Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/2/2013

Size: px
Start display at page:

Download "Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/2/2013"

Transcription

1 Micrelectrics Circuit Aalysis ad Desig Dald A. Neae Chapter 3 The Field Effect Trasistr I this chapter, we will: Study ad uderstad the perati ad characteristics f the varius types f MOSFETs. Uderstad ad bece failiar with the dc aalysis ad desig techiques f MOSFET circuits. Exaie three applicatis f MOSFET circuits. Ivestigate curret surce biasig f MOSFET circuits, such as thse used i itegrated circuits. Aalyze the dc biasig f ultistage r ultitrasistr circuits. Neae Micrelectrics, 4e Chapter 3-1 Neae Micrelectrics, 4e Chapter 3-2 Basic Structure f MOS Capacitr MOS Capacitr Uder Bias: Electric Field ad Charge Parallel plate capacitr Negative gate bias: Hles attracted t gate Neae Micrelectrics, 4e Chapter 3-3 Neae Micrelectrics, 4e Chapter 3-4 1

2 Scheatic f -Chael Ehaceet Mde MOSFET Basic Trasistr Operati Befre electr iversi layer is fred After electr iversi layer is fred Neae Micrelectrics, 4e Chapter 3-5 Neae Micrelectrics, 4e Chapter 3-6 Curret Versus Vltage Characteristics: Ehaceet-Mde MOSFET Faily f i D Versus v DS Curves: Ehaceet-Mde MOSFET Neae Micrelectrics, 4e Chapter 3-7 Neae Micrelectrics, 4e Chapter 3-8 2

3 p-chael Ehaceet-Mde MOSFET Sybls fr -Chael Ehaceet-Mde MOSFET Neae Micrelectrics, 4e Chapter 3-9 Neae Micrelectrics, 4e Chapter 3-10 Sybls fr p-chael Ehaceet-Mde MOSFET -Chael Depleti-Mde MOSFET Neae Micrelectrics, 4e Chapter 3-11 Neae Micrelectrics, 4e Chapter

4 Faily f i D Versus v DS Curves: Depleti-Mde MOSFET p-chael Depleti- Mde MOSFET Sybls Neae Micrelectrics, 4e Chapter 3-13 Sybls Neae Micrelectrics, 4e Chapter 3-14 Suary f I-V Relatiships Regi NMOS PMOS Nsaturati v DS <v DS (sat) v SD <v SD (sat) 2 2 i K [2( v V ) v v ] i K [2( v + V ) v v ] D GS TN DS DS D p SG TP SD SD NMOSFET Cducti Paraeters K Wµ C 2L x k ' W 2L Saturati v DS >v DS (sat) v SD >v SD (sat) i D K [ vgs VTN 2 ] i K [ v + VTP ] D p SG 2 PMOSFET K p Wµ pc 2L x k ' p W 2L Trasiti Pt. v DS (sat) v GS - V TN v SD (sat) v SG + V TP Ehaceet Mde Depleti Mde V TN > 0V V TN < 0V V TP < 0V V TP > 0V where: C x ε t x Neae Micrelectrics, 4e Chapter 3-15 Neae Micrelectrics, 4e Chapter

5 MOS Circuits Prble-Slvig Techique: NMOSFET DC Aalysis 1. Assue the trasistr is i saturati. a. V GS > V TN, I D > 0, & V DS V DS (sat) 2. Aalyze circuit usig saturati I-V relatis. 3. Evaluate resultig bias cditi f trasistr. a. If V GS < V TN, trasistr is likely i cutff b. If V DS < V DS (sat), trasistr is likely i saturati regi 4. If iitial assupti is prve icrrect, ake ew assupti ad repeat Steps 2 ad 3. Neae Micrelectrics, 4e Chapter 3-17 Neae Micrelectrics, 4e Chapter 3-18 NMOS C-Surce Circuit PMOS C-Surce Circuit Neae Micrelectrics, 4e Chapter 3-19 Neae Micrelectrics, 4e Chapter

6 Lad Lie ad Mdes f Operati: NMOS C-Surce Circuit MOS Sall-Sigal Aplifier Neae Micrelectrics, 4e Chapter 3-21 Neae Micrelectrics, 4e Chapter 3-22 Micrelectrics Circuit Aalysis ad Desig NMOS C-Surce Circuit Dald A. Neae Chapter 4 Basic FET Aplifiers Neae Micrelectrics, 4e Chapter 3-23 Neae Micrelectrics, 4e Chapter

7 NMOS Trasistr Sall-Sigal Paraeters Siple NMOS Sall-Sigal Equivalet Circuit Values depeds Q-pit g g id vgs 2K r ( id vds r [ λk i v ) ( V 1 ( V d gs GSQ GSQ V V TN ) 2 ) ] 2 1 TN K I [ λi DQ ] 1 DQ Neae Micrelectrics, 4e Chapter 3-25 Neae Micrelectrics, 4e Chapter 3-26 Chael Legth Mdulati: Early Vltage NMOS C-Surce Circuit AC Sall-sigal A V v V i g ( r RD ) Neae Micrelectrics, 4e Chapter 3-27 Neae Micrelectrics, 4e Chapter

8 Prble-Slvig Techique: MOSFET AC Aalysis 1. Aalyze circuit with ly the dc surces t fid quiescet sluti. Trasistr ust be biased i saturati regi fr liear aplifier. 2. Replace eleets with sall-sigal del. 3. Aalyze sall-sigal equivalet circuit, settig dc surces t zer, t prduce the circuit t the tie-varyig iput sigals ly. C-Surce Cfigurati DC aalysis: Cuplig capacitr is assued t be pe. AC aalysis: Cuplig capacitr is assued t be a shrt. DC vltage supply is set t zer vlts. Neae Micrelectrics, 4e Chapter 3-29 Neae Micrelectrics, 4e Chapter 3-30 Sall-Sigal Equivalet Circuit DC Lad Lie Q-pit ear the iddle f the saturati regi fr axiu syetrical utput vltage swig,. A V v V g i ( r RD )( R i Ri + R Si ) Sall AC iput sigal fr utput respse t be liear. Neae Micrelectrics, 4e Chapter 3-31 Neae Micrelectrics, 4e Chapter

9 C-Surce Aplifier with Surce Resistr Sall-Sigal Equivalet Circuit fr C-Surce with Surce Resistr grd Av 1 + g R S Neae Micrelectrics, 4e Chapter 3-33 Neae Micrelectrics, 4e Chapter 3-34 C-Surce Aplifier with Bypass Capacitr NMOS Surce-Fllwer r C Drai Aplifier Sall-sigal equivalet circuit Neae Micrelectrics, 4e Chapter 3-35 Neae Micrelectrics, 4e Chapter

10 Sall-Sigal Equivalet Circuit fr Surce Fllwer Deteriig Output Ipedace NMOS Surce Fllwer A v Ri ( R + R S 1 + RS r i Si g R r ) R O 1 g R S r Neae Micrelectrics, 4e Chapter 3-37 Neae Micrelectrics, 4e Chapter 3-38 Cparis f 3 Basic Aplifiers Cfigurati Vltage Gai Curret Gai Iput Resistace Output Resistace C Surce A v > 1 R TH Mderate t high Surce Fllwer A v 1 R TH Lw C Gate A v > 1 A i 1 Lw Mderate t high Neae Micrelectrics, 4e Chapter

(2) The MOSFET. Review of. Learning Outcome. (Metal-Oxide-Semiconductor Field Effect Transistor) 2.0) Field Effect Transistor (FET)

(2) The MOSFET. Review of. Learning Outcome. (Metal-Oxide-Semiconductor Field Effect Transistor) 2.0) Field Effect Transistor (FET) EEEB73 Electroics Aalysis & esig II () Review of The MOSFET (Metal-Oxide-Semicoductor Field Effect Trasistor) Referece: Neame, Chapter 3 ad Chapter 4 Learig Outcome Able to describe ad use the followig:

More information

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor In this chapter, we will: Study and understand the operation and characteristics of the various types

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor Neamen Microelectronics, 4e Chapter 3-1 In this chapter, we will: Study and understand the operation

More information

Lab 2: Common Source Amplifier.

Lab 2: Common Source Amplifier. epartet of Electrical ad Coputer Egieerig Fall 1 Lab : Coo Source plifier. 1. OBJECTIVES Study ad characterize Coo Source aplifier: Bias CS ap usig MOSFET curret irror; Measure gai of CS ap with resistive

More information

Applying MOSFETs in Amplifier Design. Microelectronic Circuits, 7 th Edition Sedra/Smith Copyright 2010 by Oxford University Press, Inc.

Applying MOSFETs in Amplifier Design. Microelectronic Circuits, 7 th Edition Sedra/Smith Copyright 2010 by Oxford University Press, Inc. Applyig MOSFETs i Aplifier esig Microelectroic Circuits, 7 th Editio Sedra/Sith Copyright 010 by Oxford Uiersity Press, Ic. oltage Trasfer Characteristics (TC) i 1 k ( GS t ) S i R Microelectroic Circuits,

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Lecture 29: Diode connected devices, mirrors, cascode connections. Context

Lecture 29: Diode connected devices, mirrors, cascode connections. Context Lecture 9: Diode coected devices, mirrors, cascode coectios Prof J. S. Smith Cotext Today we will be lookig at more sigle trasistor active circuits ad example problems, ad the startig multi-stage amplifiers

More information

Lecture 28: MOSFET as an Amplifier. Small-Signal Equivalent Circuit Models.

Lecture 28: MOSFET as an Amplifier. Small-Signal Equivalent Circuit Models. hites, EE 320 ecture 28 Page 1 of 7 ecture 28: MOSFET as a Amplifier. Small-Sigal Equivalet Circuit Models. As with the BJT, we ca use MOSFETs as AC small-sigal amplifiers. A example is the so-called coceptual

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Neamen Microelectronics Chapter 4-1 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 4 Basic FET Amplifiers Neamen Microelectronics Chapter 4-2 In this chapter, we will: Investigate

More information

ELEC 350 Electronics I Fall 2014

ELEC 350 Electronics I Fall 2014 ELEC 350 Electroics I Fall 04 Fial Exam Geeral Iformatio Rough breakdow of topic coverage: 0-5% JT fudametals ad regios of operatio 0-40% MOSFET fudametals biasig ad small-sigal modelig 0-5% iodes (p-juctio

More information

Summary of pn-junction (Lec )

Summary of pn-junction (Lec ) Lecture #12 OUTLNE iode aalysis ad applicatios cotiued The MOSFET The MOSFET as a cotrolled resistor Pich-off ad curret saturatio Chael-legth modulatio Velocity saturatio i a short-chael MOSFET Readig

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Due on April 26, 2018 at 7:00 PM

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Due on April 26, 2018 at 7:00 PM Departmet of Electrical ad omputer Egieerig, orell Uiersity EE 350: Microelectroics Sprig 08 Homework 0 Due o April 6, 08 at 7:00 PM Suggested Readigs: a) Lecture otes Importat Notes: ) MAKE SURE THAT

More information

After completing this chapter you will learn

After completing this chapter you will learn CHAPTER 7 Trasistor Amplifiers Microelectroic Circuits, Seeth Editio Sedra/Smith Copyright 015 by Oxford Uiersity Press After completig this chapter you will lear 1. How to use MOSFET as amplifier. How

More information

8. Characteristics of Field Effect Transistor (MOSFET)

8. Characteristics of Field Effect Transistor (MOSFET) 1 8. Characteristics of Field Effect Transistor (MOSFET) 8.1. Objectives The purpose of this experiment is to measure input and output characteristics of n-channel and p- channel field effect transistors

More information

MOSFET Differential Pair

MOSFET Differential Pair EEEB73 Electrcs Aalyss & es (6 MOSFET fferetal Par Able t: Lear Oute escrbe the echas by whch a fferetal-e sal a -e sal are pruce a MOSFET fferetal-aplfer. escrbe the c trasfer characterstcs f a MOSFET

More information

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Device Structure N-Channel MOSFET Providing electrons Pulling electrons (makes current flow) + + + Apply positive voltage to gate: Drives away

More information

Lecture 29: MOSFET Small-Signal Amplifier Examples.

Lecture 29: MOSFET Small-Signal Amplifier Examples. Whites, EE 30 Lecture 9 Page 1 of 8 Lecture 9: MOSFET Small-Sigal Amplifier Examples. We will illustrate the aalysis of small-sigal MOSFET amplifiers through two examples i this lecture. Example N9.1 (text

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.

More information

EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits

EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits Objective This experiment is designed for students to get familiar with the basic properties

More information

L It indicates that g m is proportional to the k, W/L ratio and ( VGS Vt However, a large V GS reduces the allowable signal swing at the drain.

L It indicates that g m is proportional to the k, W/L ratio and ( VGS Vt However, a large V GS reduces the allowable signal swing at the drain. Field-Effect Transistors (FETs) 3.9 MOSFET as an Aplifier Sall-signal equivalent circuit odels Discussions about the MOSFET transconductance W Forula 1: g = k n ( VGS Vt ) L It indicates that g is proportional

More information

RECENTLY, many direct-current (dc)/dc topologies for the

RECENTLY, many direct-current (dc)/dc topologies for the 5154 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 11, NOVEMBER 2011 A Pulse-Frequecy-Mdulated Full-Bridge DC/DC Cverter With Series Bst Capacitr Yg-Saeg Shi, Chag-Sep Kim, ad Sag-Ky Ha, Member,

More information

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and Lecture 16: MOS Transistor models: Linear models, SPICE models Context In the last lecture, we discussed the MOS transistor, and added a correction due to the changing depletion region, called the body

More information

Microelectronic Circuits II. Ch 6 : Building Blocks of Integrated-Circuit Amplifier

Microelectronic Circuits II. Ch 6 : Building Blocks of Integrated-Circuit Amplifier Micrelectrnic Circuits II Ch 6 : Building Blcks f Integrated-Circuit Amplifier 6.1 IC Design Philsphy 6.A Cmparisn f the MOSFET and the BJT 6.2 The Basic Gain Cell CNU EE 6.1-1 Intrductin Basic building

More information

EE 2274 MOSFET BASICS

EE 2274 MOSFET BASICS Pre Lab: Include your CN with prelab. EE 2274 MOSFET BASICS 1. Simulate in LTspice a family of output characteristic curves (cutve tracer) for the 2N7000 NMOS You will need to add the 2N7000 model to LTspice

More information

EE70 - Intro. Electronics

EE70 - Intro. Electronics EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Lecture 16: Small Signal Amplifiers

Lecture 16: Small Signal Amplifiers Lecture 16: Small Signal Amplifiers Prof. Niknejad Lecture Outline Review: Small Signal Analysis Two Port Circuits Voltage Amplifiers Current Amplifiers Transconductance Amps Transresistance Amps Example:

More information

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

More information

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III Lecture 3 Biasing and Loading Single Stage FET Amplifiers The Building Blocks of Analog Circuits III In this lecture you will learn: Current biasing of circuits Current sources and sinks for CS, CG, and

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickso Departmet of Electrical, Computer, ad Eergy Egieerig Uiversity of Colorado, Boulder 4.2.2. The Power MOSFET Gate Source Gate legths approachig oe micro p - p Cosists of may small ehacemetmode

More information

Lecture 17. Small AC Signal Model of FET. Wednesday 6/12/2017 FET Small AC Signal Model 1-1

Lecture 17. Small AC Signal Model of FET. Wednesday 6/12/2017 FET Small AC Signal Model 1-1 Lecture 17 Sall AC Signal Model of FET Wednesday 6/12/2017 FET Sall AC Signal Model 1-1 Outline Sall AC Signal Equivalent Circuits for FETs Aplifier Circuits Exaples Introduction to Power Electronics Power

More information

Lecture 19 ANNOUNCEMENTS. For Problem 4 of HW10, use V DD = 1.8V and V TH = 0.4V Note: Midterm #2 will be held on Thursday 11/15 OUTLINE

Lecture 19 ANNOUNCEMENTS. For Problem 4 of HW10, use V DD = 1.8V and V TH = 0.4V Note: Midterm #2 will be held on Thursday 11/15 OUTLINE Lecture 9 ANNOUNCEMENTS For Proble 4 of HW0, use V DD.8V and V TH 0.4V Note: Midter #2 will be held on Thursday /5 OUTLINE Coon ate stae Source follower ead: Chapter 7.3 7.4 EE05 Fall 2007 Lecture 9, Slide

More information

Thermal nodes Input1 2 o-- ---O Input2 3 o O Junction Temp o

Thermal nodes Input1 2 o-- ---O Input2 3 o O Junction Temp o CMOS NAND Gate with Juctio temperature moscadt CMOS NAND Gate with Juctio temperature Vdd 1 o *-------------------------* ----+ ---+ Thermal odes Iput1 o-----o Iput 3 o-------o Juctio Temp ----+ ---+ 6

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 6: MOS-FET Transistor

Electronic Circuits for Mechatronics ELCT 609 Lecture 6: MOS-FET Transistor Electronic Circuits for Mechatronics ELCT 609 Lecture 6: MOS-FET Transistor Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Introduction Why we call it Transistor? The name came as an

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

Lecture 11. Active Devices -- BJT & MOSFET. Agenda: MOSFET Small-signal Model. Active Devices -- BJT & MOSFET. Cross-section

Lecture 11. Active Devices -- BJT & MOSFET. Agenda: MOSFET Small-signal Model. Active Devices -- BJT & MOSFET. Cross-section EEL6935 Advanced MEMS (Spring 2005) Intructr: Dr. Huikai Xie Device -- BJT & MOSFET Agenda: Lecture Amplifier Baic Device mdel Current mirrr Single-tage amplifier Operatinal amplifier cnfiguratin Cr-ectin

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

Exam 1 ECE 410 Fall 2002

Exam 1 ECE 410 Fall 2002 NAME: Exa 1 ECE 410 Fall 2002 During this exa you are allowed to use a calculator and the equations sheet provided. You are not allowed to speak to or exchange books, papers, calculators, etc. with other

More information

CS and CE amplifiers with loads:

CS and CE amplifiers with loads: CS and CE amplifiers with loads: The Common-Source Circuit The most basic IC MOS amplifier is shown in fig.(1). The source of MOS transistor is grounded, also the drain resistor RD replaced by a constant-current

More information

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

More information

PreLab5 Temperature-Controlled Fan (Due Oct 16)

PreLab5 Temperature-Controlled Fan (Due Oct 16) PreLab5 Temperature-Cntrlled Fan (Due Oct 16) GOAL The gal f Lab 5 is t demnstrate a temperature-cntrlled fan. INTRODUCTION The electrnic measurement f temperature has many applicatins. A temperature-cntrlled

More information

The fan-in of a logic gate is defined as the number of inputs that the gate is designed to handle.

The fan-in of a logic gate is defined as the number of inputs that the gate is designed to handle. 8 Lgic Families Characteristics f Digital IC Threshld Vltage The threshld vltage is defined as that vltage at the input f a gate which causes a change in the state f the utput frm ne lgic level t the ther.

More information

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I MEASUREMENT AND INSTRUMENTATION STUDY NOTES The MOSFET The MOSFET Metal Oxide FET UNIT-I As well as the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available

More information

EDC UNIT IV- Transistor and FET JFET Characteristics EDC Lesson 4- ", Raj Kamal, 1

EDC UNIT IV- Transistor and FET JFET Characteristics EDC Lesson 4- , Raj Kamal, 1 EDC UNIT IV- Transistor and FET Characteristics Lesson-10: JFET Characteristics Qualitative Discussion 2008 EDC Lesson 4- ", Raj Kamal, 1 n-junction FET and p-jfet Symbols D D + D G + V DS V DS V GS S

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors LECTURE NO. - 41 Field Effect Transistors www.mycsvtunotes.in JFET MOSFET CMOS Field Effect transistors - FETs First, why are we using still another transistor? BJTs had a small

More information

A Basis for LDO and It s Thermal Design

A Basis for LDO and It s Thermal Design A Basis fr LDO and It s Thermal Design Hawk Chen Intrductin The AIC LDO family device, a 3-terminal regulatr, can be easily used with all prtectin features that are expected in high perfrmance vltage regulatin

More information

Single Stage Amplifier

Single Stage Amplifier CHAPTE 3 Sle Stae Aplifier Analo IC Analysis and esin 3- Chih-Chen Hsieh Outle. Coon-Source Aplifier. Coon-Source Ap with Source eeneration 3. Coon-ra Aplifier 4. Coon-Gate Aplifier 5. Cascode Aplifier

More information

DEI 1028 Voltage Clamping Circuit

DEI 1028 Voltage Clamping Circuit Device Engineering Incrprated 385 East Alam Drive handler, AZ 85225 Phne: (48) 33-822 Fax: (48) 33-824 E-mail: admin@deiaz.cm DEI 128 ltage lamping ircuit Features Prtectin fr pwer electrnics n 28D avinics

More information

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals.

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. MOSFET Terminals The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. For an n-channel MOSFET, the SOURCE is biased at a lower potential (often

More information

Lecture 34: Designing amplifiers, biasing, frequency response. Context

Lecture 34: Designing amplifiers, biasing, frequency response. Context Lecture 34: Designing amplifiers, biasing, frequency response Prof J. S. Smith Context We will figure out more of the design parameters for the amplifier we looked at in the last lecture, and then we will

More information

NOISE IN A SPECTRUM ANALYZER. Carlo F.M. Carobbi and Fabio Ferrini Department of Information Engineering University of Florence, Italy

NOISE IN A SPECTRUM ANALYZER. Carlo F.M. Carobbi and Fabio Ferrini Department of Information Engineering University of Florence, Italy NOISE IN A SPECTRUM ANALYZER by Carlo.M. Carobbi ad abio errii Departet of Iforatio Egieerig Uiversity of lorece, Italy 1. OBJECTIVE The objective is to easure the oise figure of a spectru aalyzer with

More information

Analog Electronics Circuits FET small signal Analysis. Nagamani A N. Lecturer, PESIT, Bangalore 85. FET small signal Analysis

Analog Electronics Circuits FET small signal Analysis. Nagamani A N. Lecturer, PESIT, Bangalore 85.  FET small signal Analysis Analog Electronics Circuits FET small signal Analysis Nagamani A N Lecturer, PESIT, Bangalore 85 Email nagamani@pes.edu FET small signal Analysis FET introduction and working principles FET small signal

More information

Lab 5: Differential Amplifier.

Lab 5: Differential Amplifier. epartent of Electrical and oputer Engineering Fall 1 Lab 5: ifferential plifier. 1. OBJETIVES Explore the operation of differential FET aplifier with resistive and active loads: Measure the coon and differential

More information

ECE 546 Lecture 12 Integrated Circuits

ECE 546 Lecture 12 Integrated Circuits ECE 546 Lecture 12 Integrated Circuits Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Integrated Circuits IC Requirements

More information

Lecture-45. MOS Field-Effect-Transistors Threshold voltage

Lecture-45. MOS Field-Effect-Transistors Threshold voltage Lecture-45 MOS Field-Effect-Transistors 7.4. Threshold voltage In this section we summarize the calculation of the threshold voltage and discuss the dependence of the threshold voltage on the bias applied

More information

EECS 312: Digital Integrated Circuits Lab Project 2 Extracting Electrical and Physical Parameters from MOSFETs. Teacher: Robert Dick GSI: Shengshuo Lu

EECS 312: Digital Integrated Circuits Lab Project 2 Extracting Electrical and Physical Parameters from MOSFETs. Teacher: Robert Dick GSI: Shengshuo Lu EECS 312: Digital Integrated Circuits Lab Project 2 Extracting Electrical and Physical Parameters from MOSFETs Teacher: Robert Dick GSI: Shengshuo Lu Due 3 October 1 Introduction In this lab project, we

More information

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections. MOSFETS Although the base current in a transistor is usually small (< 0.1 ma), some input devices (e.g. a crystal microphone) may be limited in their output. In order to overcome this, a Field Effect Transistor

More information

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD?

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD? Improved Inverter: Current-Source Pull-Up MOS Inverter with Current-Source Pull-Up What else could be connected between the drain and? Replace resistor with current source I SUP roc i D v IN v OUT Find

More information

MODULE-2: Field Effect Transistors (FET)

MODULE-2: Field Effect Transistors (FET) FORMAT-1B Definition: MODULE-2: Field Effect Transistors (FET) FET is a three terminal electronic device used for variety of applications that match with BJT. In FET, an electric field is established by

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

Experiment 5 Single-Stage MOS Amplifiers

Experiment 5 Single-Stage MOS Amplifiers Experiment 5 Single-Stage MOS Amplifiers B. Cagdaser, H. Chong, R. Lu, and R. T. Howe UC Berkeley EE 105 Fall 2005 1 Objective This is the first lab dealing with the use of transistors in amplifiers. We

More information

Device Technology( Part 2 ): CMOS IC Technologies

Device Technology( Part 2 ): CMOS IC Technologies 1 Device Technology( Part 2 ): CMOS IC Technologies Chapter 3 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Saroj Kumar Patra, Department of Electronics and Telecommunication, Norwegian

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 3 Field Effect Transistors Lecture-8 Junction Field

More information

ECE315 / ECE515 Lecture 8 Date:

ECE315 / ECE515 Lecture 8 Date: ECE35 / ECE55 Lecture 8 Date: 05.09.06 CS Amplifier with Constant Current Source Current Steering Circuits CS Stage Followed by CG Stage Cascode as Current Source Cascode as Amplifier ECE35 / ECE55 CS

More information

HW#3 Solution. Dr. Parker. Fall 2015

HW#3 Solution. Dr. Parker. Fall 2015 HW#3 Solution Dr. Parker Fall 2015 Assume for the problems below that V dd = 1.8 V, V tp0 is -.7 V. and V tn0 is.7 V. V tpbodyeffect is -.9 V. and V tnbodyeffect is.9 V. Assume ß n (k n )= 219.4 W/L µ

More information

ECE315 / ECE515 Lecture 9 Date:

ECE315 / ECE515 Lecture 9 Date: Lecture 9 Date: 03.09.2015 Biasing in MOS Amplifier Circuits Biasing using Single Power Supply The general form of a single-supply MOSFET amplifier biasing circuit is: We typically attempt to satisfy three

More information

MOS Field Effect Transistors

MOS Field Effect Transistors MOS Field Effect Transistors A gate contact gate interconnect n polysilicon gate source contacts W active area (thin oxide area) polysilicon gate contact metal interconnect drain contacts A bulk contact

More information

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN Name: EXAM #3 Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit. Data: Use the following data in all

More information

FET Biasing. Electronic Circuit Design ME /8/2013. Spring Chapter 2. Chapter Contents. Course Support

FET Biasing. Electronic Circuit Design ME /8/2013. Spring Chapter 2. Chapter Contents. Course Support Spring 2013 2 Chapter 2 ME-2401 Electronic Circuit Design 4 th Semester (Mechatronics) SZABIST, Karachi 3 Chapter Contents 4 Course Support humera.rafique@szabist.edu.pk Office: 100 Campus (404) Ext. (120)

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Sigals & Systems Prof. Mark Fowler Note Set #6 D-T Systems: DTFT Aalysis of DT Systems Readig Assigmet: Sectios 5.5 & 5.6 of Kame ad Heck / Course Flow Diagram The arrows here show coceptual flow

More information

List... Package outline... Features Mechanical data... Maximum ratings... Electrical characteristics Rating and characteristic curves...

List... Package outline... Features Mechanical data... Maximum ratings... Electrical characteristics Rating and characteristic curves... SMD P-hannel MOSFET Frmsa MS List List... Package utline... 1 2 Features... 2 Mechanical data... Maximum ratings... 2 2 Electrical characteristics... 3 Rating and characteristic curves... 4~ 5 Pinning

More information

Common-Source Amplifiers

Common-Source Amplifiers Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

More information

Device Technologies. Yau - 1

Device Technologies. Yau - 1 Device Technologies Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Identify differences between analog and digital devices and passive and active components. Explain

More information

Field-Effect Transistors

Field-Effect Transistors Field-Effect Transistors The field-effect transistor 1 is a semiconductor device which depends for its operation on the control of current by an electric field. There are two types of field-effect transistors,

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

List... Package outline... Features Mechanical data... Maximum ratings... Rating and characteristic curves... Pinning information...

List... Package outline... Features Mechanical data... Maximum ratings... Rating and characteristic curves... Pinning information... N-Channel SM MOSFET ES Prtectin FMOSSK38W Frmsa MS List List... Package utline... Features... Mechanical data... Maximum ratings... Rating and characteristic curves... 3~4 Pinning infrmatin... Marking...

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences.

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Discussion #9 EE 05 Spring 2008 Prof. u MOSFETs The standard MOSFET structure is shown

More information

Show the details of the derivation for Eq. (6.33) for the PMOS device.

Show the details of the derivation for Eq. (6.33) for the PMOS device. Problem 6.11 Rahul Mhatre Show the details of the derivation for Eq. (6.33) for the PMOS device. Since the device is a PMOS MOSFET, source and drain are p+ regions and the substrate is an nwell. Therefore,

More information

4.1 Device Structure and Physical Operation

4.1 Device Structure and Physical Operation 10/12/2004 4_1 Device Structure and Physical Operation blank.doc 1/2 4.1 Device Structure and Physical Operation Reading Assignment: pp. 235-248 Chapter 4 covers Field Effect Transistors ( ) Specifically,

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

Electronic Circuits. Junction Field-effect Transistors. Dr. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Junction Field-effect Transistors. Dr. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Junction Field-effect Transistors Dr. Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of the Precedent Lecture Explain the Operation Class A Power

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

Lecture 36: MOSFET Common Drain (Source Follower) Amplifier.

Lecture 36: MOSFET Common Drain (Source Follower) Amplifier. Whites, EE 320 Lecture 36 Page 1 of 11 Lecture 36: MOSFET Coon Drain (Source Follower) Aplifier. The third, and last, discrete-for MOSFET aplifier we ll consider in this course is the coon drain aplifier.

More information

EEEE 381 Electronics I

EEEE 381 Electronics I EEEE 381 Electrnics I Lab #4: MOSFET Differential Pair with Active Lad Overview The differential amplifier is a fundamental building blck in electrnic design. The bjective f this lab is t examine the vltage

More information

hi-rel and space product screening MicroWave Technology

hi-rel and space product screening MicroWave Technology hi-rel ad space product screeig A MicroWave Techology IXYS Compay High-Reliability ad Space-Reliability Screeig Optios Space Qualified Low Noise Amplifiers Model Pkg Freq Liear Gai New (GHz) Gai Fitess

More information

Review Sheet for Midterm #2

Review Sheet for Midterm #2 Review Sheet for Midterm #2 Brian Bircumshaw brianb@eecs.berkeley.edu 1 Miterm #1 Review See Table 1 on the following page for a list of the most important equations you should know from Midterm #1. 2

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 9: FET amplifiers and switching circuits Prof. Manar Mohaisen Department of EEC Engineering Review of the Precedent Lecture Review of basic electronic devices

More information

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 9 The Common-Source Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has

More information

Building Blocks of Integrated-Circuit Amplifiers

Building Blocks of Integrated-Circuit Amplifiers Building Blocks of ntegrated-circuit Amplifiers 1 The Basic Gain Cell CS and CE Amplifiers with Current Source Loads Current-source- or active-loaded CS amplifier Rin A o R A o g r r o g r 0 m o m o Current-source-

More information

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Topic 2. Basic MOS theory & SPICE simulation

Topic 2. Basic MOS theory & SPICE simulation Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

More information

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

Lecture 4. MOS transistor theory

Lecture 4. MOS transistor theory Lecture 4 MOS transistor theory 1.7 Introduction: A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage

More information

ECEN325: Electronics Summer 2018

ECEN325: Electronics Summer 2018 ECEN325: Electronics Summer 2018 Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements & Reading H5 due today Exam 2 on

More information