7 b b b b i - I1 G 1 m1 + + C1 G m2 - I2 o C (a) Ftype L i 0 0 H 0 0 i B 0 i 0 BR i 0 i (b) Actual 2 OTAs Circuit Implementation etlist *Filename "univ2_a2.cir" *Biquad 2nd order filter. fo100k 17

18 in 1 0 DC 0 AC 1 *L *Xs2flt S2FLT *H *Xs2flt S2FLT *B *Xs2flt S2FLT *BR Xs2flt S2FLT.SUBCKT S2FLT v1 v2 v3 v0.aram C135.98pF.ARAM Q Xota1 v1 v0 n2 WSOTA Xota2 n2 v0 v0 WSOTA C1 n2 v2 {C/Q} IC0 C2 v0 v3 {Q*C} IC0.EDS.SUBCKT WSOTA in+ in- out * ower supplies DD vdd 0 DC 2.5 SS vss 0 DC -2.5 * WminLmin6 Lambda for linear analog circuit.aram Wn10.8U, Ln3.6U.ARAM Wp32.4U, Lp3.6U.ARAM Wn73.6U, Ln78.4U.ARAM Wp75.4U, Lp74.2U.ARAM IB10UA * Biasing Circuit to generates vb1, vb2, vb3, vb4 MB1 vb1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB2 m1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB3 vb2 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB4 m3 m2 m1 vdd MOS1 W{Wp} L{Lp} MB5 vss m2 vb2 vb2 MOS1 W{Wp} L{Lp} MB0 m2 m2 vb1 vb1 MOS1 W{Wp7} L{Lp7} MB0 m3 m3 vb4 vss MOS1 W{Wn7} L{Ln7} MB1 vdd m3 vb3 vss MOS1 W{Wn} L{Ln} MB2 vb4 vb4 vss vss MOS1 W{Wn} L{Ln} MB3 vb3 vb4 vss vss MOS1 W{Wn} L{Ln} ISS m2 vss {IB} * Wide Swing OTA Implementation M1 n1 in+ n3 vss MOS1 W{Wn} L{Ln} M2 n2 in- n3 vss MOS1 W{Wn} L{Ln} M5 n4 vb3 n5 vss MOS1 W{Wn} L{Ln} M7 out vb3 n6 vss MOS1 W{Wn} L{Ln} M6 n5 n4 vss vss MOS1 W{Wn} L{Ln} M8 n6 n4 vss vss MOS1 W{Wn} L{Ln} M3 n3 vb3 n7 vss MOS1 W{Wn} L{Ln} M4 n7 vb4 vss vss MOS1 W{Wn} L{Ln} M6 n1 vb1 vdd vdd MOS1 W{Wp} L{Lp} M8 n2 vb1 vdd vdd MOS1 W{Wp} L{Lp} M5 n4 vb2 n1 vdd MOS1 W{Wp} L{Lp} M7 out vb2 n2 vdd MOS1 W{Wp} L{Lp} M1 n5 in+ n8 vdd MOS1 W{Wp} L{Lp} M2 n6 in- n8 vdd MOS1 W{Wp} L{Lp} M4 n9 vb1 vdd vdd MOS1 W{Wp} L{Lp} M3 n8 vb2 n9 vdd MOS1 W{Wp} L{Lp} 18

19 .EDS.MODEL MOS1 MOS TO1 K40U + GAMMA1.0 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS1 MOS TO-1 K15U + GAMMA0.6 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0200 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 * Analysis.AC DEC 100 1Hz 100MegHz.ROBE.ED i - G m1 + + C 1 G m2 - C 2 - G m3 + o (a) Ftype L i 0 0 H 0 i 0 B 0 0 i BR i i 0 (b) Actual 3 OTAs Circuit Implementation etlist *Filename "univ2_a3.cir" *Biquad 2nd order filter. fo100k in 1 0 DC 0 AC 1 *L *Xs3flt S3FLT *H *Xs3flt S3FLT *B *Xs3flt S3FLT *BR Xs3flt S3FLT.SUBCKT S3FLT v1 v2 v3 v0 19

20 .ARAM C135.98pF Xota1 v1 v0 n2 WSOTA Xota2 n2 0 v0 WSOTA Xota3 v3 v0 v0 WSOTA1 C1 n2 0 {C} IC0 C2 v0 v2 {C} IC0.EDS.SUBCKT WSOTA in+ in- out * ower supplies DD vdd 0 DC 2.5 SS vss 0 DC -2.5 * WminLmin6 Lambda for linear analog circuit.aram Wn10.8U, Ln3.6U.ARAM Wp32.4U, Lp3.6U.ARAM Wn73.6U, Ln78.4U.ARAM Wp75.4U, Lp74.2U.ARAM IB10UA * Biasing Circuit to generates vb1, vb2, vb3, vb4 MB1 vb1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB2 m1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB3 vb2 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB4 m3 m2 m1 vdd MOS1 W{Wp} L{Lp} MB5 vss m2 vb2 vb2 MOS1 W{Wp} L{Lp} MB0 m2 m2 vb1 vb1 MOS1 W{Wp7} L{Lp7} MB0 m3 m3 vb4 vss MOS1 W{Wn7} L{Ln7} MB1 vdd m3 vb3 vss MOS1 W{Wn} L{Ln} MB2 vb4 vb4 vss vss MOS1 W{Wn} L{Ln} MB3 vb3 vb4 vss vss MOS1 W{Wn} L{Ln} ISS m2 vss {IB} * Wide Swing OTA Implementation M1 n1 in+ n3 vss MOS1 W{Wn} L{Ln} M2 n2 in- n3 vss MOS1 W{Wn} L{Ln} M5 n4 vb3 n5 vss MOS1 W{Wn} L{Ln} M7 out vb3 n6 vss MOS1 W{Wn} L{Ln} M6 n5 n4 vss vss MOS1 W{Wn} L{Ln} M8 n6 n4 vss vss MOS1 W{Wn} L{Ln} M3 n3 vb3 n7 vss MOS1 W{Wn} L{Ln} M4 n7 vb4 vss vss MOS1 W{Wn} L{Ln} M6 n1 vb1 vdd vdd MOS1 W{Wp} L{Lp} M8 n2 vb1 vdd vdd MOS1 W{Wp} L{Lp} M5 n4 vb2 n1 vdd MOS1 W{Wp} L{Lp} M7 out vb2 n2 vdd MOS1 W{Wp} L{Lp} M1 n5 in+ n8 vdd MOS1 W{Wp} L{Lp} M2 n6 in- n8 vdd MOS1 W{Wp} L{Lp} M4 n9 vb1 vdd vdd MOS1 W{Wp} L{Lp} M3 n8 vb2 n9 vdd MOS1 W{Wp} L{Lp}.EDS.SUBCKT WSOTA1 in+ in- out * ower supplies DD vdd 0 DC 2.5 SS vss 0 DC -2.5 * WminLmin6 Lambda for linear analog circuit.aram Wn10.8U, Ln3.6U.ARAM Wp32.4U, Lp3.6U.ARAM Wn73.6U, Ln78.4U.ARAM Wp75.4U, Lp74.2U.ARAM IB3.8UA 20

21 * Biasing Circuit to generates vb1, vb2, vb3, vb4 MB1 vb1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB2 m1 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB3 vb2 vb1 vdd vdd MOS1 W{Wp} L{Lp} MB4 m3 m2 m1 vdd MOS1 W{Wp} L{Lp} MB5 vss m2 vb2 vb2 MOS1 W{Wp} L{Lp} MB0 m2 m2 vb1 vb1 MOS1 W{Wp7} L{Lp7} MB0 m3 m3 vb4 vss MOS1 W{Wn7} L{Ln7} MB1 vdd m3 vb3 vss MOS1 W{Wn} L{Ln} MB2 vb4 vb4 vss vss MOS1 W{Wn} L{Ln} MB3 vb3 vb4 vss vss MOS1 W{Wn} L{Ln} ISS m2 vss {IB} * Wide Swing OTA Implementation M1 n1 in+ n3 vss MOS1 W{Wn} L{Ln} M2 n2 in- n3 vss MOS1 W{Wn} L{Ln} M5 n4 vb3 n5 vss MOS1 W{Wn} L{Ln} M7 out vb3 n6 vss MOS1 W{Wn} L{Ln} M6 n5 n4 vss vss MOS1 W{Wn} L{Ln} M8 n6 n4 vss vss MOS1 W{Wn} L{Ln} M3 n3 vb3 n7 vss MOS1 W{Wn} L{Ln} M4 n7 vb4 vss vss MOS1 W{Wn} L{Ln} M6 n1 vb1 vdd vdd MOS1 W{Wp} L{Lp} M8 n2 vb1 vdd vdd MOS1 W{Wp} L{Lp} M5 n4 vb2 n1 vdd MOS1 W{Wp} L{Lp} M7 out vb2 n2 vdd MOS1 W{Wp} L{Lp} M1 n5 in+ n8 vdd MOS1 W{Wp} L{Lp} M2 n6 in- n8 vdd MOS1 W{Wp} L{Lp} M4 n9 vb1 vdd vdd MOS1 W{Wp} L{Lp} M3 n8 vb2 n9 vdd MOS1 W{Wp} L{Lp}.EDS.MODEL MOS1 MOS TO1 K40U + GAMMA1.0 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS1 MOS TO-1 K15U + GAMMA0.6 LAMBDA0.02 HI0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW10E-10 + U0200 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 * Analysis.AC DEC 100 1Hz 100MegHz.ROBE.ED Frequency Response of Actual OTA Circuit Implementation 21

22 Implemented Second Order Lowpass Filter Response Implemented Second Order Highpass Filter Response 22

23 Implemented Second Order Bandpass Response Implemented Second Order Bandreject Response 23

Lab 8: 2 nd Order Universal Filter Design

Lab 8: 2 nd Order Universal Filter Design Lab 8: 2 nd Order Universal Filter Design Wide-Swing Folded-Cascode OTA Biasing Circuit MPB1 V TP0 + Vdd=2.5V V P MPB2 MPB3 Vb1=1.3122 MPB0 (Wp/Lp)/n R=360k V TP + V P V TP + n V P (m2) MPB4 MPB5 Vb2=0.7738

More information

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 Objective: The objective of this laboratory experiment is to become more familiar with the operation of

More information

The basic inverter circuit or common-source amplifier using a resistive load is shown in Figure 1. source s

The basic inverter circuit or common-source amplifier using a resistive load is shown in Figure 1. source s of 0 MOS FET Inverter Amplifier The basic inverter circuit or common-source amplifier using a resistive load is shown in Figure. g d Io gate R L drain in in rds R L out out in source s Figure Common-source

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 Rail-to to-rail OTA 1 Rail-to-rail CMOS op amp Generally, rail-to-rail amplifiers are useful in low-voltage applications, where it is necessary to efficiently use the limited span offered by the power

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

EECS3611 Analog Integrated Circuit Design. Lecture 3. Current Source and Current Mirror

EECS3611 Analog Integrated Circuit Design. Lecture 3. Current Source and Current Mirror EECS3611 Analog ntegrated Circuit Design Lecture 3 Current Source and Current Mirror ntroduction Before any device can be used in any application, it has to be properly biased so that small signal AC parameters

More information

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Objective To analyze and design single-stage common source amplifiers.

More information

EEEE 381 Electronics I

EEEE 381 Electronics I EEEE 381 Electronics I Lab #5: Two-Stage CMOS Op-Amp Oeriew In this lab we will expand on the work done in Lab #4, which introduced the actiely-loaded differential pair. A second stage that is comprised

More information

SKEL 4283 Analog CMOS IC Design Current Mirrors

SKEL 4283 Analog CMOS IC Design Current Mirrors SKEL 4283 Analog CMOS IC Design Current Mirrors Dr. Nasir Shaikh Husin Faculty of Electrical Engineering Universiti Teknologi Malaysia Current Mirrors 1 Objectives Introduce and characterize the current

More information

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers Chapter 4 CMOS Cascode Amplifiers 4.1 Introduction A single stage CMOS amplifier cannot give desired dc voltage gain, output resistance and transconductance. The voltage gain can be made to attain higher

More information

Session 2 MOS Transistor for RF Circuits

Session 2 MOS Transistor for RF Circuits Session 2 MOS Transistor for RF Circuits Session Speaker Chandramohan P. Session Contents MOS transistor basics MOS equivalent circuit Single stage amplifiers Opamp design Session objectives To understand

More information

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption IEEE Transactions on circuits and systems- Vol 59 No:3 March 2012 Abstract A class AB audio amplifier is used to drive

More information

Low voltage, low power, bulk-driven amplifier

Low voltage, low power, bulk-driven amplifier University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2009 Low voltage, low power, bulk-driven amplifier Shama Huda University

More information

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages Outline Common drain amplifier Common gate amplifier Reading Assignment: Howe and Sodini; Chapter 8, Sections 8.78.9 6.02 Spring 2009 . Common

More information

A Fully Differential Transconductance Amplifier. --EE240 final project, Spring 2001

A Fully Differential Transconductance Amplifier. --EE240 final project, Spring 2001 A Fully Differential Transconductance Amplifier --EE40 final project, Spring 00 Shiying Xiong (xiongsy@eecs.berkeley.edu) Min She(mshe@tft.eecs.berkeley.edu) Department of Electrical Engineering and omputer

More information

Common Gate Stage Cascode Stage. Claudio Talarico, Gonzaga University

Common Gate Stage Cascode Stage. Claudio Talarico, Gonzaga University Common Gate Stage Cascode Stage Claudio Talarico, Gonzaga University Common Gate Stage The overdrive due to V B must be consistent with the current pulled by the DC source I B careful with signs: v gs

More information

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design

More information

Review Sheet for Midterm #2

Review Sheet for Midterm #2 Review Sheet for Midterm #2 Brian Bircumshaw brianb@eecs.berkeley.edu 1 Miterm #1 Review See Table 1 on the following page for a list of the most important equations you should know from Midterm #1. 2

More information

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 11-1 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of

More information

MOS Inverters Dr. Lynn Fuller Webpage:

MOS Inverters Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MOS Inverters Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Email: Lynn.Fuller@rit.edu

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

Operational Amplifiers

Operational Amplifiers CHAPTER 9 Operational Amplifiers Analog IC Analysis and Design 9- Chih-Cheng Hsieh Outline. General Consideration. One-Stage Op Amps / Two-Stage Op Amps 3. Gain Boosting 4. Common-Mode Feedback 5. Input

More information

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN Name: EXAM #3 Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit. Data: Use the following data in all

More information

Analysis and Design of Analog Integrated Circuits Lecture 8. Cascode Techniques

Analysis and Design of Analog Integrated Circuits Lecture 8. Cascode Techniques Analysis and Design of Analog Integrated Circuits Lecture 8 Cascode Techniques Michael H. Perrott February 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Review of Large Signal Analysis

More information

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and Lecture 16: MOS Transistor models: Linear models, SPICE models Context In the last lecture, we discussed the MOS transistor, and added a correction due to the changing depletion region, called the body

More information

ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

More information

EE 140 HW7 SOLUTION 1. OPA334. a. From the data sheet, we see that. Vss 0.1V Vcm Vdd 1.5V

EE 140 HW7 SOLUTION 1. OPA334. a. From the data sheet, we see that. Vss 0.1V Vcm Vdd 1.5V EE 140 HW7 SOLUTION 1. OPA334 a. From the data sheet, we see that Vss 0.1V Vcm Vdd 1.5V The input common mode voltage must remain at least 1.5V below vdd. The input common mode voltage can be below Vss.

More information

Microelectronics Part 2: Basic analog CMOS circuits

Microelectronics Part 2: Basic analog CMOS circuits GBM830 Dispositifs Médicaux Intelligents Microelectronics Part : Basic analog CMOS circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim!! http://www.cours.polymtl.ca/gbm830/! mohamad.sawan@polymtl.ca!

More information

Lossy and Lossless Current-mode Integrators using CMOS Current Mirrors

Lossy and Lossless Current-mode Integrators using CMOS Current Mirrors International Journal of Engineering Research and Development e-issn: 2278-67X, p-issn: 2278-8X, www.ijerd.com Volume 9, Issue 3 (December 23), PP. 34-4 Lossy and Lossless Current-mode Integrators using

More information

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III Lecture 3 Biasing and Loading Single Stage FET Amplifiers The Building Blocks of Analog Circuits III In this lecture you will learn: Current biasing of circuits Current sources and sinks for CS, CG, and

More information

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages. November 17, 2005

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages. November 17, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 20 1 Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages November 17, 2005 Contents: 1. Common source amplifier (cont.) 2. Common drain

More information

MOS IC Amplifiers. Token Ring LAN JSSC 12/89

MOS IC Amplifiers. Token Ring LAN JSSC 12/89 MO IC Amplifiers MOFETs are inferior to BJTs for analog design in terms of quality per silicon area But MO is the technology of choice for digital applications Therefore, most analog portions of mixed-signal

More information

EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7

EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7 Issued: Friday, Oct. 16, 2015 PROBLEM SET #7 Due (at 8 a.m.): Monday, Oct. 26, 2015, in the EE 140/240A HW box near 125 Cory. 1. A design error has resulted in a mismatch in the circuit of Fig. PS7-1.

More information

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of MOS Amplifiers Common

More information

Advanced OPAMP Design

Advanced OPAMP Design Advanced OPAMP Design Two Stage OPAMP with Cascoding To increase the gain, the idea of cascoding can be combined with the idea of cascading. A two stage amplifier with one stage being cascode is possible.

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Analysis and Design of Analog Integrated Circuits Lecture 6. Current Mirrors

Analysis and Design of Analog Integrated Circuits Lecture 6. Current Mirrors Analysis and Design of Analog Integrated Circuits ecture 6 Current Mirrors Michael H. Perrott February 8, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. From ecture 5: Basic Single-Stage

More information

Lab 4: Supply Independent Current Source Design

Lab 4: Supply Independent Current Source Design Lab 4: Supply Independent Current Source Design Curtis Mayberry EE435 In this lab a current mirror is designed that is robust against variations in the supply voltage. The current mirror is required to

More information

Low-Voltage Rail-to-Rail CMOS Operational Amplifier Design

Low-Voltage Rail-to-Rail CMOS Operational Amplifier Design Electronics and Communications in Japan, Part 2, Vol. 89, No. 12, 2006 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J89-C, No. 6, June 2006, pp. 402 408 Low-Voltage Rail-to-Rail CMOS Operational

More information

TWO AND ONE STAGES OTA

TWO AND ONE STAGES OTA TWO AND ONE STAGES OTA F. Maloberti Department of Electronics Integrated Microsystem Group University of Pavia, 7100 Pavia, Italy franco@ele.unipv.it tel. +39-38-50505; fax. +39-038-505677 474 EE Department

More information

Current Mirrors. Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4-1

Current Mirrors. Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4-1 Current Mirrors Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4- 郭泰豪, Analog C Design, 08 { Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4- 郭泰豪, Analog C Design, 08 { Current Source and Sink Symbol

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 Low power OTA 1 Two-Stage, Miller Op Amp Operating in Weak Inversion Low frequency response: gm1 gm6 Av 0 g g g g A v 0 ds2 ds4 ds6 ds7 I D m, ds D nvt g g I n GB and SR: GB 1 1 n 1 2 4 6 6 7 g 2 2 m1

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers 6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication

More information

Lecture 2, Amplifiers 1. Analog building blocks

Lecture 2, Amplifiers 1. Analog building blocks Lecture 2, Amplifiers 1 Analog building blocks Outline of today's lecture Further work on the analog building blocks Common-source, common-drain, common-gate Active vs passive load Other "simple" analog

More information

Rail-to-Rail Op Amps

Rail-to-Rail Op Amps AMSC/TAMU Rail-to-Rail Op Amps Mb3 Mb4 Ib Vi+ I P Vi- M1 M3 M4 M2 Current Summation and subsequent stages Mb1 I N Mb2 Edgar Sánchez-Sinencio TAMU, AMSC Thanks to Shouli Yan for his valuable input in helping

More information

Low-Voltage Wide Linear Range Tunable Operational Transconductance Amplifier

Low-Voltage Wide Linear Range Tunable Operational Transconductance Amplifier Low-Voltage Wide Linear Range Tunable Operational Transconductance Amplifier A dissertation submitted in partial fulfillment of the requirement for the award of degree of Master of Technology in VLSI Design

More information

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1 Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog

More information

Fundamentos de Electrónica Lab Guide

Fundamentos de Electrónica Lab Guide Fundamentos de Electrónica Lab Guide Field Effect Transistor MOS-FET IST-2016/2017 2 nd Semester I-Introduction These are the objectives: a. n-type MOSFET characterization from the I(U) characteristics.

More information

Lecture 34: Designing amplifiers, biasing, frequency response. Context

Lecture 34: Designing amplifiers, biasing, frequency response. Context Lecture 34: Designing amplifiers, biasing, frequency response Prof J. S. Smith Context We will figure out more of the design parameters for the amplifier we looked at in the last lecture, and then we will

More information

A MOS VLSI Comparator

A MOS VLSI Comparator A MOS VLSI Comparator John Monforte School of Music University of Miami, Coral Gables, FL. USA Jayant Datta Department of Electrical Engineering University of Miami, Coral Gables, FL. USA ABSTRACT A comparator

More information

ECE315 / ECE515 Lecture 7 Date:

ECE315 / ECE515 Lecture 7 Date: Lecture 7 ate: 01.09.2016 CG Amplifier Examples Biasing in MOS Amplifier Circuits Common Gate (CG) Amplifier CG Amplifier- nput is applied at the Source and the output is sensed at the rain. The Gate terminal

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Prof. Paolo Colantonio a.a. 20 2 Field effect transistors (FETs) are probably the simplest form of transistor, widely used in both analogue and digital applications They are characterised by a very high

More information

Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

More information

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits Microelectronic Circuits II Ch 0 : Operational-Amplifier Circuits 0. The Two-stage CMOS Op Amp 0.2 The Folded-Cascode CMOS Op Amp CNU EE 0.- Operational-Amplifier Introduction - Analog ICs : operational

More information

Voltage Biasing Considerations (From the CS atom toward the differential pair atom) Claudio Talarico, Gonzaga University

Voltage Biasing Considerations (From the CS atom toward the differential pair atom) Claudio Talarico, Gonzaga University Voltage Biasing Considerations (From the CS atom toward the differential pair atom) Claudio Talarico, Gonzaga University Voltage Biasing Considerations In addition to bias currents, building a complete

More information

A new class AB folded-cascode operational amplifier

A new class AB folded-cascode operational amplifier A new class AB folded-cascode operational amplifier Mohammad Yavari a) Integrated Circuits Design Laboratory, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran a) myavari@aut.ac.ir

More information

A Novel Continuous-Time Common-Mode Feedback for Low-Voltage Switched-OPAMP

A Novel Continuous-Time Common-Mode Feedback for Low-Voltage Switched-OPAMP 10.4 A Novel Continuous-Time Common-Mode Feedback for Low-oltage Switched-OPAMP M. Ali-Bakhshian Electrical Engineering Dept. Sharif University of Tech. Azadi Ave., Tehran, IRAN alibakhshian@ee.sharif.edu

More information

MOSFET Biasing Supplement for Laboratory Experiment 5 EE348L. Spring 2005

MOSFET Biasing Supplement for Laboratory Experiment 5 EE348L. Spring 2005 MOSFET Biasing Supplement for Laboratory Experiment 5 EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 10 EE348L, Spring 2005 5 Laboratory Assignment 5 biasing supplement 5.1 Biasing a

More information

d. Can you find intrinsic gain more easily by examining the equation for current? Explain.

d. Can you find intrinsic gain more easily by examining the equation for current? Explain. EECS140 Final Spring 2017 Name SID 1. [8] In a vacuum tube, the plate (or anode) current is a function of the plate voltage (output) and the grid voltage (input). I P = k(v P + µv G ) 3/2 where µ is a

More information

EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices

EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices EE 230 Fall 2006 Experiment 11 Small Signal Linear Operation of Nonlinear Devices Purpose: The purpose of this laboratory experiment is to investigate the use of small signal concepts for designing and

More information

Experiment #7 MOSFET Dynamic Circuits II

Experiment #7 MOSFET Dynamic Circuits II Experiment #7 MOSFET Dynamic Circuits II Jonathan Roderick Introduction The previous experiment introduced the canonic cells for MOSFETs. The small signal model was presented and was used to discuss the

More information

ECE315 / ECE515 Lecture 9 Date:

ECE315 / ECE515 Lecture 9 Date: Lecture 9 Date: 03.09.2015 Biasing in MOS Amplifier Circuits Biasing using Single Power Supply The general form of a single-supply MOSFET amplifier biasing circuit is: We typically attempt to satisfy three

More information

Figure 1: JFET common-source amplifier. A v = V ds V gs

Figure 1: JFET common-source amplifier. A v = V ds V gs Chapter 7: FET Amplifiers Switching and Circuits The Common-Source Amplifier In a common-source (CS) amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

Building Blocks of Integrated-Circuit Amplifiers

Building Blocks of Integrated-Circuit Amplifiers Building Blocks of ntegrated-circuit Amplifiers 1 The Basic Gain Cell CS and CE Amplifiers with Current Source Loads Current-source- or active-loaded CS amplifier Rin A o R A o g r r o g r 0 m o m o Current-source-

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 3.134 ISSN(Online): 2348-4470 ISSN(Print) : 2348-6406 International Journal of Advance Engineering and Research Development Volume 1, Issue 11, November -2014

More information

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor EE 2110A Electronic Circuits Week 7: Common-Collector Amplifier, MOS Field Effect Transistor ecture 07-1 Topics to coer Common-Collector Amplifier MOS Field Effect Transistor Physical Operation and I-V

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2018 Contents Objective:...2 Discussion:...2 Components Needed:...2 Part 1 Voltage Controlled Amplifier...2 Part 2 A Nonlinear Application...3

More information

Analysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II)

Analysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II) Analysis and Design of Analog Integrated Circuits Lecture 20 Advanced Opamp Topologies (Part II) Michael H. Perrott April 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Outline of Lecture

More information

ECE315 / ECE515 Lecture 8 Date:

ECE315 / ECE515 Lecture 8 Date: ECE35 / ECE55 Lecture 8 Date: 05.09.06 CS Amplifier with Constant Current Source Current Steering Circuits CS Stage Followed by CG Stage Cascode as Current Source Cascode as Amplifier ECE35 / ECE55 CS

More information

Chapter 4: Differential Amplifiers

Chapter 4: Differential Amplifiers Chapter 4: Differential Amplifiers 4.1 Single-Ended and Differential Operation 4.2 Basic Differential Pair 4.3 Common-Mode Response 4.4 Differential Pair with MOS Loads 4.5 Gilbert Cell Single-Ended and

More information

INF3410 Fall Book Chapter 3: Basic Current Mirrors and Single-Stage Amplifiers

INF3410 Fall Book Chapter 3: Basic Current Mirrors and Single-Stage Amplifiers INF3410 Fall 2013 Amplifiers content Simple Current Mirror Common-Source Amplifier Interrupt: A word on output resistance Common-Drain Amplifier with active load / Source Follower Common-Gate Amplifier

More information

Full Paper ACEEE Int. J. on Control System and Instrumentation, Vol. 4, No. 2, June 2013

Full Paper ACEEE Int. J. on Control System and Instrumentation, Vol. 4, No. 2, June 2013 ACEEE Int J on Control System and Instrumentation, Vol 4, No 2, June 2013 Analys and Design of CMOS Source Followers and Super Source Follower Mr D K Shedge 1, Mr D A Itole 2, Mr M P Gajare 3, and Dr P

More information

Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS)

Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS) Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS) By Amir Ebrahimi School of Electrical and Electronic Engineering The University of Adelaide June 2014 1 Contents 1- Introduction...

More information

Applied Electronics II

Applied Electronics II Applied Electronics II Chapter 2: Differential Amplifier School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa University Daniel D./Abel G. April 4, 2016 Chapter

More information

CMOS Analog Circuits

CMOS Analog Circuits CMOS Analog Circuits L8B: Common Source Amplifier with Actie Load- (9.8.3) B. Mazhari Dept. of EE, IIT Kanpur Problems with current design -.586 in 65k 50/ O -3.3 DD = 3.3 DD f 3dB. Although sufficient

More information

Chapter 4 Single-stage MOS amplifiers

Chapter 4 Single-stage MOS amplifiers Chapter 4 Single-stage MOS amplifiers ELEC-H402/CH4: Single-stage MOS amplifiers 1 Single-stage MOS amplifiers NMOS as an amplifier: example of common-source circuit NMOS amplifier example Introduction

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

More information

Experiment #6 MOSFET Dynamic circuits

Experiment #6 MOSFET Dynamic circuits Experiment #6 MOSFET Dynamic circuits Jonathan Roderick Introduction: This experiment will build upon the concepts that were presented in the previous lab and introduce dynamic circuits using MOSFETS.

More information

DC Coupling: General Trends

DC Coupling: General Trends DC Coupling: General Trends * Goal: want both input and output to be centered at halfway between the positive and negative supplies (or ground, for a single supply) -- in order to have maximum possible

More information

Current Source/Sinks

Current Source/Sinks Motivation Current Source/Sinks Biasing is a very important step in MOS based analog design. A current sink and current source are two terminal components whose current at any instant of time is independent

More information

Microelectronics Exercises of Topic 5 ICT Systems Engineering EPSEM - UPC

Microelectronics Exercises of Topic 5 ICT Systems Engineering EPSEM - UPC Microelectronics Exercises of Topic 5 ICT Systems Engineering EPSEM - UPC F. Xavier Moncunill Autumn 2018 5 Analog integrated circuits Exercise 5.1 This problem aims to follow the steps in the design of

More information

Cascode Bulk Driven Operational Amplifier with Improved Gain

Cascode Bulk Driven Operational Amplifier with Improved Gain Cascode Bulk Driven Operational Amplifier with Improved Gain A.V.D. Sai Priyanka 1, S. Subba Rao 2 P.G. Student, Department of Electronics and Communication Engineering, VR Siddhartha Engineering College,

More information

Lab Project EE348L. Spring 2005

Lab Project EE348L. Spring 2005 Lab Project EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 7 EE348L, Spring 2005 1 Lab Project 1.1 Introduction Based on your understanding of band pass filters and single transistor

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407 Index A Accuracy active resistor structures, 46, 323, 328, 329, 341, 344, 360 computational circuits, 171 differential amplifiers, 30, 31 exponential circuits, 285, 291, 292 multifunctional structures,

More information

Differential Amplifier Design

Differential Amplifier Design Fall - 2009 EE114 - Design Project Differential Amplifier Design Submitted by Piyush Keshri (0559 4497) Jeffrey Tu (0554 4565) On November 20th, 2009 EE114 - Design Project Stanford University Page No.

More information

NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab

NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING NMOS Inverter Lab Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee/ 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

Design and Analysis of High Gain Differential Amplifier Using Various Topologies

Design and Analysis of High Gain Differential Amplifier Using Various Topologies Design and Analysis of High Gain Amplifier Using Various Topologies SAMARLA.SHILPA 1, J SRILATHA 2 1Assistant Professor, Dept of Electronics and Communication Engineering, NNRG, Ghatkesar, Hyderabad, India.

More information

EE5310/EE3002: Analog Circuits. on 18th Sep. 2014

EE5310/EE3002: Analog Circuits. on 18th Sep. 2014 EE5310/EE3002: Analog Circuits EC201-ANALOG CIRCUITS Tutorial 3 : PROBLEM SET 3 Due shanthi@ee.iitm.ac.in on 18th Sep. 2014 Problem 1 The MOSFET in Fig. 1 has V T = 0.7 V, and μ n C ox = 500 μa/v 2. The

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters Dept. of Electrical and Computer Engineering University of California, Davis March 18, 2010 Reading: Rabaey Chapter 3 [1]. Reference: Kang

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 216 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

Common-Source Amplifiers

Common-Source Amplifiers Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

More information

Differential Difference Current Conveyor Based Cascadable Voltage Mode First Order All Pass Filters

Differential Difference Current Conveyor Based Cascadable Voltage Mode First Order All Pass Filters Differential Difference Current Conveyor Based Cascadable ltage Mode First Order All Pass Filters P..S. MURALI KRISHNA, NAEEN KUMAR, AIRENI SRINIASULU, R.K.LAL Department of Electronics & Communication

More information

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

More information

EE 330 Lecture 20. Operating Points for Amplifier Applications Amplification with Transistor Circuits Small Signal Modelling

EE 330 Lecture 20. Operating Points for Amplifier Applications Amplification with Transistor Circuits Small Signal Modelling EE 330 Lecture 20 Operating Points for Amplifier Applications Amplification with Transistor Circuits Small Signal Modelling Review from Last Lecture Simplified Multi-Region Model Alternate equivalent model

More information