Common-Source Amplifiers

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain, low noise, bandwidth and simplicity, the common-source amplifier finds different applications ranging from sensor signal amplification to RF low-noise amplification. Good understanding of this amplifier stage is essential for the analysis and design of more advanced circuits, such as differential amplifiers, which you will encounter later in this course. In this lab, you are going to design, simulate, and implement NMOS- and PMOS-based commonsource amplifiers with resistive loads and a CMOS inverter amplifier, as shown in Figure 1. The CMOS inverter is biased for operation as a linear amplifier by connecting a large resistor (> 300- kω) between its input and output. This circuit is becoming very popular in nanoscale CMOS technonology as a low-noise, broadband amplifier and as a power amplifier output stage. The three amplifier stages will be designed for different requirements such as gain, linear voltage swing and supply voltage. Note that the vendor does not provide the gate length and gate width of the MOS- FETs used in this lab. Therefore, the only design parameters you have available for the MOSFETs is V GS and V DS. You will not be able to determine the current density at which the transistors operate and whether or not the square law applies at each bias current. (c) Figure 1: NMOS and PMOS common-source amplifiers with resistive loads. (c) CMOS inverter amplifier with resistive feedback for bias point stabilization. Lab 2 Page 1 of 5

2 Preparation Go through the following preparation steps. 1. Find the expressions for the small-signal gain of the NMOS and PMOS common-source amplifiers shown in Figure 1 designed for the maximum output swing with an arbitrary I D. The gain should be expressed in terms of only V DD and V ov without any numerical values. Assuming that the square law applies and that the transistors are in the active region. Assume that r o is much larger than R D and therefore it can be ignored. 2. Design common-source amplifiers for the criteria shown in Table 1. Perform hand analysis to fill in the blanks in Table 1 using the device parameters shown in Table Perform a DC operating point simulation for the amplifiers designed above. Note that the transistor models used in simulation are far more complicated and accurate than the simple square law used for hand analysis. Therefore, some deviation from the hand analysis comes with no surprises. 4. Perform a DC sweep to plot the transfer characteristics of each amplifier stage. Plot V o, I D, and dv o /dv i (= A v ) versus V i in the same graph window. V i should be swept from 0 V to V DD. 5. Label and comment on the plots to clearly show the the small-signal gain (A v ), V i, and output swing for the I D specified in Table Perform a transient simulation to obtain the output voltage waveforms: V o versus time. Use a sinusoidal voltage source at 1 khz with 10-mV pp amplitude as the input source. Make sure that the DC input and output voltages are the same as those found in the previous step. Verify the small-signal gain found in the previous step. 7. Perform a transient simulation for different input amplitudes to show V o versus time. Use a sinusoidal voltage source at 1 khz with mV pp amplitude as the input source. Make sure that the input and thus the output are biased at the voltages found in the previous step. Find the maximum linear output voltage swing. 8. Organize the results for presentation to your TA. Lab Perform the following for the first two common-source amplifiers designed by hand analysis. A minimum parts list for this lab is shown in Table 3. This is the absolute minimum. You may bring more parts for your convenience and backup. Lab 2 Page 2 of 5

3 Table 1: Hand analysis table V DD (V) Type V A Gain Swing (V pp ) V ov (V) I D (A) g m (A/V) V o (V) R D (Ω) A v (V/V) 5.0 NMOS 80 V max 1 m 5.0 PMOS -19 V max 0.5 m 5.0 CMOS - max NMOS 80 V max m Table 2: NMOS and PMOS device parameters Type Device V T (V) µ n/p C ox W/L (ma/v 2 ) NMOS ALD PMOS ALD Measuring the transfer characteristics: V o versus V i Repeat the following for the first two common-source amplifiers designed in the preparation. 1. Implement the common-source amplifier on the breadboard. Connect a 50-Ω resistor across the input and the ground as shown in Figure 2. This resistor is important for the voltage reading of the signal generator to be correct. Most of the signal generators have a 50-Ω output impedance and the voltage reading is correct only if its load is. You will need this 50-Ω termination many times in future labs when you use a signal generator although it won t be explicitly shown in lab manuals. 2. Configure the signal generator for a triangular wave with 0 V to V DD swing at 100 Hz. Make sure to do this step without connecting the transistor to the signal generator but with the 50-Ω resistor connected, as an excessive gate voltage can permanently damage the transistor. 3. Connect the input signal to the transistor and measure the input (V i ) and output (V o ) simultaneously using both channels of the oscilloscope. Use the input signal as the trigger source. Adjust the horizontal scale to display roughly two periods of the triangular wave and adjust the vertical scale of each input to maximize the displayed signal swing without clipping. Make sure that V i swings from 0 V to V DD. Table 3: Minimum parts list Part Description Quantity ALD1101 NMOS transistor 1 ALD1102 PMOS transistor 1-10-kΩ multi-turn potentiometer 1 - > 300-kΩ resistor 1 Lab 2 Page 3 of 5

4 Figure 2: NMOS and PMOS common-source amplifiers with a 50-Ω input impedance. 4. Enable the XY plot mode of the oscilloscope to plot V o versus V i. Determine and record the input and output bias voltage that meets the I D requirement in Table 1, and calculate the small-signal gain around that point. Sketch a V o versus V i curve and label important points. How does this compare with the simulation and hand analysis? 5. Organize the results for presentation to your TA. 2. Small signal and large signal testing under sinusoidal excitation Repeat the following for the first two common-source amplifiers designed in the preparation. 1. Disconnect the signal source from the circuit, and configure the signal source for 1-kHz 10-mV pp sinusoid. 2. Place the input bias circuit for the NMOS and PMOS common-source amplifiers on the breadboard as shown in Figure 3, and tune the potentiometer for the input bias voltage found in part 1. This input bias circuit is used many times in future labs so make sure you feel comfortable with it. The CMOS amplifier is self-biased through the feedback resistor, therefore you need not connect any other bias network. 3. Connect the signal source to the input of the amplifier on the breadboard and display both the input and the output signals of the amplifier stage on the oscilloscope. How does the gain compare with that obtained from hand analysis and from simulation? Which of the three amplifier stages has the highest gain and the largest output voltage swing for a given V DD value? 4. Organize the results for presentation to your TA. Lab 2 Page 4 of 5

5 Large capacitor Input bias circuit 10 kω POT Input bias circuit Large capacitor 10 kω POT (c) Figure 3: NMOS, PMOS and c) CMOS inverter common-source amplifiers with bias circuits and input DC-blocking capacitor. Lab 2 Page 5 of 5

Experiment 5 Single-Stage MOS Amplifiers

Experiment 5 Single-Stage MOS Amplifiers B. Cagdaser, H. Chong, R. Lu, and R. T. Howe UC Berkeley EE 105 Fall 2005 1 Objective This is the first lab dealing with the use of transistors in amplifiers. We

Introduction to Lab Equipment and Components

331: nalog lectronics University of Toronto 2017 Lab 0: ntroduction to Lab quipment and omponents ntroduction The first part of this lab introduces you to the lab equipment and components you will use

EE 230 Lab Lab 9. Prior to Lab

MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

Experiment 6: Biasing Circuitry

1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

55:041 Electronic Circuits

55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

CMOS Inverter & Ring Oscillator

CMOS Inverter & Ring Oscillator Theory: In this Lab we will implement a CMOS inverter and then use it as a building block for a Ring Oscillator. MOSfets (Metal Oxide Semiconductor Field Effect Transistors)

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 11-1 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

LABORATORY 5 v3 OPERATIONAL AMPLIFIER

University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 5 v3 OPERATIONAL AMPLIFIER Integrated operational amplifiers opamps

Homework Assignment 07

Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices Ninth Edition Floyd Chapter 9 The Common-Source Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

Laboratory #9 MOSFET Biasing and Current Mirror

Laboratory #9 MOSFET Biasing and Current Mirror. Objectives 1. Review the MOSFET characteristics and transfer function. 2. Understand the relationship between the bias, the input signal and the output

Gechstudentszone.wordpress.com

UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

55:041 Electronic Circuits

55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer The objective of this lab is to become familiar with methods to measure the dc current-voltage (IV) behavior of diodes

4.5 Biasing in MOS Amplifier Circuits

4.5 Biasing in MOS Amplifier Circuits Biasing: establishing an appropriate DC operating point for the MOSFET - A fundamental step in the design of a MOSFET amplifier circuit An appropriate DC operating

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

Integrators, differentiators, and simple filters

BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

Course Outline 1. Chapter 1: Signals and Amplifiers 1 2. Chapter 3: Semiconductors 3. Chapter 4: Diodes 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

Metal-Oxide-Silicon (MOS) devices PMOS. n-type

Metal-Oxide-Silicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.

Lab 10: Single Supply Amplifier

Overview This lab assignment implements an inverting voltage amplifier circuit with a single power supply. The amplifier output contains a bias point which is removed by AC coupling the output signal.

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

ITT Technical Institute. ET215 Devices 1. Chapter

ITT Technical Institute ET215 Devices 1 Chapter 4.6 4.7 Chapter 4 Section 4.6 FET Linear Amplifiers Transconductance of FETs The output drain current is controlled by the input signal voltage. As we earlier

3-Stage Transimpedance Amplifier

3-Stage Transimpedance Amplifier ECE 3400 - Dr. Maysam Ghovanloo Garren Boggs TEAM 11 Vasundhara Rawat December 11, 2015 Project Specifications and Design Approach Goal: Design a 3-stage transimpedance

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS

2.16 EXPERIMENT 2.2 NONLINEAR OPAMP CIRCUITS 2.2.1 OBJECTIVE a. To study the operation of 741 opamp as comparator. b. To study the operation of active diode circuits (precisions circuits) using opamps,

Class #9: Experiment Diodes Part II: LEDs

Class #9: Experiment Diodes Part II: LEDs Purpose: The objective of this experiment is to become familiar with the properties and uses of LEDs, particularly as a communication device. This is a continuation

Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE05 Lab Experiments Miniproject: AM Radio Until now, the labs have focused

Experiment 8 Frequency Response

Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

MOSFET Amplifier Biasing

MOSFET Amplifier Biasing Chris Winstead April 6, 2015 Standard Passive Biasing: Two Supplies V D V S R G I D V SS To analyze the DC behavior of this biasing circuit, it is most convenient to use the following

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013

Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor In this chapter, we will: Study and understand the operation and characteristics of the various types

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

(a) Current-controlled and (b) voltage-controlled amplifiers.

Fig. 6.1 (a) Current-controlled and (b) voltage-controlled amplifiers. Fig. 6.2 Drs. Ian Munro Ross (front) and G. C. Dacey jointly developed an experimental procedure for measuring the characteristics

2. Introduction to MOS Amplifiers: Transfer Function Biasing & Small-Signal-Model Concepts

2. Introduction to MOS Amplifiers: Transfer Function Biasing & Small-Signal-Model Concepts Reading: Sedra & Smith Sec. 5.4 (S&S 5 th Ed: Sec. 4.4) ECE 102, Fall 2011, F. Najmabadi NMOS Transfer Function

ECEN3250 Lab 6 Design of Current Sources Using MOS Transistors

Lab 6 Design of Current Sources Using MOS Transistors with Extra-Credit Problem Design of a Saw-Tooth Waveform Generator ECE Department University of Colorado, Boulder 1 Prelab Assignment Current sources

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

LABORATORY 3 v3 CIRCUIT ELEMENTS

University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Leon Chua LABORATORY 3 v3 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

Experiment No. 4 The LM 741 Operational Amplifier

Experiment No. 4 The LM 741 Operational Amplifier By: Prof. Gabriel M. Rebeiz The University of Michigan EECS Dept. Ann Arbor, Michigan The LM * 741 is the most widely used op-amp in the world due to its

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor Neamen Microelectronics, 4e Chapter 3-1 In this chapter, we will: Study and understand the operation

LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY

LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY Objectives Preparation Tools To see the inner workings of a commercial mechatronic system and to construct a simple manual motor speed controller and current

Lab 6: Instrumentation Amplifier

Lab 6: Instrumentation Amplifier INTRODUCTION: A fundamental building block for electrical measurements of biological signals is an instrumentation amplifier. In this lab, you will explore the operation

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) 1. Objective: Junction FETs - the operation of a junction field-effect transistor (J-FET)

LAB 4: OPERATIONAL AMPLIFIER CIRCUITS

LAB 4: OPERATIONAL AMPLIFIER CIRCUITS ELEC 225 Introduction Operational amplifiers (OAs) are highly stable, high gain, difference amplifiers that can handle signals from zero frequency (dc signals) up

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers Massachusetts Institute of Technology February 17, 2005 Copyright 2005

Op-Amp Simulation Part II

Op-Amp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Wired Diode OR Gate LTspice use 1N4002 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design

DIGITAL VLSI LAB ASSIGNMENT 1

DIGITAL VLSI LAB ASSIGNMENT 1 Problem 1: NMOS and PMOS plots using Cadence. In this exercise, you are required to generate both NMOS and PMOS I-V device characteristics (I/P and O/P) using Cadence (Use

A 3-STAGE 5W AUDIO AMPLIFIER

ECE 2201 PRELAB 7x BJT APPLICATIONS A 3-STAGE 5W AUDIO AMPLIFIER UTILIZING NEGATIVE FEEDBACK INTRODUCTION Figure P7-1 shows a simplified schematic of a 3-stage audio amplifier utilizing three BJT amplifier

Revised: Summer 2010

EE 2274 PRE-LAB EXPERIMENT 5 DIODE OR GATE & CLIPPING CIRCUIT COMPLETE PRIOR TO COMING TO LAB Part I: 1. Design a diode, Figure 1 OR gate in which the maximum input current,, Iin is less than 5mA. Show

Field Effect Transistors

Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

AV18-AFC ANALOG FUNDAMENTALS C Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS 1 ANALOG FUNDAMENTALS C AV18-AFC Overview This topic identifies the basic FET amplifier configurations and their principles of

Operational Amplifiers

Operational Amplifiers Reading Horowitz & Hill handout Notes, Chapter 9 Introduction and Objective In this lab we will examine op-amps. We will look at a few of their vast number of uses and also investigate

EE 3305 Lab I Revised July 18, 2003

Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

Course Number Section Electronics ELEC 311 BB Examination Date Time # of pages Final August 12, 2005 Three hours 3 nstructor Dr. R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

Digital Applications of the Operational Amplifier

Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell

Advanced Analog Circuits Lecture 3 Switched-Capacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 2-4pm) Reference Homework 2017-01-11 1 MOD1 & MOD2 ST 2, 3,

ELECTRONIC CIRCUITS LAB

ELECTRONIC CIRCUITS LAB 1 2 STATE INSTITUTE OF TECHNICAL TEACHERS TRAINING AND RESEARCH GENERAL INSTRUCTIONS Rough record and Fair record are needed to record the experiments conducted in the laboratory.

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10 In this experiment we will measure the characteristics of the standard common emitter amplifier. We will use the 2N3904 npn transistor. If you have

Chapter 13: Introduction to Switched- Capacitor Circuits

Chapter 13: Introduction to Switched- Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4 Switched-Capacitor Integrator 13.5 Switched-Capacitor

Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers

SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

Chapter 8: Field Effect Transistors

Chapter 8: Field Effect Transistors Transistors are different from the basic electronic elements in that they have three terminals. Consequently, we need more parameters to describe their behavior than

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006)

LABORATORY MODULE ENT 162 Analog Electronics Semester 2 (2005/2006) EXPERIMENT 5 : The Class A Common-Emitter Power Amplifier Name Matrix No. : : PUSAT PENGAJIAN KEJURUTERAAN MEKATRONIK KOLEJ UNIVERSITI

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

The MOSFET can be easily damaged by static electricity, so careful handling is important.

ECE 3274 MOSFET CS Amplifier Project Richard Cooper 1. Objective This project will show the biasing, gain, frequency response, and impedance properties of the MOSFET common source (CS) amplifiers. 2. Components

15EEE282 Electronic Circuits and Simulation Lab - I Lab # 6

Exp. No #6 FREQUENCY RESPONSE OF COMMON EMITTER AMPLIFIER OBJECTIVE The purpose of the experiment is to design a common emitter amplifier. To analyze and plot the frequency response of the amplifier with

ECE 3274 MOSFET CD Amplifier Project

ECE 3274 MOSFET CD Amplifier Project 1. Objective This project will show the biasing, gain, frequency response, and impedance properties of the MOSFET common drain (CD) amplifier. 2. Components Qty Device

Physics 303 Fall Module 4: The Operational Amplifier

Module 4: The Operational Amplifier Operational Amplifiers: General Introduction In the laboratory, analog signals (that is to say continuously variable, not discrete signals) often require amplification.

ECE159H1S University of Toronto 2014 EXPERIMENT #2 OP AMP CIRCUITS AND WAVEFORMS ECE159H1S

ECE159H1S University of Toronto 2014 EXPERIMENT #2 OP AMP CIRCUITS AND WAVEFORMS ECE159H1S OBJECTIVES: To study the performance and limitations of basic op-amp circuits: the inverting and noninverting

(a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

Experiment 8&9 BJT AMPLIFIER

Experiment 8&9 BJT AMPLIFIER 1 BJT AS AMPLIFIER 1. Objectiv e: 1- To demonstrate the operation and characteristics of small signals common emitter amplifiers. 2- What do we mean by a linear amplifier and

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 AMPLITUDE MODULATION AND DEMODULATION OBJECTIVES The focus of this lab is to familiarize the student

E85: Digital Design and Computer Architecture

E85: Digital Design and Computer Architecture Lab 1: Electrical Characteristics of Logic Gates Objective The purpose of this lab is to become comfortable with logic gates as physical objects, to interpret

Circuit 4 Schmitt Trigger

Prerequisite Information Circuit 4 Schmitt Trigger Objective Upon completion of this procedure, you will be able to determine the functional characteristics of a typical Schmitt trigger. You will verify

Lab 4 : Transistor Oscillators

Objective: Lab 4 : Transistor Oscillators In this lab, you will learn how to design and implement a colpitts oscillator. In part II you will implement a RC phase shift oscillator Hardware Required : Pre

EECE2412 Final Exam. with Solutions

EECE2412 Final Exam with Solutions Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University Fall Semester 2010 My file 11480/exams/final General Instructions:

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Dr. I. J. Wassell Gates from Transistors 1 Introduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits