Analysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II)


 Denis Gregory
 8 months ago
 Views:
Transcription
1 Analysis and Design of Analog Integrated Circuits Lecture 20 Advanced Opamp Topologies (Part II) Michael H. Perrott April 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved.
2 Outline of Lecture Gain boosting technique Nested Miller technique Replica bias technique Improved slew rate opamp example 2
3 Recall the Folded Cascode Opamp Must set I bias2 > I bias1 /2 V bias4 I bias2 M 9 0 I bias2 I bias1 /2 I bias1 /2 V bias3 V out M 7 M 8 V out+ I ref V in M 2 V in+ V bias2 1 2 M 5 M 6 I bias2 I bias1 /2 Controlled by CMFB V bias1 M 3 Modified version of telescopic opamp  Significantly improved input/output swing  High BW (better than two stage, worse than telescopic)  Single stage of gain (lower than telescopic) I bias2 I bias1 /2 Can we further boost the DC gain? 3
4 Gain Boosting of Current Sources I out Rout DC Gain = K I out R out V ref DC Gain = K V ref v gs g m1 v gs g mb1 v s r o1 R ref v s R ref We can achieve increased output impedance of a current source with an amplifier  The amplifier essentially increases g m1 by factor K R out = (Kg m1 r o1 ) R ref Key issue: what is a convenient implementation of the above circuit? 4
5 A Simple Gain Boosting Amplifier V ref DC Gain = K I out Rout I ref I bias I out Rout I ref M 2 M 3 M 2 M 3 Common source amplifier utilized K = g m4 r o4,r ref = r o2 R out =(g m4 r o4 ) (g m1 r o1 ) r o2 (g m r o ) 2 r o2 Issue: current source requires significant headroom due to the fact that V ds2 = V gs4 5
6 Folded Cascode Gain Boosting Amplifier V bias4 M 8 I out Rout V bias3 V bias2 M 7 V bias5 I ref V bias1 M 6 M 2 M 3 M 5 Folded cascode yields K = g m4 (((g m6 r o6 )r o5 ) ((g m7 r o7 )r o8 )) R out (g m r o ) 3 r o2  Improved headroom and higher gain! Is there a convenient way to set V bias5? 6
7 Differential Version of Gain Boosting Amplifier V bias4 R out I out I out R out V bias4 V bias3 3 I bias 4 V bias3 1 M 2 2 V bias2 V bias0 V bias2 V bias1 M 9 M 5 M 3 M 6 0 V bias1 M 7 M 8 Leverage fully differential nature of current sources within the opamp  PMOS gain devices are now part of a differential pair  Need CMFB to set commonmode gate voltages of and M 2 7
8 Symbolic View of Folded Cascode Gain Boosting Amp R out I out I out R out V bias0 M 3 We can apply this to the overall folded cascode opamp 8
9 Folded Cascode with Gain Boosting V bias4 M 9 0 V out M 7 M 8 V out+ I ref V in M 2 V in+ M 5 M Controlled by CMFB V bias1 M 3 Gain boosting provides substantial increase of DC gain while maintaining good input and output swing  Gain is on the order of (g m r o ) 4 Issue very complex! 9
10 Recall Pole Splitting for Two Stage Compensation 20log V out /V id g m g m w (rad/s) w p1 w p2 w p1 w p2 Moves the dominant pole of the second stage to higher frequencies such that it becomes a parasitic pole Places the first stage pole as the dominant pole  Leverages the gain of the second stage to achieve capacitor multiplication using the Miller effect Can we extend the pole splitting technique to more than 2 gain stages? 10
11 Nested Miller Compensation 20log V out /V id g m g m g m Eschauzier, JSSC Dec 1992 Advantage: increased DC gain with high input and output swing Issue: more parasitic poles to deal with  Leads to lower unity gain bandwidth for reasonable phase margin w p1 w p3 w p2 w p1 w p2,w p3 w (rad/s) Proving to be a useful technique in advanced CMOS processes which offer fast speed (high g m /C) but low intrinsic gain (low g m r o ) 11
12 Nested Miller Example M 8 M 7 M 5 M 9 I ref V in V in+ M V bias Cc2 V out C c M M 6 Intermediate gain stages must be noninverting in order to achieve stable feedback Compensation resistors should also be included to eliminate the impact of RHP zeros  Not shown for simplicity 12
13 Recall the Telescopic Opamp Controlled by CMFB V bias3 V bias2 M 7 M 8 V out M 5 M 6 V out+ V bias1 I ref V in+ M 3 M 2 V in 0 M 9 Key issue is input swing  Can we improve this? 13
14 Replica Bias Technique Controlled by CMFB V bias3 V bias2 M 7 M 8 V out M 5 M 6 V out+ I ref K V bias1 V in+ V in V in+ M 3 M 2 V in M 9 Gulati, JSSC Dec, 1998 Allows current source to maintain its output current even for low V ds using dynamic bias of V gs  Allows extended input commonmode range 14
15 Recall: Slew Rate Issues for Opamps V dd V in V out ideal V in V ss V out slewrate limited Output currents of practical opamps have max limits  Impacts maximum rate of charging or discharging load capacitance,  For large step response, this leads to the output lagging behind the ideal response based on linear modeling We refer to this condition as being slewrate limited Where slewrate is of concern, the output stage of the opamp can be designed to help mitigate this issue  Will lead to extra complexity and perhaps other issues 15
16 Key Observations for Slew Rate Calculations I bias1 I bias2 V id /2 V id /2 V out M 2 R c C c M 3 M 6 Current Limits V id a vd1 I 1 C c a vd2 I 2 V out First stage  Max I 1 = I bias1  Min I 1 = I bias1 Second stage  Max I 2 = I bias2  Min I 2 = Large How can we improve opamp slew rate? 16
17 Class A and AB Amplifiers/Buffers Class A Amplifier Class AB Amplifier/Buffer V bias M 2 I bias M 2 I bias I bias V out V out V in V bias V out V in V in M 2 Class A  Maximum slew rate in one direction is set by the nominal bias current Class AB  Maximum slew rate is not set by the nominal bias current Goal: low nominal bias current 17
18 Class AB Opamp M 9 M 5 M 6 0 I bias I bias V in V in+ V out V bias M 2 V bias V out+ M 3 Costello, JSSC Dec 1985 Low bias current can be achieved for V in+ = V in  Must properly set V bias Much higher current when V in+ V in DC gain can be increased through cascoding of 1 M 7 M 8 2 output stage 18
19 Biasing Network for Class AB Opamp M 9 M 5 M 6 0 I bias I bias V in V in+ V out 3 M 2 5 V out+ 4 6 I ref M 3 I ref 1 M 7 M 8 2 Bias current set by  Ratio of device sizes of  versus I ref current 19
20 Summary Opamps invite a wide variety of techniques to address different application requirements  Cleverness can substantially improve performance and robustness  Changing of CMOS processes over time leads to new techniques which were previously unnecessary or unpractical Four techniques discussed today  Gain boosting  Nested Miller  Replica bias  Class AB stages 20
Analysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications
Analysis and Design of Analog Integrated Circuits Lecture 8 Key Opamp Specifications Michael H. Perrott April 8, 0 Copyright 0 by Michael H. Perrott All rights reserved. Recall: Key Specifications of Opamps
More informationCSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University
CSE 577 Spring 2011 Basic Amplifiers and Differential Amplifier, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University Don t let the computer
More informationDesign of HighSpeed OpAmps for Signal Processing
Design of HighSpeed OpAmps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 837252075 jbaker@ieee.org Abstract  As CMOS
More informationChapter 12 Opertational Amplifier Circuits
1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS opamp architectures: the twostage circuit and the singlestage, folded cascode circuit.
More information6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers
6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication
More informationINF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation
INF3410 Fall 2013 Compensation content Introduction Two Stage Opamps Compensation Slew Rate Systematic Offset Advanced Current Mirrors Operational Transconductance Amplifiers Current Mirror Opamps Folded
More informationAnalog Integrated Circuits Fundamental Building Blocks
Analog Integrated Circuits Fundamental Building Blocks Basic OTA/Opamp architectures Faculty of Electronics Telecommunications and Information Technology Gabor Csipkes Bases of Electronics Department Outline
More informationLecture 240 Cascode Op Amps (3/28/10) Page 2401
Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog
More informationA Compact Foldedcascode Operational Amplifier with ClassAB Output Stage
A Compact Foldedcascode Operational Amplifier with ClassAB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design
More informationA PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER
A PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER M. TaherzadehSani, R. Lotfi, and O. Shoaei ABSTRACT A novel classab architecture for singlestage operational amplifiers is presented. The structure
More informationUniversity of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier
University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim ElSaadi, Mohammed ElTanani, University of Michigan Abstract This paper
More informationBasic OpAmp Design and Compensation. Chapter 6
Basic OpAmp Design and Compensation Chapter 6 6.1 OpAmp applications Typical applications of OpAmps in analog integrated circuits: (a) Amplification and filtering (b) Biasing and regulation (c) Switchedcapacitor
More informationAtypical op amp consists of a differential input stage,
IEEE JOURNAL OF SOLIDSTATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 LowVoltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar SánchezSinencio Abstract This paper presents
More informationDesign and Layout of Two Stage High Bandwidth Operational Amplifier
Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard
More informationRadivoje Đurić, 2015, Analogna Integrisana Kola 1
OTAoutput buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage
More informationChapter 13: Introduction to Switched Capacitor Circuits
Chapter 13: Introduction to Switched Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 SwitchedCapacitor Amplifiers 13.4 SwitchedCapacitor Integrator 13.5 SwitchedCapacitor
More informationDESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER
DESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project
More information6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain Bandwidth Issue for Broadband Amplifiers
6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain Bandwidth Issue for Broadband Amplifiers Massachusetts Institute of Technology February 17, 2005 Copyright 2005
More informationLow Power OpAmp Based on Weak Inversion with MillerCascoded Frequency Compensation
Low Power OpAmp Based on Weak Inversion with MillerCascoded Frequency Compensation Maryam Borhani, Farhad Razaghian Abstract A design for a railtorail input and output operational amplifier is introduced.
More informationANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS
ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,
More informationECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers
ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic
More informationLecture 20: Passive Mixers
EECS 142 Lecture 20: Passive Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture 20 p.
More informationChapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier
Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in doubleended
More informationA Unity Gain FullyDifferential 10bit and 40MSps SampleAndHold Amplifier in 0.18μm CMOS
A Unity Gain FullyDifferential 0bit and 40MSps SampleAndHold Amplifier in 0.8μm CMOS Sanaz Haddadian, and Rahele Hedayati Abstract A 0bit, 40 MSps, sample and hold, implemented in 0.8μm CMOS technology
More informationHigh Gain Amplifier Design for SwitchedCapacitor Circuit Applications
IOSR Journal of VLSI and Signal Processing (IOSRJVSP) Volume 7, Issue 5, Ver. I (Sep.Oct. 2017), PP 6268 eissn: 2319 4200, pissn No. : 2319 4197 www.iosrjournals.org High Gain Amplifier Design for
More informationA low voltage railtorail operational amplifier with constant operation and improved process robustness
Graduate Theses and Dissertations Graduate College 2009 A low voltage railtorail operational amplifier with constant operation and improved process robustness Rien Lerone Beal Iowa State University Follow
More informationBasic OpAmp Design and Compensation. Chapter 6
Basic OpAmp Design and Compensation Chapter 6 6.1 OpAmp applications Typical applications of OpAmps in analog integrated circuits: (a) Amplification and filtering (b) Biasing and regulation (c) Switchedcapacitor
More informationLecture 3 SwitchedCapacitor Circuits Trevor Caldwell
Advanced Analog Circuits Lecture 3 SwitchedCapacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 24pm) Reference Homework 20170111 1 MOD1 & MOD2 ST 2, 3,
More information6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators
6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband
More informationA Compact 2.4V Powerefficient Railtorail Operational Amplifier. Strong inversion operation stops a proposed compact 3V powerefficient
A Compact 2.4V Powerefficient Railtorail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V powerefficient railtorail OpAmp from a lower total supply voltage.
More informationHigh bandwidth low power operational amplifier design and compensation techniques
Graduate Theses and Dissertations Graduate College 2009 High bandwidth low power operational amplifier design and compensation techniques Vaibhav Kumar Iowa State University Follow this and additional
More informationDesign and Simulation of Low Dropout Regulator
Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,
More informationRailToRail Output OpAmp Design with Negative Miller Capacitance Compensation
RailToRail OpAmp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a twostage opamp design is considered using both Miller
More informationCommonSource Amplifiers
Lab 2: CommonSource Amplifiers Introduction The commonsource stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderatetohigh gain,
More informationSystem on a Chip. Prof. Dr. Michael Kraft
System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune
More informationMicroelectronic Devices and Circuits Lecture 22  DiffAmp Anal. III: Cascode, µa Outline Announcements DP:
6.012 Microelectronic Devices and Circuits Lecture 22 DiffAmp Anal. III: Cascode, µa741 Outline Announcements DP: Discussion of Q13, Q13' impact. Gain expressions. Review Output Stages DC Offset of an
More informationConstantGm, RailtoRail Input Stage Operational Amplifier in 0.35μm CMOS
2011 International Conference on Network and Electronics Engineering IPCSIT vol.11 (2011) (2011) IACSIT Press, Singapore ConstantGm, RailtoRail Input Stage Operational Amplifier in 0.35μm CMOS Ali Hassanzadeh¹,
More informationDesign of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching
RESEARCH ARTICLE OPEN ACCESS Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching Annu Saini, Prity Yadav (M.Tech. Student, Department
More informationHigh Speed Communication Circuits and Systems Lecture 14 High Speed Frequency Dividers
High Speed Communication Circuits and Systems Lecture 14 High Speed Frequency Dividers Michael H. Perrott March 19, 2004 Copyright 2004 by Michael H. Perrott All rights reserved. 1 High Speed Frequency
More informationMOSFET Amplifier Biasing
MOSFET Amplifier Biasing Chris Winstead April 6, 2015 Standard Passive Biasing: Two Supplies V D V S R G I D V SS To analyze the DC behavior of this biasing circuit, it is most convenient to use the following
More informationLecture 030 ECE4430 Review III (1/9/04) Page 0301
Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material
More informationBUCK Converter Control Cookbook
BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output
More informationToday s topic: frequency response. Chapter 4
Today s topic: frequency response Chapter 4 1 Smallsignal analysis applies when transistors can be adequately characterized by their operating points and small linear changes about the points. The use
More informationCHAPTER 9 FEEDBACK. NTUEE Electronics L.H. Lu 91
CHAPTER 9 FEEDBACK Chapter Outline 9.1 The General Feedback Structure 9.2 Some Properties of Negative Feedback 9.3 The Four Basic Feedback Topologies 9.4 The Feedback Voltage Amplifier (SeriesShunt) 9.5
More informationLow Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier
RESEARCH ARTICLE OPEN ACCESS Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier Akshay Kumar Kansal 1, Asst Prof. Gayatri Sakya 2 Electronics and Communication Department, 1,2
More informationA Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier
A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier Kehul A. Shah 1, N.M.Devashrayee 2 1(Associative Prof., Department of Electronics and Communication,
More informationR 3 V D. V po C 1 PIN 13 PD2 OUTPUT
MASSACHUSETTS STITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.0 Feedback Systems Spring Term 008 Issued : April, 008 PLL Design Problem Due : Friday, May 9, 008 In this
More informationISSN:
468 Modeling and Design of a CMOS Low Dropout (LDO) Voltage Regulator PRIYADARSHINI JAINAPUR 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore560064,
More informationDesign and implementation of two stage operational amplifier
Design and implementation of two stage operational amplifier Priyanka T 1, Dr. H S Aravind 2, Yatheesh Hg 3 1M.Tech student, Dept, of ECE JSSATE Bengaluru 2Professor and HOD, Dept, of ECE JSSATE Bengaluru
More informationDesign of Low Voltage Low Power CMOS OPAMP
RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OPAMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral
More informationRail to rail CMOS complementary input stage with only one active differential pair at a time
LETTER IEICE Electronics Express, Vol.11, No.12, 1 5 Rail to rail CMOS complementary input stage with only one active differential pair at a time Maria Rodanas Valero 1a), Alejandro RomanLoera 2, Jaime
More informationDesign of a Folded Cascode Operational Amplifier in a 1.2 Micron SiliconCarbide CMOS Process
University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 52017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron
More informationHow to turn an ADC into a DAC: A 110dB THD, 18mW DAC using sampling of the output and feedback to reduce distortion
How to turn an ADC into a DAC: A 110dB THD, 18mW DAC using sampling of the output and feedback to reduce distortion Axel Thomsen, Design Manager Silicon Laboratories Inc. Austin, TX 1 Why this talk? A
More information2. Single Stage OpAmps
/74 2. Single Stage OpAmps Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imbcnm.csic.es Integrated
More informationDESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1
ISSN 22772685 IJESR/June 2014/ Vol4/Issue6/319323 Himanshu Shekhar et al./ International Journal of Engineering & Science Research DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL
More informationAnalog IC Design 2011
Analog IC Design 2011 Lecture 11  Fully differential Opamps Markus Törmänen Markus.Tormanen@eit.lth.se All images are taken from Gray, Hurst, Lewis, Meyer, 5th ed., unless noted otherwise. 111010 Markus
More informationRadivoje Đurić, 2015, Analogna Integrisana Kola 1
Railto torail OTA 1 Railtorail CMOS op amp Generally, railtorail amplifiers are useful in lowvoltage applications, where it is necessary to efficiently use the limited span offered by the power
More informationOperational Amplifier Bandwidth Extension Using Negative Capacitance Generation
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 20060706 Operational Amplifier Bandwidth Extension Using Negative Capacitance Generation Adrian P. Genz Brigham Young University
More informationOBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0
a FEATURES Four High Performance VCAs in a Single Package.2% THD No External Trimming 12 db Gain Range.7 db Gain Matching (Unity Gain) Class A or AB Operation APPLICATIONS Remote, Automatic, or Computer
More informationLecture 350 Low Voltage Op Amps (3/26/02) Page 3501
Lecture 350 Low Voltage Op Amps (3/26/02) Page 3501 LECTURE 350 LOW VOLTAGE OP AMPS (READING: AH 415432) Objective The objective of this presentation is: 1.) How to design standard circuit blocks with
More informationLowNoise Amplifiers
007/Oct 4, 31 1 General Considerations Noise Figure LowNoise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input
More informationECEN 5008: Analog IC Design. Final Exam
ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Timelimited, 150minute exam. When the time is called, all work must stop. Put your initials on
More informationLowvoltage, Highprecision Bandgap Current Reference Circuit
Lowvoltage, Highprecision Bandgap Current Reference Circuit Chong Wei Keat, Harikrishnan Ramiah and Jeevan Kanesan Department of Electrical Engineering, Faculty of Engineering, University of Malaya,
More informationLow Dropout Voltage Regulator Operation and Performance Review
Low Drop Voltage Regulator peration and Performance Review Eric Chen & Alex Leng ntroduction n today s power management systems, high power efficiency becomes necessary to maximize the lifetime of the
More informationDesign and Simulation of an Operational Amplifier with High Gain and Bandwidth for Switched Capacitor Filters
IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) eissn: 22781676,pISSN: 23203331, Volume 11, Issue 1 Ver. II (Jan. Feb. 2016), PP 4753 www.iosrjournals.org Design and Simulation
More informationChapter 15 Goals. accoupled Amplifiers Example of a ThreeStage Amplifier
Chapter 15 Goals accoupled multistage amplifiers including voltage gain, input and output resistances, and smallsignal limitations. dccoupled multistage amplifiers. Darlington configuration and cascode
More informationAn Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs
International Journal of Research in Engineering and Innovation Vol1, Issue6 (2017), 6064 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com
More informationDesign of Pipeline Analog to Digital Converter
Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analogtodigital converter (ADC) architecture is the most popular topology
More informationHigh Gain Low Power Operational Amplifier Design and Compensation Techniques
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 20070214 High Gain Low Power Operational Amplifier Design and Compensation Techniques Lisha Li Brigham Young University  Provo
More informationEFFICIENT DRIVER DESIGN FOR AMOLED DISPLAYS
EFFICIENT DRIVER DESIGN FOR AMOLED DISPLAYS CH. Ganesh and S. Satheesh Kumar Department of SENSE (VLSI Design), VIT University, Vellore India EMail: chokkakulaganesh@gmail.com ABSTRACT The conventional
More information4.5 Biasing in MOS Amplifier Circuits
4.5 Biasing in MOS Amplifier Circuits Biasing: establishing an appropriate DC operating point for the MOSFET  A fundamental step in the design of a MOSFET amplifier circuit An appropriate DC operating
More informationLow Cost, General Purpose High Speed JFET Amplifier AD825
a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:
More informationA Linear CMOS Low DropOut Voltage Regulator in a 0.6µm CMOS Technology
International Journal of Electronics and Electrical Engineering Vol. 3, No. 3, June 2015 A Linear CMOS Low DropOut Voltage Regulator in a 0.6µm CMOS Technology Mohammad Maadi Middle East Technical University,
More informationIN RECENT years, lowdropout linear regulators (LDOs) are
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 563 Design of LowPower Analog Drivers Based on SlewRate Enhancement Circuits for CMOS LowDropout Regulators
More informationTechnologyIndependent CMOS Op Amp in Minimum Channel Length
TechnologyIndependent CMOS Op Amp in Minimum Channel Length A Thesis Presented to The Academic Faculty by Susanta Sengupta In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
More informationSpecify Gain and Phase Margins on All Your Loops
Keywords Venable, frequency response analyzer, power supply, gain and phase margins, feedback loop, openloop gain, output capacitance, stability margins, oscillator, power electronics circuits, voltmeter,
More information20129th International MultiConference on Systems, Signals and Devices An Enhanced Fully Differential Recyclic Folded Cascade OTA
2012 9th International MultiConference on Systems, Signals and Devices An Enhanced Fully Differential Recyclic Folded Cascade OTA Pravanjan Patra, S.Kumaravel Research scholar, ECE Tiruchirappalli, INDIA
More information2.Circuits Design 2.1 Proposed balun LNA topology
3rd International Conference on Multimedia Technology(ICMT 013) Design of 500MHz Wideband RF Frontend Zhengqing Liu, Zhiqun Li + Institute of RF & OEICs, Southeast University, Nanjing, 10096; School
More informationA Low Dropout Voltage Regulator with Enhanced Transconductance Error Amplifier and Small Output Voltage Variations
A Low Dropout Voltage Regulator with Enhanced Transconductance Error Amplifier and Small Output Voltage Variations Ebrahim Abiri*, Mohammad Reza Salehi**, and Sara Mohammadalinejadi*** Department of Electrical
More informationA LOW DROPOUT VOLTAGE REGULATOR WITH ENHANCED TRANSCONDUCTANCE ERROR AMPLIFIER AND SMALL OUTPUT VOLTAGE VARIATIONS
ISSN 13137069 (print) ISSN 13133551 (online) Trakia Journal of Sciences, No 4, pp 441448, 2014 Copyright 2014 Trakia University Available online at: http://www.unisz.bg doi:10.15547/tjs.2014.04.015
More informationLOWVOLTAGE, CLASS AB AND HIGH SLEWRATE TWO STAGE OPERATIONAL AMPLIFIERS. CARLOS FERNANDO NIEVALOZANO, B.Sc.E.E
LOWVOLTAGE, CLASS AB AND HIGH SLEWRATE TWO STAGE OPERATIONAL AMPLIFIERS BY CARLOS FERNANDO NIEVALOZANO, B.Sc.E.E A thesis submitted to the Graduate School in partial fulfillment of the requirements
More informationMultistage Amplifiers
Multistage Amplifiers Singlestage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)
More informationAS THE MOST fundamental analog building block, the
IEEE JOURNAL OF SOLIDSTATE CIRCUITS, VOL. 46, NO. 2, FEBRUARY 2011 445 Impedance Adapting Compensation for LowPower Multistage Amplifiers Xiaohong Peng, Member, IEEE, Willy Sansen, Fellow, IEEE, Ligang
More informationDesign of Low Power High Speed Fully Dynamic CMOS Latched Comparator
International Journal of Engineering Research and Development eissn: 2278067X, pissn: 2278800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.0106 Design of Low Power High Speed Fully Dynamic
More information2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps
2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps Instructor: Dr. Hong Ma Oct. 3, 2007 Fundamental Circuit: Source and Load Sources Power supply Signal Generator Sensor Amplifier output
More informationLOWVOLTAGE operation and optimized powertoperformance
1068 IEEE JOURNAL OF SOLIDSTATE CIRCUITS, VOL. 40, NO. 5, MAY 2005 LowVoltage Super Class AB CMOS OTA Cells With Very High Slew Rate and Power Efficiency Antonio J. LópezMartín, Member, IEEE, Sushmita
More informationSlewrate enhancement and trojan state avoiding for fullydifferential operational amplifier
Graduate Theses and Dissertations Graduate College 2015 Slewrate enhancement and trojan state avoiding for fullydifferential operational amplifier Chongli Cai Iowa State University Follow this and additional
More informationDAT175: Topics in Electronic System Design
DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable
More informationIntegrated Microsystems Laboratory. Franco Maloberti
University of Pavia Integrated Microsystems Laboratory Power Efficient Data Convertes Franco Maloberti franco.maloberti@unipv.it OUTLINE Introduction Managing the noise power budget Challenges of Stateoftheart
More informationQuad Audio Switch REV. B BLOCK DIAGRAM OF ONE SWITCH CHANNEL
a FEATURES CIickless Bilateral Audio Switching Four SPST Switches in a Pin Package Ultralow THD+N:.8% @ khz ( V rms, R L = k ) Low Charge Injection: 3 pc typ High OFF Isolation: db typ (R L = k @ khz)
More informationSingle Supply, Rail to Rail Low Power FETInput Op Amp AD820
a FEATURES True Single Supply Operation Output Swings RailtoRail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load
More informationOperational Amplifiers
Fundamentals of opamp Operation modes Golden rules of opamp Opamp circuits Inverting & noninverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or opamp,
More informationAN742 APPLICATION NOTE
APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 020629106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com Frequency Domain Response of SwitchedCapacitor ADCs by Rob Reeder INTRODUCTION
More informationVishay Siliconix AN724 Designing A HighFrequency, SelfResonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller.
AN724 Designing A HighFrequency, SelfResonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller by Thong Huynh FEATURES Fixed Telecom Input Voltage Range: 30 V to 80 V 5V Output Voltage,
More informationChapter 11. Differential Amplifier Circuits
Chapter 11 Differential Amplifier Circuits 11.0 ntroduction Differential amplifier or diffamp is a multitransistor amplifier. t is the fundamental building block of analog circuit. t is virtually formed
More informationDesign of a 5V Compatible RailtoRail Input/ Output Operational Amplifier in 3.3V SOI CMOS for Wide Temperature Range Operation
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 122006 Design of a 5V Compatible RailtoRail Input/ Output Operational Amplifier in
More informationULTRA HIGH SPEED SINGLE OPERATIONAL AMPLIFIER
ULTRA HIGH SPEED SINGLE OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The NJM711 is an ultra high speed single operational amplifier. It can swings 6V/µs high slew rate and 1GHz gain band width product(1mhz
More informationChapter 10: Operational Amplifiers
Chapter 10: Operational Amplifiers Differential Amplifier Differential amplifier has two identical transistors with two inputs and two outputs. 2 Differential Amplifier Differential amplifier has two identical
More informationMetalOxideSilicon (MOS) devices PMOS. ntype
MetalOxideSilicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.
More informationPHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp
PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and
More information