# Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Save this PDF as:

Size: px
Start display at page:

Download "Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd"

## Transcription

1 Electronic Devices Ninth Edition Floyd Chapter 9

2 The Common-Source Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has higher input resistance and lower gain than the equivalent CE amplifier. V in C 1 R G +V DD R D C 3 V out R S C 2 R L The voltage gain is given by the equation A v = g m R d.

3 The Common-Source Amplifier Recall that conductance is the reciprocal of resistance and admittance is the reciprocal of impedance. Data sheets typically specify the forward transfer admittance, y fs rather than transconductance, g m. The definition of y fs is y fs I = V D G DYNAMIC CHARACTERISTICS Forward Transfer Admittance (V DS = 15 Vdc, V GS = 0) 2N5457 2N5458 Symbol Min Typ Max Unit Y fs µ mhos An alternate gain expression for a CS amplifier is A v = y fs R d.

4 The Common-Source Amplifier You can estimate what the transfer characteristic looks like from values on the specification sheet, but keep in mind that large variations are common with JFETs. For example, the range of specified values for a 2N5458 is shown. V GS (V) I D (ma) OFF CHARACTERISTICS Gate-Source Cutoff Voltage (V DS = 15 Vdc, i D = 10 nadc) ON CHARACTERISTICS Zero Gate-Source Drain Current (V DS = 15 Vdc, V GS = 0) 2N5457 2N5458 2N5457 2N5458 Symbol Min Typ Max Unit V GS(off) I DSS Vdc Symbol Min Typ Max Unit madc

5 The Common-Source Amplifier To analyze the CS amplifier. you need to start with dc values. It is useful to estimate I D based on typical values; specific circuits will vary from this estimate. For a typical 2N5458, what is the drain current? V DD +12 V R D 2.7 kω From the specification sheet, the typical I DSS = 6.0 ma and V GS(off) = 4 V. These values can be plotted along with the load line to obtain a graphical solution. C µ F V in 100 mv R G 10 MΩ See the following slide 2N5458 R S 470 Ω C 2 10 µ F V out

6 The Common-Source Amplifier (continued) A graphical solution is illustrated. On the transconductance curve, plot the load line for the source resistor. Load line for 470 Ω resistor Then read the current and voltage at the Q-point. I D = 2.8 ma and V GS = 1.3 V V GS (V) I D (ma) 6 Q 2.8 ma V

7 The Common-Source Amplifier (continued) Alternatively, you can obtain I D using Equation 9-2: I D IDR = IDSS 1 V S GS(off) 2 The solution to this quadratic equation is simplified using a calculator that can handle quadratic equations. After entering the equation, enter the known values, but leave I D open. For the typical values for the 2N5458, (I DSS = 6 ma and V GS(off) = 4 V) with a source resistance of 470 Ω, we find 2.75 ma. ID=IDSS (1 ( ID RS/VG... ID= IDSS=.006 RS= 470 VGSOFF= 4.0 bound=( 1E99,1E99) GRAPH RANGE ZOOM TRACE SOLVE press enter absolute value F5

8 g The Common-Source Amplifier 2I Assume I DSS is 6.0 ma, V GS(off) is 4 V, and V GS = 1.3 V as found previously. What is the expected gain? ( ) ma DSS m0 = = = V 4 V GS(off) g m V GS = gm0 1 V GS(off) 1.3 V = 3.0 ms V 2.02 ms 3.0 ms A v = g m R d = (2.02 ms)(2.7 kω) = 5.45 C µ F V in 100 mv R G 10 MΩ V DD +12 V R D 2.7 kω 2N5458 R S 470 Ω Output is inverted C 2 10 µ F V out

9 The Common-Source Amplifier The gain is reduced when a load is connected to the amplifier because the total ac drain resistance (R d ) is reduced. How does the addition of the 10 kω load affect the gain? R d RR D L = R + R D L ( 2.7 kω)( 10 kω) = 2.7 kω+ 10 kω = 2.13 kω A v = g m R d = (2.02 ms)(2.13 kω) = 4.29 C µ F V in 100 mv R G 10 MΩ V DD +12 V R D 2.7 kω 2N5458 R S 470 Ω V out C 2 10 µ F R L 10 kω

10 The D-MOSFET In operation, the D-MOSFET has the unique property in that it can be operated with zero bias, allowing the signal to swing above and below ground. This means that it can operate in either D-mode or E-mode. I D +V DD Enhancement Q C 1 R D C 2 V out Depletion I d R L V GS 0 +V GS V in R G V gs

11 The E-MOSFET The E-MOSFET is a normally off device. The n-channel device is biased on by making the gate positive with respect to the source. A voltagedivider biased E-MOSFET amplifier is shown. I D Enhancement +V DD R D R 1 C 3 V out I DQ Q C 1 I d V C in R 2 R 2 S R L 0 V GS(th) V gs V GS V GSQ

12 The E-MOSFET The E-MOSFET amplifier in Example 9-8 is illustrated in Multisim using a 2N7000 MOSFET.

13 The Common-Drain Amplifier In a CD amplifier, the input signal is applied to the gate and the output signal is taken from the source. There is no drain resistor, because it is common to the input and output signals. V in C 1 R G +V DD R S C 2 V out R L The voltage gain is given by the equation A v gmrs = 1 + g R m s The voltage gain is always < 1, but the power gain is not.

14 The Cascode Amplifier The cascode connection is a combination of CS and CG amplifiers. This forms a good high-frequency amplifier. The input and output signals at 10 MHz are shown for this circuit on the following slide

15 The Cascode Amplifier The input signal for the cascode amplifier is shown in red; the output is blue. What is the gain? The peak of the input is 24.7 mv. The peak of the output is 2.33 V. A V = 94.3

16 The Class-D Amplifier MOSFETs are useful as class-d amplifiers, which are very efficient because they operate as switching amplifiers. They use pulse width modulation, a process in which the input signal is converted to a series of pulses. The pulse width varies proportionally to the amplitude of the input signal. Pulse-width modulation is easy to set up in Multisim. The following slide shows the circuit. A sine wave is compared to a faster triangle wave of the about the same amplitude using a comparator (a 741 op-amp can be used at low frequencies).

17 The Class-D Amplifier A circuit that you can use in lab or in Multisim to observe pulse width modulation in action. The scope display is shown on the following slide Op-amp set up as a comparator

18 The Class-D Amplifier The signal is the yellow sine wave and is compared repeatedly to the triangle (cyan). The result of the comparison is the output (magenta).

19 The Class-D Amplifier The modulated signal is amplified by class-b complementary MOSFET transistors. The output is filtered by a low-pass filter to recover the original signal and remove the higher modulation frequency. Modulated input +V DD Q 1 Low-pass filter PWM is also useful in control applications such as motor controllers. MOSFETs are widely used in these applications because of fast switching time and low onstate resistance. Q 2 V DD R L

20 The Analog Switch MOSFETs are also used as analog switches to connect or disconnect an analog signal. Analog switches are available in IC form for example the CD4066 is a quad analog switch that used parallel n- and p-channel MOSFETs. The configuration shown allows signals to be passed in either direction. Advantages of MOSFETs are that they have relatively low on-state resistance and they can be used at high frequencies, such as found in video applications. IN/OUT Control Simplified internal construction of a bidirectional IC analog switch. OUT/IN

21 Selected Key Terms Commonsource source is the (ac) grounded A FET amplifier configuration in which the terminal. Common-drain A FET amplifier configuration in which the drain is the (ac) grounded terminal. The common-drain amplifier. Source-follower A nonlinear amplifier in which the transistors Class-D are operated as switches. amplifier

22 Selected Key Terms Pulse-width A process in which a signal is converted to a modulation series of pulses with widths that vary proportionally to the signal amplitude. Analog switch CMOS A device that switches an analog signal on and off. Complementary MOS.

23 Quiz 1. Compared to a common-emitter amplifier, a commonsource amplifier generally will have a. higher gain and higher input resistance b. higher gain and lower input resistance c. lower gain and higher input resistance d. lower gain and lower input resistance

24 Quiz 2. The abbreviation y fs means a. forward transfer admittance b. forward on-state resistance c. reverse transfer susceptance d. reverse on-state conductance

25 Quiz 3. The plot shown is a graphical solution for a self-biased FET amplifier. The red line represents the a. gate resistor b. source resistor c. drain resistor d. none of the above I D (ma) 6 V GS (V) 4 0

26 Quiz 4. The resistance represented by the red line is a. 150 Ω b. 240 Ω I D (ma) c. 470 Ω d. 666 Ω 6 V GS (V) 4 0

27 Quiz gmrs 5. The gain equation Av = is used to calculate the 1 gain of + g m R s a. a CS amplifier b. a CD amplifier c. a CG amplifier d. any of the above

28 Quiz 6. A FET that can be biased with zero bias is a a. an n-channel JFET b. a D-MOSFET c. an E-MOSFET d. all of the above

29 Quiz 7. The cascode amplifier shown uses a. A CS and a CD stage b. Two CS stages c. Two CD stages d. none of the above

30 Quiz 8. The principle circuit used in creating a pulse width modulator is a a. peak detector b. clipper c. comparator d. low-pass filter

31 Quiz 9. The circuit is an amplifier for a pulse width modulated signal. The load has the demodulated signal. The yellow box represents a a. peak detector b. clipper c. comparator d. low-pass filter Modulated input +V DD Q 1 Q 2 R L V DD

32 Quiz 10. When the control signal is active, the output of an analog switch should look like a. the input signal b. a square wave c. a modulated pulse d. a dc level

33 Quiz Answers: 1. c 6. b 2. a 7. d 3. b 8. c 4. d 9. d 5. b 10. a

### Figure 1: JFET common-source amplifier. A v = V ds V gs

Chapter 7: FET Amplifiers Switching and Circuits The Common-Source Amplifier In a common-source (CS) amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The

### ITT Technical Institute. ET215 Devices 1. Chapter

ITT Technical Institute ET215 Devices 1 Chapter 4.6 4.7 Chapter 4 Section 4.6 FET Linear Amplifiers Transconductance of FETs The output drain current is controlled by the input signal voltage. As we earlier

IFB270 Advanced Electronic Circuits Chapter 9: FET amplifiers and switching circuits Prof. Manar Mohaisen Department of EEC Engineering Review of the Precedent Lecture Review of basic electronic devices

### ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

AV18-AFC ANALOG FUNDAMENTALS C Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS 1 ANALOG FUNDAMENTALS C AV18-AFC Overview This topic identifies the basic FET amplifier configurations and their principles of

### Summary. Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET. A/Lectr. Khalid Shakir Dept. Of Electrical Engineering

Summary Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET A/Lectr. Khalid Shakir Dept. Of Electrical Engineering College of Engineering Maysan University Page 1-21 Summary The MOSFET The metal oxide

### Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

### Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

### IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

### ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

### CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs)

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs) INTRODUCTION - FETs are voltage controlled devices as opposed to BJT which are current controlled. - There are two types of FETs. o Junction FET (JFET) o Metal

### (a) Current-controlled and (b) voltage-controlled amplifiers.

Fig. 6.1 (a) Current-controlled and (b) voltage-controlled amplifiers. Fig. 6.2 Drs. Ian Munro Ross (front) and G. C. Dacey jointly developed an experimental procedure for measuring the characteristics

### Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

### Field Effect Transistors (npn)

Field Effect Transistors (npn) gate drain source FET 3 terminal device channel e - current from source to drain controlled by the electric field generated by the gate base collector emitter BJT 3 terminal

### Homework Assignment 07

Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

### The Field Effect Transistor

FET, OPAmps I. p. 1 Field Effect Transistors and Op Amps I The Field Effect Transistor This lab begins with some experiments on a junction field effect transistor (JFET), type 2N5458, and then continues

### FET Biasing. Electronic Circuit Design ME /8/2013. Spring Chapter 2. Chapter Contents. Course Support

Spring 2013 2 Chapter 2 ME-2401 Electronic Circuit Design 4 th Semester (Mechatronics) SZABIST, Karachi 3 Chapter Contents 4 Course Support humera.rafique@szabist.edu.pk Office: 100 Campus (404) Ext. (120)

### Common-Source Amplifiers

Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

### L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source)

L.107.4 MOSFETS, IDENTIFICATION, CURVES. PAGE 1 I. Review of JFET (DRAW symbol for n-channel type, with grounded source) 1. "normally on" device A. current from source to drain when V G = 0 no need to

### Chapter 8: Field Effect Transistors

Chapter 8: Field Effect Transistors Transistors are different from the basic electronic elements in that they have three terminals. Consequently, we need more parameters to describe their behavior than

### FET. FET (field-effect transistor) JFET. Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd

FET Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd FET (field-effect transistor) unipolar devices - unlike BJTs that use both electron and hole current, they operate only with one type

### Field Effect Transistors

Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

### EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 11-1 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of

### Chapter 5: Field Effect Transistors

Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

### MODULE-2: Field Effect Transistors (FET)

FORMAT-1B Definition: MODULE-2: Field Effect Transistors (FET) FET is a three terminal electronic device used for variety of applications that match with BJT. In FET, an electric field is established by

### Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB

THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

### Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

### Name: Date: Score: / (75)

Name: Date: Score: / (75) This lab MUST be done in your normal lab time NO LATE LABS Bring Textbook to Lab. You don t need to use your lab notebook, just fill in the blanks, you ll be graded when you re

### Field Effect Transistors

Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

### Phy 335, Unit 4 Transistors and transistor circuits (part one)

Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

### Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

### INTRODUCTION TO ELECTRONICS EHB 222E

INTRODUCTION TO ELECTRONICS EHB 222E MOS Field Effect Transistors (MOSFETS II) MOSFETS 1/ INTRODUCTION TO ELECTRONICS 1 MOSFETS Amplifiers Cut off when v GS < V t v DS decreases starting point A, once

### Questions on JFET: 1) Which of the following component is a unipolar device?

Questions on JFET: 1) Which of the following component is a unipolar device? a) BJT b) FET c) DJT d) EFT 2) Current Conduction in FET takes place due e) Majority charge carriers only f) Minority charge

### 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

### BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

### Gechstudentszone.wordpress.com

UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

### Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

### The Common Source JFET Amplifier

The Common Source JFET Amplifier Small signal amplifiers can also be made using Field Effect Transistors or FET's for short. These devices have the advantage over bipolar transistors of having an extremely

### Field-Effect Transistor

Philadelphia University Faculty of Engineering Communication and Electronics Engineering Field-Effect Transistor Introduction FETs (Field-Effect Transistors) are much like BJTs (Bipolar Junction Transistors).

### UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

### Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms

Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Pre-Report Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

### Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Dr. I. J. Wassell Gates from Transistors 1 Introduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits

### Experiment 5 Single-Stage MOS Amplifiers

Experiment 5 Single-Stage MOS Amplifiers B. Cagdaser, H. Chong, R. Lu, and R. T. Howe UC Berkeley EE 105 Fall 2005 1 Objective This is the first lab dealing with the use of transistors in amplifiers. We

### Chapter 6: Field-Effect Transistors

Chapter 6: Field-Effect Transistors FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.

### Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices Ninth Edition Floyd Chapter 7 Power Amplifiers A power amplifier is a large signal amplifier that produces a replica of the input signal on its output. In the case shown here, the output

### Experiment#: 8. The JFET Characteristics & DC Biasing. Electronics (I) Laboratory. The Hashemite University. Faculty of Engineering

The Hashemite University Faculty of Engineering Department of Electrical and Computer Engineering Electronics (I) Laboratory Experiment#: 8 The JFET Characteristics & DC Biasing Student s Name : Ja'afar

### Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a. 20 2 Field effect transistors (FETs) are probably the simplest form of transistor, widely used in both analogue and digital applications They are characterised by a very high

### EE 230 Lab Lab 9. Prior to Lab

MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

### Lecture 14. Field Effect Transistor (FET) Sunday 26/11/2017 FET 1-1

Lecture 14 Field Effect Transistor (FET) Sunday 26/11/2017 FET 1-1 Outline Introduction to FET transistors Types of FET Transistors Junction Field Effect Transistor (JFET) Characteristics Construction

### 6. Field-Effect Transistor

6. Outline: Introduction to three types of FET: JFET MOSFET & CMOS MESFET Constructions, Characteristics & Transfer curves of: JFET & MOSFET Introduction The field-effect transistor (FET) is a threeterminal

### FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 9 - MOSFET Amplifier Configurations Overview: The purpose of this experiment is to familiarize

### Chapter 6. BJT Amplifiers

Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 6 BJT Amplifiers 1 Introduction The things you learned about biasing a transistor

### PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

### Lecture 16: Small Signal Amplifiers

Lecture 16: Small Signal Amplifiers Prof. Niknejad Lecture Outline Review: Small Signal Analysis Two Port Circuits Voltage Amplifiers Current Amplifiers Transconductance Amps Transresistance Amps Example:

### An introduction to Depletion-mode MOSFETs By Linden Harrison

An introduction to Depletion-mode MOSFETs By Linden Harrison Since the mid-nineteen seventies the enhancement-mode MOSFET has been the subject of almost continuous global research, development, and refinement

### AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014

Q.2 a. State and explain the Reciprocity Theorem and Thevenins Theorem. a. Reciprocity Theorem: If we consider two loops A and B of network N and if an ideal voltage source E in loop A produces current

### Matched N-Channel JFET Pairs

U/ Matched N-Channel JFET Pairs Part Number V GS(off) (V) V (BR)GSS Min (V) Min I G Typ (pa) V GS V GS Max (mv) U to 5.5 U to 5.5 Two-Chip Design High Slew Rate Low Offset/Drift Voltage Low Gate Leakage:

### 55:041 Electronic Circuits

55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

### EECE2412 Final Exam. with Solutions

EECE2412 Final Exam with Solutions Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University Fall Semester 2010 My file 11480/exams/final General Instructions:

### Electronics I. Last Time

(Rev. 1.0) Electronics I Lecture 28 Introduction to Field Effect Transistors (FET s) Muhammad Tilal Department of Electrical Engineering CIIT Attock Campus The logo and is the property of CIIT, Pakistan

### 55:041 Electronic Circuits

55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

### Physics 160 Lecture 11. R. Johnson May 4, 2015

Physics 160 Lecture 11 R. Johnson May 4, 2015 Two Solutions to the Miller Effect Putting a matching resistor on the collector of Q 1 would be a big mistake, as it would give no benefit and would produce

### Multistage Amplifiers

Multistage Amplifiers Single-stage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)

### E C B E. TO-92 SOT-23 Mark: 2X. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

2N4401 MMBT4401 C 2N4401 / MMBT4401 E C B E TO-92 SOT-23 Mark: 2X B NPN General Pupose Amplifier This device is designed for use as a medium power amplifier and switch requiring collector currents up to

### 3-Stage Transimpedance Amplifier

3-Stage Transimpedance Amplifier ECE 3400 - Dr. Maysam Ghovanloo Garren Boggs TEAM 11 Vasundhara Rawat December 11, 2015 Project Specifications and Design Approach Goal: Design a 3-stage transimpedance

### EE 2274 MOSFET BASICS

Pre Lab: Include your CN with prelab. EE 2274 MOSFET BASICS 1. Simulate in LTspice a family of output characteristic curves (cutve tracer) for the 2N7000 NMOS You will need to add the 2N7000 model to LTspice

### Metal-Oxide-Silicon (MOS) devices PMOS. n-type

Metal-Oxide-Silicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.

### BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

### Electronic Devices, 9th edition Thomas L. Floyd. Input signal. R 1 and R 2 are selected to establish V B. If the V CE

3/9/011 lectronic Devices Ninth dition Floyd hapter 5: Transistor ias ircuits The D Operating Point ias establishes the operating point (Q-point) of a transistor amplifier; the ac signal (ma) moves above

### Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages. November 17, 2005

6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 20 1 Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages November 17, 2005 Contents: 1. Common source amplifier (cont.) 2. Common drain

### Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

Chapter 4 CMOS Cascode Amplifiers 4.1 Introduction A single stage CMOS amplifier cannot give desired dc voltage gain, output resistance and transconductance. The voltage gain can be made to attain higher

### Analog Circuits and Systems

Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 10: Electronic Devices for Analog Circuits 1 Multipliers Multipliers provide multiplication of two input voltages or currents Multipliers can

### EXPT NO: 1.A. COMMON EMITTER AMPLIFIER (Software) PRELAB:

EXPT NO: 1.A COMMON EMITTER AMPLIFIER (Software) PRELAB: 1. Study the operation and working principle of CE amplifier. 2. Identify all the formulae you will need in this Lab. 3. Study the procedure of

### Electronics Lab. (EE21338)

Princess Sumaya University for Technology The King Abdullah II School for Engineering Electrical Engineering Department Electronics Lab. (EE21338) Prepared By: Eng. Eyad Al-Kouz October, 2012 Table of

### Silicon Junction Field-Effect Transistors

D-2 01/99 Japanese Equivalent JFET Types Silicon Junction Field-Effect Transistors Japanese 2SK17 2SK40 2SK59 2SK105 InterFET IFN17 IFN40 IFN59 IFN105 Process NJ16 NJ16 NJ16 NJ16 Unit N N N N Parameters

### ECE315 / ECE515 Lecture 5 Date:

Lecture 5 ate: 20.08.2015 MOSFET Small Signal Models, and Analysis Common Source Amplifier Introduction MOSFET Small Signal Model To determine the small-signal performance of a given MOSFET amplifier circuit,

### Basic Operational Amplifier Circuits

Basic Operational Amplifier Circuits Comparators A comparator is a specialized nonlinear op-amp circuit that compares two input voltages and produces an output state that indicates which one is greater.

### Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) 1. Objective: Junction FETs - the operation of a junction field-effect transistor (J-FET)

### Improving Amplifier Voltage Gain

15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

### PESIT Bangalore South Campus

INTERNAL ASSESSMENT TEST 2 Date : 19/09/2016 Max Marks: 40 Subject & Code : Analog and Digital Electronics (15CS32) Section: III A and B Name of faculty: Deepti.C Time : 8:30 am-10:00 am Note: Answer five

### Field - Effect Transistor

Page 1 of 6 Field - Effect Transistor Aim :- To draw and study the out put and transfer characteristics of the given FET and to determine its parameters. Apparatus :- FET, two variable power supplies,

### ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.

### EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices

EE 230 Fall 2006 Experiment 11 Small Signal Linear Operation of Nonlinear Devices Purpose: The purpose of this laboratory experiment is to investigate the use of small signal concepts for designing and

### Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

### In a cascade configuration, the overall voltage and current gains are given by:

ECE 3274 Two-Stage Amplifier Project 1. Objective The objective of this lab is to design and build a direct coupled two-stage amplifier, including a common-source gain stage and a common-collector buffer

### Lecture 030 ECE4430 Review III (1/9/04) Page 030-1

Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material

### The MOSFET can be easily damaged by static electricity, so careful handling is important.

ECE 3274 MOSFET CS Amplifier Project Richard Cooper 1. Objective This project will show the biasing, gain, frequency response, and impedance properties of the MOSFET common source (CS) amplifiers. 2. Components

### UNIT 3: FIELD EFFECT TRANSISTORS

FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

### (a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

### ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

ECE4902 C2012 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

### Design and Analysis of Two-Stage Amplifier

Design and Analysis of Two-Stage Amplifier Introduction This report discusses the design and analysis of a two stage amplifier. An FET based common source amplifier was designed.fet was preferred over

### Experiment 6: Biasing Circuitry

1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

### ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

### Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product

Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product Physics116A,12/4/06 Draft Rev. 1, 12/12/06 D. Pellett 2 Negative Feedback and Voltage Amplifier AB

### UNIT II JFET, MOSFET, SCR & UJT

UNIT II JFET, MOSFET, SCR & UJT JFET JFET as an Amplifier and its Output Characteristics JFET Applications MOSFET Working Principles, SCR Equivalent Circuit and V-I Characteristics. SCR as a Half wave

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 MOSFET AMPLIFIER CONFIGURATIONS AND INPUT/OUTPUT IMPEDANCE OBJECTIVES The purpose of this experiment

### Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

### C H A P T E R 5. Amplifier Design

C H A P T E 5 Amplifier Design The Common-Source Amplifier v 0 = r ( g mvgs )( D 0 ) A v0 = g m r ( D 0 ) Performing the analysis directly on the circuit diagram with the MOSFET model used implicitly.