# Experiment 6: Biasing Circuitry

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing network for amplifiers often involves using transistors to build voltage and current sources to deliver the right amount of biasing goodness to the main amplifier components. In this lab, we will be exploring how to build these sources and adjust their components to exactly achieve the optimal biasing environment. 2 Materials Component Quantity 2N4401 NPN BJT 1 2N4403 PNP BJT 2 10 kω resistor Ω resistor kω resistor 1 10 kω potentiometer 1 Table 1: Components used in this lab 3 Procedure 3.1 Voltage Sources In this part of the lab, we will use a BJT as a voltage source. In this case, we want to set up a voltage source to supply 650 mv, a typical common emitter base bias. Figure 1: Potentiometer 1

3 3 PROCEDURE 3 V BIAS I OUT Figure 3: Transistor current source V BIAS I OUT Figure 4: Current source using transistors in parallel 3. Roughly sketch the theoretical relationship between I OUT and. In terms of the small-signal characteristics (g m, r o, β, etc.), what is the output resistance of this current source? 4. Sweep from 0 V to 5 V and plot I OUT using ICS. What happens to the output impedance as nears 5 V? Why? 5. Find the output impedance at = 2.5 V. 6. Now let s try putting transistors in parallel to increase current! Set up the circuit shown in Figure 4 using the same bias voltage as before (V BIAS = 4.35 V). 7. What is the resulting short circuit output current? 8. Measure the output impedance using ICS. Explain the effect of the second transistor on the output impedance. 3.3 Current Mirror Bias of a Common Emitter Amplifier A current mirror is nothing more than biasing a series of transistor current sources with a transistor voltage source, as shown in Figure 5. This setup is useful for injecting the same current in many places in your

4 3 PROCEDURE 4 circuit, and also for automatically correcting itself with temperature. Referring to Figure 6, we will use a current mirror to bias a common emitter amplifier.... Figure 5: General PNP current mirror 1. Set up the circuit in Figure 6 using = 12 V, = 10 kω, and R E = 100 Ω. Q2 Q3 v in V IN R E Q1 V out Figure 6: Biasing a CE amplifier with a current mirror 2. Sweep V IN vs. and determine the point of maximum gain. What is V IN at this point? 3. Measure the currents I C2 and I C3. Do they match? 4. What is the gain at this point? 5. Bias V IN for maximum gain and measure the input impedance of the amplifier. 6. Because of the huge gain, the output waveform could be clipped. Attach a 100 kω load resistor at the output (which should make the output no longer clipped) and measure the peak-to-peak voltage across it. Using the gain you found from the sweep and the voltage across the load, find the output impedance. 7. How do the impedances and gain compare with a common emitter biased with a resistor instead? 8. Now let s check out the temperature effects.

5 3 PROCEDURE 5 (a) Apply a small signal sine wave v in of amplitude 10 mv at 1 khz. View the output waveform on the oscilloscope. (b) (CAUTION: First check that the transistors are not hot before doing this.) Heat up only one of the transistors in the current mirror by putting your finger on the transistor. Observe the effect on the output waveform. (c) Now put the other transistor in the current mirror between your other two fingers, thus heating both transistors up, and watch the effect on the output waveform. (d) Explain your observations using what you know about BJT temperature effects. How may this be an advantage of BJT biasing over resistive biasing (as shown in the prelab)?

### .dc Vcc Ib 0 50uA 5uA

EE 2274 BJT Biasing PreLab: 1. Common Emitter (CE) Transistor Characteristics curve Generate the characteristics curves for a 2N3904 in LTspice by plotting Ic by sweeping Vce over a set of Ib steps. Label

### Experiment 8 Frequency Response

Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

### Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers

SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB

### Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

### Experiment 8 - Single Stage Amplifiers with Passive Loads - BJT

Experiment 8 - Single Stage Amplifiers with Passie Loads - BJT D. Yee, W.T. Yeung, C. Hsiung, S.M. Mehta, and R.T. Howe UC Berkeley EE 105 1.0 Objectie A typical integrated circuit contains a large number

### EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Wired Diode OR Gate LTspice use 1N4002 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design

### Revised: Summer 2010

EE 2274 PRE-LAB EXPERIMENT 5 DIODE OR GATE & CLIPPING CIRCUIT COMPLETE PRIOR TO COMING TO LAB Part I: 1. Design a diode, Figure 1 OR gate in which the maximum input current,, Iin is less than 5mA. Show

### LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006)

LABORATORY MODULE ENT 162 Analog Electronics Semester 2 (2005/2006) EXPERIMENT 5 : The Class A Common-Emitter Power Amplifier Name Matrix No. : : PUSAT PENGAJIAN KEJURUTERAAN MEKATRONIK KOLEJ UNIVERSITI

### A 3-STAGE 5W AUDIO AMPLIFIER

ECE 2201 PRELAB 7x BJT APPLICATIONS A 3-STAGE 5W AUDIO AMPLIFIER UTILIZING NEGATIVE FEEDBACK INTRODUCTION Figure P7-1 shows a simplified schematic of a 3-stage audio amplifier utilizing three BJT amplifier

### EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10 In this experiment we will measure the characteristics of the standard common emitter amplifier. We will use the 2N3904 npn transistor. If you have

### Page 1 of 7. Power_AmpFal17 11/7/ :14

ECE 3274 Power Amplifier Project (Push Pull) Richard Cooper 1. Objective This project will introduce two common power amplifier topologies, and also illustrate the difference between a Class-B and a Class-AB

### LABORATORY 3 v3 CIRCUIT ELEMENTS

University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Leon Chua LABORATORY 3 v3 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

### Common-Source Amplifiers

Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

### The Bipolar Junction Transistor- Small Signal Characteristics

The Bipolar Junction Transistor- Small Signal Characteristics Debapratim Ghosh deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay

### EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT AIM: 1) To study different BJT DC biasing circuits 2) To design voltage divider bias circuit using NPN BJT SOFTWARE TOOL: PC

### EXPERIMENT 10: Power Amplifiers

EXPERIMENT 10: Power Amplifiers 10.1 Examination Of Class A Amplifier 10.2 Examination Of Class B Amplifier 10.3 Examination Of Class C Amplifier BASIC ELECTRONICS set 15.1 INTRODUCTION There are classes

### Experiment 5 Single-Stage MOS Amplifiers

Experiment 5 Single-Stage MOS Amplifiers B. Cagdaser, H. Chong, R. Lu, and R. T. Howe UC Berkeley EE 105 Fall 2005 1 Objective This is the first lab dealing with the use of transistors in amplifiers. We

### EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

### 15EEE282 Electronic Circuits and Simulation Lab - I Lab # 6

Exp. No #6 FREQUENCY RESPONSE OF COMMON EMITTER AMPLIFIER OBJECTIVE The purpose of the experiment is to design a common emitter amplifier. To analyze and plot the frequency response of the amplifier with

### Chapter 6. BJT Amplifiers

Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 6 BJT Amplifiers 1 Introduction The things you learned about biasing a transistor

### Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 9

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 9 COMMON-COLLECTOR (EMITTER FOLLOWER) AMPLIFIER Aim: 1. To measure the open-circuit voltage gain,

### BJT Differential Amplifiers

Instituto Tecnológico y de Estudios Superiores de Occidente (), OBJECTIVES The general objective of this experiment is to contrast the practical behavior of a real differential pair with its theoretical

### University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

### INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

### 7. Bipolar Junction Transistor

41 7. Bipolar Junction Transistor 7.1. Objectives - To experimentally examine the principles of operation of bipolar junction transistor (BJT); - To measure basic characteristics of n-p-n silicon transistor

### Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved.

Lab 7: The Op Amp Laboratory Objectives: 1) To introduce the operational amplifier or Op Amp 2) To learn the non-inverting mode 3) To learn the inverting mode 4) To learn the differential mode Before You

### Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

### PHYS225 Lecture 6. Electronic Circuits

PHYS225 Lecture 6 Electronic Circuits Transistors History Basic physics of operation Ebers-Moll model Small signal equivalent Last lecture Introduction to Transistors A transistor is a device with three

### EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics

Name & Surname: ID: Date: EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics Objectives: 1. To determine transistor type (npn, pnp),terminals, and material using a DMM 2. To graph the

### Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices Ninth Edition Floyd Chapter 7 Power Amplifiers A power amplifier is a large signal amplifier that produces a replica of the input signal on its output. In the case shown here, the output

### I B. VCE =const. 25mV I C. V out = I C R C = β I B R C = βr C βr e

Physics 338 L 6 Spring 2016 ipolar Junction Transistors 0. (a) Load Lines and haracteristic urves The below figure shows the characteristic curves for a JT along with the load line for the simple common

### Final Design Project: Variable Gain Amplifier with Output Stage Optimization for Audio Amplifier Applications EE 332: Summer 2011 Group 2: Chaz

Final Design Project: Variable Gain Amplifier with Output Stage Optimization for Audio Amplifier Applications EE 332: Summer 2011 Group 2: Chaz Bofferding, Serah Peterson, Eric Stephanson, Casey Wojcik

### ECE 3274 Common-Emitter Amplifier Project

ECE 3274 Common-Emitter Amplifier Project 1. Objective The objective of this lab is to design and build three variations of the common- emitter amplifier. 2. Components Qty Device 1 2N2222 BJT Transistor

### EE 233 Circuit Theory Lab 4: Second-Order Filters

EE 233 Circuit Theory Lab 4: Second-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Generic Equalizer Filter... 2 3.2 Equalizer Filter for Audio Mixer...

### Miniproject: AM Radio

Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE05 Lab Experiments Miniproject: AM Radio Until now, the labs have focused

### Introduction PNP C NPN C

Introduction JT Transistors: A JT (or any transistor) can be used either as a switch with positions of on or off, or an amplifier that controls its output at all levels in between the extreme on or off

### Lab 3: BJT Digital Switch

Lab 3: BJT Digital Switch Objectives The purpose of this lab is to acquaint you with the basic operation of bipolar junction transistor (BJT) and to demonstrate its functionality in digital switching circuits.

### Introduction to Lab Equipment and Components

331: nalog lectronics University of Toronto 2017 Lab 0: ntroduction to Lab quipment and omponents ntroduction The first part of this lab introduces you to the lab equipment and components you will use

### output passes full first (positive) hump and 1/2-scale second hump

3. For V i > 0, V o 0. For V i < 0, V o V i. The resulting waveform consists only of the negative "humps" of the original cosine wave. Each hump has a duration of 0.5s there is a 0.5s gap between each

### PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS Due Date (NOTE CHANGE): Thursday, Nov 12 th @ 5 pm; Late penalty in effect! Most active electronic devices are based on the transistor as the fundamental

### EE 3111 Lab 7.1. BJT Amplifiers

EE 3111 Lab 7.1 BJT Amplifiers BJT Amplifier Device/circuit that alters the amplitude of a signal, while keeping input waveform shape BJT amplifiers run the BJT in active mode. Forward current gain is

### Document Name: Electronic Circuits Lab. Facebook: Twitter:

Document Name: Electronic Circuits Lab www.vidyathiplus.in Facebook: www.facebook.com/vidyarthiplus Twitter: www.twitter.com/vidyarthiplus Copyright 2011-2015 Vidyarthiplus.in (VP Group) Page 1 CIRCUIT

### Operational Amplifiers

Operational Amplifiers Reading Horowitz & Hill handout Notes, Chapter 9 Introduction and Objective In this lab we will examine op-amps. We will look at a few of their vast number of uses and also investigate

### ELECTRONIC CIRCUITS LAB

ELECTRONIC CIRCUITS LAB 1 2 STATE INSTITUTE OF TECHNICAL TEACHERS TRAINING AND RESEARCH GENERAL INSTRUCTIONS Rough record and Fair record are needed to record the experiments conducted in the laboratory.

### LABORATORY 5 v3 OPERATIONAL AMPLIFIER

University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 5 v3 OPERATIONAL AMPLIFIER Integrated operational amplifiers opamps

### Lab 6: Instrumentation Amplifier

Lab 6: Instrumentation Amplifier INTRODUCTION: A fundamental building block for electrical measurements of biological signals is an instrumentation amplifier. In this lab, you will explore the operation

### Bipolar Junction Transistors

Bipolar Junction Transistors Invented in 1948 at Bell Telephone laboratories Bipolar junction transistor (BJT) - one of the major three terminal devices Three terminal devices more useful than two terminal

### ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

### I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

### Phy 335, Unit 4 Transistors and transistor circuits (part one)

Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

### Revised: January 26,

ECE 3274 Active Load Common Emitter Amplifier Project 1. Objective This project will show how the use of an active load in a common emitter amplifier can affect the gain open loop gain. 2. Components Qty

### TTL LOGIC and RING OSCILLATOR TTL

ECE 2274 TTL LOGIC and RING OSCILLATOR TTL We will examine two digital logic inverters. The first will have a passive resistor pull-up output stage. The second will have an active transistor and current

### Field Effect Transistors

Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

### DESIGN & TESTING OF A RC COUPLED SINGLE STAGE BJT AMPLIFIER

DESIGN & TESTING OF A RC COUPLED SINGLE STAGE BJT AMPLIFIER Aim: Wiring of a RC coupled single stage BJT amplifier and determination of the gainfrequency response, input and output impedances. Apparatus

### Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved.

Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 19: Electrical and Electronic Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Digital & Analogue Electronics

### ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING Objectives: To familiarize the student with the concepts of signal conditioning. At the end of the lab, the student should be able to: Understand the

### Multistage Amplifiers

Multistage Amplifiers Single-stage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)

### Integrators, differentiators, and simple filters

BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

### Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes

Lab 1 Transistor Biasing and Operational amplifier fundamentals Experiment 1.1 Experiment 1.2 BJT biasing OP-amp Fundamentals and its DC characteristics BJT biasing schemes 1.1 Objective 1. To sketch potential

### Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide

LABORATORY 3 Diode Guide Diodes Overview Diodes are mostly used in practice for emitting light (as Light Emitting Diodes, LEDs) or controlling voltages in various circuits. Typical diode packages in same

### EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

### Class #9: Experiment Diodes Part II: LEDs

Class #9: Experiment Diodes Part II: LEDs Purpose: The objective of this experiment is to become familiar with the properties and uses of LEDs, particularly as a communication device. This is a continuation

### Lab 2: Linear and Nonlinear Circuit Elements and Networks

OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

### Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

### PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

### CHAPTER 6. Motor Driver

CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

### LABORATORY 7 v2 BOOST CONVERTER

University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 7 v2 BOOST CONVERTER In many situations circuits require a different

Table of Contents Subject Page Experiment 1: Diode Characteristics... 1 Experiment 2: Rectifier Circuits... 7 Experiment 3: Clipping and Clamping Circuits 17 Experiment 4: The Zener Diode 25 Experiment

### EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT)

EE105 Fall 2014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 utardja Dai Hall (DH) 1 NPN Bipolar Junction Transistor (BJT) Forward Bias Reverse Bias Hole Flow Electron

### Experiment P48: Transistor Lab 1 The NPN Transistor as a Digital Switch (Power Amplifier, Voltage Sensor)

PASCO scientific Vol. 2 Physics Lab Manual: P48-1 Experiment P48: Transistor Lab 1 The NPN Transistor as a Digital Switch (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows

### Expanded Answer: Transistor Amplifier Problem in January/February 2008 Morseman Column

Expanded Answer: Transistor Amplifier Problem in January/February 2008 Morseman Column Here s what I asked: This month s problem: Figure 4(a) shows a simple npn transistor amplifier. The transistor has

### Transistor Configuration

Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 1 MAXIMUM POWER TRANSFER OBJECTIVES In this experiment the student will investigate the circuit requirements

### Experiment #7 MOSFET Dynamic Circuits II

Experiment #7 MOSFET Dynamic Circuits II Jonathan Roderick Introduction The previous experiment introduced the canonic cells for MOSFETs. The small signal model was presented and was used to discuss the

### Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

### Chapter 8: Field Effect Transistors

Chapter 8: Field Effect Transistors Transistors are different from the basic electronic elements in that they have three terminals. Consequently, we need more parameters to describe their behavior than

### Analog Circuits Laboratory EXPERIMENT 3: BJT CURRENT SOURCES

EE171L rev2 1 University of California, Santa Cruz Baskin School of Engineering Electrical Engineering Department Analog Circuits Laboratory EXPERIMENT 3: BJT CURRENT SOURCES 1. DESCRIPTION AND OBJECTIVES

### BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN

BJT AC Analysis 5 CHAPTER OBJECTIVES Become familiar with the, hybrid, and hybrid p models for the BJT transistor. Learn to use the equivalent model to find the important ac parameters for an amplifier.

### ECE 3274 Common-Collector (Emitter-Follower) Amplifier Project

ECE 3274 Common-Collector (Emitter-Follower) Amplifier Project 1. Objective This project will show the biasing, gain, frequency response, and impedance properties of a common collector amplifier. 2. Components

### Tutorial #5: Emitter Follower or Common Collector Amplifier Circuit

Tutorial #5: Emitter Follower or Common Collector Amplifier Circuit This tutorial will help you to build and simulate a more complex circuit: an emitter follower. The emitter follower or common collector

### EXPERIMENT 1: LOW AND HIGH FREQUENCY REGION ANALYSIS OF BJT AMPLIFIERS

EXPERIMENT 1: LOW AND HIGH FREQUENCY REGION ANALYSIS OF BJT AMPLIFIERS Objective: In single layer common emitter amplifiers, observation of frequency dependence. Materials Transistor: 1x BC237 transistor

### EE 230 Lab Lab 9. Prior to Lab

MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

### ECE 3274 Common-Emitter Amplifier Project

ECE 3274 Common-Emitter Amplifier Project 1. Objective The objective of this lab is to design and build the common-emitter amplifier with partial bypass of the emitter resistor to control the AC voltage

### LABORATORY MODULE. Analog Electronics. Semester 2 (2006/2007) EXPERIMENT 6 : Amplifier Low-Frequency Response

LABORATORY MODULE ENT 162 Analog Electronics Semester 2 (2006/2007) EXPERIMENT 6 : Amplifier Low-Frequency Response Name Matrix No. : : Name Matrix No. : : PUSAT PENGAJIAN KEJURUTERAAN MEKATRONIK KOLEJ

### Figure 1 Diode schematic symbol (left) and physical representation (right)

Page 1/7 Revision 1 20-Jul-10 OBJECTIVES To reinforce the concepts behind diode circuit analysis Verification of diode theory and operation To understand certain diode applications, such as rectification

### University of Utah Electrical & Computer Engineering Department ECE 2100 Experiment No. 7 Transistor Introduction (BJT)

University of Utah Electrical & Computer Engineering Department ECE 2100 Experiment No. 7 Transistor Introduction (BJT) Minimum required points = 38 Grade base, 100% = 57 points Recommend parts = 57 points

### EXP8: AMPLIFIERS II.

EXP8: AMPLIFIES II. Objectives. The objectives of this lab are:. To analyze the behavior of a class A amplifier. 2. To understand the role the components play in the gain of the circuit. 3. To find the

### EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS

EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS 1. OBJECTIVES 1.1 To demonstrate the operation of a diode limiter. 1.2 To demonstrate the operation of a diode clamper. 2. INTRODUCTION PART A: Limiter Circuit

### Boosting output in high-voltage op-amps with a current buffer

Boosting output in high-voltage op-amps with a current buffer Author: Joe Kyriakakis, Apex Microtechnology Date: 02/18/2014 Categories: Current, Design Tools, High Voltage, MOSFETs & Power MOSFETs, Op

### Experiment No. 2 Half Wave Rectifier using RC-Triggering

Experiment No. 2 Half Wave Rectifier using RC-Triggering Pre-Lab Reading: 1. Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. (See page 790 to get help for this experiment).

### C H A P T E R 6 Bipolar Junction Transistors (BJTs)

C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode EBJ CBJ Cutoff Reverse Reverse Active

### Experiment No. 1 Half Wave Rectifier using R-Triggering

Experiment No. 1 Half Wave Rectifier using R-Triggering Pre-Lab Reading: Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. Objectives: To analyze resistive firing/triggering of

### (a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

### EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting AC to DC

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting C to DC The process of converting a sinusoidal C voltage to a

### Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) 1. Objective: Junction FETs - the operation of a junction field-effect transistor (J-FET)

### In a cascade configuration, the overall voltage and current gains are given by:

ECE 3274 Two-Stage Amplifier Project 1. Objective The objective of this lab is to design and build a direct coupled two-stage amplifier, including a common-source gain stage and a common-collector buffer

### ANALYSIS OF AN NPN COMMON-EMITTER AMPLIFIER

ANALYSIS OF AN NPN COMMON-EMITTER AMPLIFIER Experiment Performed by: Michael Gonzalez Filip Rege Alexis Rodriguez-Carlson Report Written by: Filip Rege Alexis Rodriguez-Carlson November 28, 2007 Objectives:

### EE EXPERIMENT 2 ANALOG AND DIGITAL MULTIMETERS INTRODUCTION. Figure 1: Internal resistance of a non-ideal ammeter.

Consider the two circuits shown in Figure 1 below. EE 2101 - EXPERIMENT 2 ANALOG AND DIGITAL MULTIMETERS INTRODUCTION Figure 1: Internal resistance of a non-ideal ammeter. The circuit on the left contains