FET Biasing. Electronic Circuit Design ME /8/2013. Spring Chapter 2. Chapter Contents. Course Support

Size: px
Start display at page:

Download "FET Biasing. Electronic Circuit Design ME /8/2013. Spring Chapter 2. Chapter Contents. Course Support"

Transcription

1 Spring Chapter 2 ME-2401 Electronic Circuit Design 4 th Semester (Mechatronics) SZABIST, Karachi 3 Chapter Contents 4 Course Support humera.rafique@szabist.edu.pk Office: 100 Campus (404) Ext. (120) Official: ZABdesk Fixed biased Self biased Voltage Divider Common Gate Configurations of D-MOSs Configurations of E-MOSs p-channel configurations Practical Applications Computer Analysis 1

2 5 Amplifier Device Analysis: Introduction 6 DC Bias Introduction AC signal Amplifier DC analysis: DC Bias analysis (AC suppressed) Output (Amplified) AC analysis: AC input signal analysis (DC Suppressed) Hybrid analysis: AC & DC Common J Circuits: Introduction 7 Basic Current Relationships: Introduction 8 J Circuits Fixed Bias Self-Bias Voltage-Divider Bias For all s: 0 D-Type MOS Circuits For JS and D-Type MOSs: Self-Bias Voltage-Divider Bias E-Type MOS Circuits Feedback Configuration Voltage-Divider Bias For E-Type MOSs: 1 2

3 9 10 J Configurations Fixed Biased J Fixed Bias: Coupling capacitors (Open for DC & short for AC) Fixed Biased 11 J Fixed Bias: Fixed Biased

4 Fixed Biased 13 Fixed Biased 14 Quiescent Point: Finding Quiescent Point in Lab: Plotting Shockley s equation Finding the solution for the fixed-bias configuration Measuring the quiescent values of I D and V GS Fixed Biased 15 Fixed Biased 16 Example 7-1: Determine the following: Example 7-1: 4

5 Fixed Biased 17 Fixed Biased 18 Example 7-1: Computer Analysis Example 7-1: Computer Analysis ID (ma) example 7-1 X: -2 Y: % J DC Configurations % Fixed bias % Example 7-1 Boylestad RD = 2000; VGG= 2; VDD = 16; IDSS = 10/1000; Vp = -8; VGS = Vp:0.1:0; ID = IDSS*(1-VGS/Vp).^2; plot(vgs,id), grid on, title('example 7-1'), xlabel('vgs(v)'), ylabel('id (ma)') % Fixed bias line hold, plot(-vgg,id,'*') VGS (V) 19 Self Bias 20 J: Self Biased Self Bias 5

6 DC Analysis: Self Bias 21 Calculations: For the indicated loop, Self Bias 22 To solve this equation: Select an I D < I DSS and use the component value of R S to calculate V GS Plot the point identified by I D and V GS. Draw a line from the origin of the axis to this point. Plot the transfer curve using I DSS and V P (V P = V GSoff in specification sheets) and a few points such as I D = I DSS / 4 and I D = I DSS / 2 etc. The Q-point is located where the first line intersects the transfer curve. Use the value of I D at the Q-point (I DQ ) to solve for the other voltages: Self Bias 23 Self Bias 24 Calculations: Calculations: 6

7 Self Bias 25 Self Bias 26 Example 7-2: Determine the following: Example 7-2: Self Bias 27 Self Bias 28 Example 7-2: Example 7-2: 7

8 Self Bias 29 Self Bias 30 Example 7-2: Computer Analysis Example 7-2: Computer Analysis 8 x 10-3 Example 7-2 %% EXAMPLE 7-2 % Self Bias Configuration ID (ma) X: Y: RD = 3300; Rs=1000; IDSS= 8/1000; Vp= -6; VDD= 20; VGS = Vp:0.001:0; ID = IDSS*(1-VGS/Vp).^2; plot(vgs,id), grid on, title('example 7-2'), xlabel('vgs(v)'), ylabel('id (ma)') % self bias line calculations VGS (V) Vgs = -ID*Rs; hold, plot(vgs, ID,'r.-') Self Bias 31 Self Bias 32 Example 7-3: Example 7-3: Computer Analysis Find the quiescent point for the given network: (Example 7.2) Find the quiescent point for the given network: (Example 7.2) %% EXAMPLE 7-3 % Self Bias Configuration RD = 3300; IDSS = 8/1000; Vp = -6; VDD = 20; VGS = Vp:0.001:0; ID = IDSS*(1-VGS/Vp).^2; plot(vgs,id), grid on, title('example 7-3'), xlabel('vgs (V)'), ylabel('id (ma)') % self bias line calculations for Rs = 100 Ohms Rs=100; Vgs = -ID*Rs; hold, plot(vgs, ID,'r.-') % self bias line calculations for Rs = 10k Ohms Rs= 10000; Vgs = -ID*Rs; plot(vgs, ID,'m.-') 8

9 Example 7-3: Computer Analysis Find the quiescent point for the given network: (Example 7.2) Self Bias x 10-3 Example 7-3 ID (ma) X: Y: Voltage Divider Bias VGS (V) VDB: I G = 0 A Voltage Divider Bias 35 VDB: V G is equal to the voltage across divider resistor R 2 : Voltage Divider Bias 36 I D responds to changes in V GS ; Using Kirchhoff s Law: The Q point is established by plotting a line that intersects the transfer curve. 9

10 Voltage Divider Bias 37 Voltage Divider Bias 38 VDB: VDB Q-point: I G = 0 A and I D responds to changes in V GS Using the value of I D at the Q-point, solve for the other variables in the voltage-divider bias circuit: ; Step 1 Plot the line by plotting two points: V GS = V G, I D = 0 A V GS = 0 V, I D = V G / R S Step 2 Plot the transfer curve by plotting I DSS, V P and the calculated values of I D Step 3 The Q-point is located where the line intersects the transfer curve Voltage Divider Bias 39 Voltage Divider Bias 40 Effect of increasing R S : Example 7-5: For the given network, find: a. I DQ and V GSQ b. V D and V S c. V DS and V DG 10

11 Voltage Divider Bias 41 Voltage Divider Bias 42 Example 7-5: Example 7-5: %% EXAMPLE 7-5 % Voltage Divider Bias Configuration R1 = 2.1*10^6; R2 = 270*10^3; RD = 2400; IDSS = 8/1000; Vp = -4; VDD = 16; VGS = Vp:0.1:0; ID = IDSS*(1-VGS/Vp).^2; plot(vgs,id), grid on, title('example 7-5'), xlabel('vgs (V)') ylabel('id (A)') 8 x X: -8 Y: Example 7-5 % Load line (Voltage Divider Bias) calculations % Rs= 1.5k Ohms ID (A) 4 3 X: Y: Rs=1500; Vg = VDD*R2/(R1+R2); Vgs= Vg-(ID*Rs); hold, plot(vgs, ID,'r.-') 2 1 X: e-005 Y: VGS (V) X: Y: 0 Practive 43 Practive 44 Problem 1 & 2: Problem 3 & 6: 11

12 Practive Problem 12 & 14: Common Gate Configuration Common Gate Configuration 47 Common Gate Configuration 48 Common Gate: Common Gate: I V V 12

13 Example 7-4: Determine the following: I DQ, V GSQ, V DS, V D and V S : Common Gate Configuration 49 Example 7-6: Common Gate Configuration 50 Determine the following: (R D = 1.5 kω, R S = 680 Ω, V DD = 12 V) Example 7-6: Common Gate Configuration 51 Special Case: V GSQ = 0 V: Common Gate Configuration 52 %% EXAMPLE 7-6: % Common Gate Configuration RD = 1500; IDSS = 12/1000; Vp = -6; VDD = 12; VGS = Vp:0.1:0; ID = IDSS*(1-VGS/Vp).^2; plot(vgs,id), grid on, title('example 7-6'), xlabel('vgs (V)') ylabel('id (A)') Example 7-6 I V % Load line (Common Gate) calculations for % Rs = 680 Ohms Rs=680; Vss = 0; Vgs= Vss-(ID*Rs); hold, plot(vgs, ID,'r.-') ID (A) X: Y: X: Y: X: 0 Y: 0 V VGS (V) 13

14 53 D-MOSs 54 Configurations: 1. Voltage Divider 2. Self Bias 3. Common Gate Special Case D-MOS Configurations 55 D-MOSs 56 Voltage Divider Bias Voltage Divider Bias: Example 7-7: Determine the following: a. Q-point b. V DS 14

15 D-MOSs Example 7-8: Determine the following: (Data of Ex. 7-7, R S = 150Ω) Self Bias Self Bias: Example 7-9: D-MOSs 59 Determine the following, if R D = 6.2 k, R S = 2.4 k, I DSS = 8mA and V P = 8V. Common Gate (Special case): Example 7-10: Determine V DS for the following network: D-MOSs 60 15

16 61 E-MOSs 62 Configurations: 1. Feedback Arrangement 2. Voltage Divider Arrangement E-MOS Configurations 63 E-MOSs 64 The transfer characteristic for the e-type MOS is very different from that of a simple J or the d-type MOS. Feedback Bias 16

17 E-MOSs 65 E-MOSs 66 Feedback Arrangement: Feedback Q-point: I G = 0 A V RG = 0 V Step 1 Plot the line using V GS = V DD, I D = 0 A I D = V DD / R D, V GS = 0 V V DS = V GS V GS = V DD I D R D Step 2 Using values from the specification sheet, plot the transfer curve with V GSTh, I D = 0 A V GS(on), I D(on) Step 3 The Q-point is located where the line and the transfer curve intersect Step 4 Using the value of I D at the Q-point, solve for the other variables in the bias circuit E-MOSs 67 E-MOSs 68 Example 7-11: Determine I DQ and V DSQ : Example 7-11: 17

18 69 Voltage Divider Bias: Plotting the line and the transfer curve to find the Q-point: E-MOSs 70 Voltage Divider Bias ; E-MOSs 71 E-MOSs 72 Voltage Divider Bias Q-point: Step 1 Plot the line using V GS = V G = (R 2 V DD ) / (R 1 + R 2 ), I D = 0 A I D = V G /R S, V GS = 0 V Example 7-12: Determine I DQ, V GSQ and V DS : Step 2 Using values from the specification sheet, plot the transfer curve with V GSTh, I D = 0 A V GS(on), I D(on) Step 3 The point where the line and the transfer curve intersect is the Q-point. Step 4 Using the value of I D at the Q-point, solve for the other circuit values. 18

19 73 Summary 74 Summary Summary Design 19

20 Design 77 Design 78 Example 7-15: Example 7-16: Determine R S and R D : Determine R S when R D = 1800 Ω, R 1 = 91kΩ, R 2 = 47 kω, V DD = 16 V, V GSQ = -2V. Design Example 7-17: Determine V DD and R D, when V DS = ½ V DD and I D = I D(on). p-channel s 20

21 p-channel s 81 p-channel s 82 For p-channel sthe same calculations and graphs are used, except that the voltage polarities and current directions are reversed. The graphs are mirror images of the n-channel graphs. p-channel D MOS (VDB) p-channel J p-channel s 83 p-channel s 84 p-channel E MOS (FB) p-channel DMOS (VDB) 21

22 p-channel s Example 7-18: Determine I DQ, V GSQ and V DS : Applications Applications 87 Home Task 88 Applications: 1. Voltage Controlled Resistor 2. J Voltmeter 3. Timer Network 4. Fiber Optic System 5. MOS Relay Driver 1. ExerciseProblem1,2and4 2. ExerciseProblem7and11 3. Exercise Problem ExerciseProblem15and17 5. Exercise Problem Exercise Problem Exercise Problem Exercise Problem 31 CH 12 22

23 1. Boylestad References 89 CH 12 23

Chapter 7: FET Biasing

Chapter 7: FET Biasing Chapter 7: FET Biasing Common FET Biasing Circuits JFET Biasing Circuits Fixed Bias Self-Bias oltage-ivider Bias -Type MOSFET Biasing Circuits Self-Bias oltage-ivider Bias E-Type MOSFET Biasing Circuits

More information

Electronic Circuits. Junction Field-effect Transistors. Dr. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Junction Field-effect Transistors. Dr. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Junction Field-effect Transistors Dr. Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of the Precedent Lecture Explain the Operation Class A Power

More information

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 9 The Common-Source Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has

More information

UNIT I - TRANSISTOR BIAS STABILITY

UNIT I - TRANSISTOR BIAS STABILITY UNIT I - TRANSISTOR BIAS STABILITY OBJECTIVE On the completion of this unit the student will understand NEED OF BIASING CONCEPTS OF LOAD LINE Q-POINT AND ITS STABILIZATION AND COMPENSATION DIFFERENT TYPES

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 9: FET amplifiers and switching circuits Prof. Manar Mohaisen Department of EEC Engineering Review of the Precedent Lecture Review of basic electronic devices

More information

MODULE-2: Field Effect Transistors (FET)

MODULE-2: Field Effect Transistors (FET) FORMAT-1B Definition: MODULE-2: Field Effect Transistors (FET) FET is a three terminal electronic device used for variety of applications that match with BJT. In FET, an electric field is established by

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs)

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs) CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs) INTRODUCTION - FETs are voltage controlled devices as opposed to BJT which are current controlled. - There are two types of FETs. o Junction FET (JFET) o Metal

More information

Summary. Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET. A/Lectr. Khalid Shakir Dept. Of Electrical Engineering

Summary. Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET. A/Lectr. Khalid Shakir Dept. Of Electrical Engineering Summary Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET A/Lectr. Khalid Shakir Dept. Of Electrical Engineering College of Engineering Maysan University Page 1-21 Summary The MOSFET The metal oxide

More information

EE351 Laboratory Exercise 4 Field Effect Transistors

EE351 Laboratory Exercise 4 Field Effect Transistors Oct. 28, 2007, rev. July 26, 2009 Introduction The purpose of this laboratory exercise is for students to gain experience making measurements on Junction (JFET) to confirm mathematical models and to gain

More information

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

More information

ET Training. Electronics: JFET Instructor: H.Pham. The JUNCTION FIELF EFFECT TRANSISTOR (JFET) n channel JFET p channel JFET

ET Training. Electronics: JFET Instructor: H.Pham. The JUNCTION FIELF EFFECT TRANSISTOR (JFET) n channel JFET p channel JFET The JUNCTION FIELF EFFECT TRANSISTOR (JFET) n channel JFET p channel JFET 1 The BIASED JFET VDD provides a drain-to-source voltage and supplies current from drain to source VGG sets the reverse-biased

More information

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

FET. FET (field-effect transistor) JFET. Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd

FET. FET (field-effect transistor) JFET. Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd FET Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd FET (field-effect transistor) unipolar devices - unlike BJTs that use both electron and hole current, they operate only with one type

More information

A Practical Approach to Designing MOSFET Amplifiers for a Specific Gain

A Practical Approach to Designing MOSFET Amplifiers for a Specific Gain Paper ID #11289 A Practical Approach to Designing MOSFET Amplifiers for a Specific Gain Prof. James E. Globig, University of Dayton Prof. Globig joined the University of Dayton in August 1998. Before becoming

More information

Analog Electronics Circuits FET small signal Analysis. Nagamani A N. Lecturer, PESIT, Bangalore 85. FET small signal Analysis

Analog Electronics Circuits FET small signal Analysis. Nagamani A N. Lecturer, PESIT, Bangalore 85.  FET small signal Analysis Analog Electronics Circuits FET small signal Analysis Nagamani A N Lecturer, PESIT, Bangalore 85 Email nagamani@pes.edu FET small signal Analysis FET introduction and working principles FET small signal

More information

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics BJT Structure The BJT has three regions called the emitter, base, and collector. Between the regions are junctions as indicated. The base is a thin lightly doped region compared to the

More information

Experiment#: 8. The JFET Characteristics & DC Biasing. Electronics (I) Laboratory. The Hashemite University. Faculty of Engineering

Experiment#: 8. The JFET Characteristics & DC Biasing. Electronics (I) Laboratory. The Hashemite University. Faculty of Engineering The Hashemite University Faculty of Engineering Department of Electrical and Computer Engineering Electronics (I) Laboratory Experiment#: 8 The JFET Characteristics & DC Biasing Student s Name : Ja'afar

More information

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET).

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Q. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Answer: N-Channel Junction Field Effect Transistor (JFET) Construction: Drain(D)

More information

Figure 1: JFET common-source amplifier. A v = V ds V gs

Figure 1: JFET common-source amplifier. A v = V ds V gs Chapter 7: FET Amplifiers Switching and Circuits The Common-Source Amplifier In a common-source (CS) amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

C H A P T E R 5. Amplifier Design

C H A P T E R 5. Amplifier Design C H A P T E 5 Amplifier Design The Common-Source Amplifier v 0 = r ( g mvgs )( D 0 ) A v0 = g m r ( D 0 ) Performing the analysis directly on the circuit diagram with the MOSFET model used implicitly.

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 3 Field Effect Transistors Lecture-8 Junction Field

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors LECTURE NO. - 41 Field Effect Transistors www.mycsvtunotes.in JFET MOSFET CMOS Field Effect transistors - FETs First, why are we using still another transistor? BJTs had a small

More information

Chapter 4 Single-stage MOS amplifiers

Chapter 4 Single-stage MOS amplifiers Chapter 4 Single-stage MOS amplifiers ELEC-H402/CH4: Single-stage MOS amplifiers 1 Single-stage MOS amplifiers NMOS as an amplifier: example of common-source circuit NMOS amplifier example Introduction

More information

Field Effect Transistors

Field Effect Transistors Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

More information

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.

More information

APPLICATION NOTE AN-009. GaN Essentials. AN-009: Bias Sequencing and Temperature Compensation for GaN HEMTs

APPLICATION NOTE AN-009. GaN Essentials. AN-009: Bias Sequencing and Temperature Compensation for GaN HEMTs GaN Essentials AN-009: Bias Sequencing and Temperature Compensation for GaN HEMTs NITRONEX CORPORATION 1 OCTOBER 2008 GaN Essentials: Bias Sequencing and Temperature Compensation of GaN HEMTs 1. Table

More information

ITT Technical Institute. ET215 Devices 1. Chapter

ITT Technical Institute. ET215 Devices 1. Chapter ITT Technical Institute ET215 Devices 1 Chapter 4.6 4.7 Chapter 4 Section 4.6 FET Linear Amplifiers Transconductance of FETs The output drain current is controlled by the input signal voltage. As we earlier

More information

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS AV18-AFC ANALOG FUNDAMENTALS C Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS 1 ANALOG FUNDAMENTALS C AV18-AFC Overview This topic identifies the basic FET amplifier configurations and their principles of

More information

The Common Source JFET Amplifier

The Common Source JFET Amplifier The Common Source JFET Amplifier Small signal amplifiers can also be made using Field Effect Transistors or FET's for short. These devices have the advantage over bipolar transistors of having an extremely

More information

BJT & FET Frequency Response

BJT & FET Frequency Response Chapter 4 BJT & FET Spring 2012 4 th Semester Mechatronics SZABIST, Karachi 2 Course Support humera.rafique@szabist.edu.pk Office: 100 Campus (404) Official: ZABdesk Subsidiary: https://sites.google.com/site/zabistmechatronics/home/spring-2012/ecd

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 13 JFETs Topics Covered in Chapter 13 Basic ideas Drain curves Transconductance curve Biasing in the ohmic region Biasing in the active region

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

ECE 2274 MOSFET Voltmeter. Richard Cooper

ECE 2274 MOSFET Voltmeter. Richard Cooper ECE 2274 MOSFET Voltmeter Richard Cooper Pre-Lab for MOSFET Voltmeter Voltmeter design: Build a MOSFET (2N7000) voltmeter in LTspice. The MOSFETs in the voltmeter act as switches. To turn on the MOSFET.

More information

Chapter 8: Field Effect Transistors

Chapter 8: Field Effect Transistors Chapter 8: Field Effect Transistors Transistors are different from the basic electronic elements in that they have three terminals. Consequently, we need more parameters to describe their behavior than

More information

EE4902 C Lab 7

EE4902 C Lab 7 EE4902 C2007 - Lab 7 MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important

More information

ECE315 / ECE515 Lecture 9 Date:

ECE315 / ECE515 Lecture 9 Date: Lecture 9 Date: 03.09.2015 Biasing in MOS Amplifier Circuits Biasing using Single Power Supply The general form of a single-supply MOSFET amplifier biasing circuit is: We typically attempt to satisfy three

More information

4.5 Biasing in MOS Amplifier Circuits

4.5 Biasing in MOS Amplifier Circuits 4.5 Biasing in MOS Amplifier Circuits Biasing: establishing an appropriate DC operating point for the MOSFET - A fundamental step in the design of a MOSFET amplifier circuit An appropriate DC operating

More information

Electronic Circuits II - Revision

Electronic Circuits II - Revision Electronic Circuits II - Revision -1 / 16 - T & F # 1 A bypass capacitor in a CE amplifier decreases the voltage gain. 2 If RC in a CE amplifier is increased, the voltage gain is reduced. 3 4 5 The load

More information

6. Field-Effect Transistor

6. Field-Effect Transistor 6. Outline: Introduction to three types of FET: JFET MOSFET & CMOS MESFET Constructions, Characteristics & Transfer curves of: JFET & MOSFET Introduction The field-effect transistor (FET) is a threeterminal

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Frequently Asked Questions

Frequently Asked Questions Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 13 Lecture Title: Analog Circuits

More information

Chapter 5: Field Effect Transistors

Chapter 5: Field Effect Transistors Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Pre-Report Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

THE UNIVERSITY OF TRINIDAD & TOBAGO

THE UNIVERSITY OF TRINIDAD & TOBAGO THE UNIVERSITY OF TRINIDAD & TOBAGO ALTERNATE FINAL ASSESSMENT/EXAMINATIONS APRIL/MAY 014 Course Code and Title: ELEC 017 Electronics II Programme: BASc. Computer Engineering Date and Time: Duration: 3

More information

Lecture (03) The JFET

Lecture (03) The JFET Lecture (03) The JFET By: Dr. Ahmed ElShafee ١ JFET Basic Structure Figure shows the basic structure of an n channel JFET (junction field effect transistor). Wire leads are connected to each end of the

More information

FET. Field Effect Transistors ELEKTRONIKA KONTROL. Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya. p + S n n-channel. Gate. Basic structure.

FET. Field Effect Transistors ELEKTRONIKA KONTROL. Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya. p + S n n-channel. Gate. Basic structure. FET Field Effect Transistors ELEKTRONIKA KONTROL Basic structure Gate G Source S n n-channel Cross section p + p + p + G Depletion region Drain D Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya S Channel

More information

1.2Vdc 1N4002. Anode V+

1.2Vdc 1N4002. Anode V+ ECE 2274 Pre-Lab for MOSFET Night Light and Voltmeter 1. Night Light The purpose of this part of experiment is to use the switching characteristics of the MOSFET to design a Night Light using a LED, MOSFET,

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 7: MOS-FET Amplifiers

Electronic Circuits for Mechatronics ELCT 609 Lecture 7: MOS-FET Amplifiers Electronic Circuits for Mechatronics ELCT 609 Lecture 7: MOS-FET Amplifiers Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Enhancement N-MOS Modes of Operation Mode V GS I DS V DS Cutoff

More information

(a) Current-controlled and (b) voltage-controlled amplifiers.

(a) Current-controlled and (b) voltage-controlled amplifiers. Fig. 6.1 (a) Current-controlled and (b) voltage-controlled amplifiers. Fig. 6.2 Drs. Ian Munro Ross (front) and G. C. Dacey jointly developed an experimental procedure for measuring the characteristics

More information

Electronic Circuits Laboratory EE462G Lab #6. Small Signal Models: The MOSFET Common Source Amplifier

Electronic Circuits Laboratory EE462G Lab #6. Small Signal Models: The MOSFET Common Source Amplifier Electronic Circuits Laboratory EE462G Lab #6 Small Signal Models: The MOSFET Common Source Amplifier AC and DC Analysis Amplifier circuits have DC and AC components that can be analyzed separately. The

More information

Electronics I. Last Time

Electronics I. Last Time (Rev. 1.0) Electronics I Lecture 28 Introduction to Field Effect Transistors (FET s) Muhammad Tilal Department of Electrical Engineering CIIT Attock Campus The logo and is the property of CIIT, Pakistan

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

Design and Analysis of Two-Stage Amplifier

Design and Analysis of Two-Stage Amplifier Design and Analysis of Two-Stage Amplifier Introduction This report discusses the design and analysis of a two stage amplifier. An FET based common source amplifier was designed.fet was preferred over

More information

Name: Date: Score: / (75)

Name: Date: Score: / (75) Name: Date: Score: / (75) This lab MUST be done in your normal lab time NO LATE LABS Bring Textbook to Lab. You don t need to use your lab notebook, just fill in the blanks, you ll be graded when you re

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 9 - MOSFET Amplifier Configurations Overview: The purpose of this experiment is to familiarize

More information

Lab 5: MOSFET I-V Characteristics

Lab 5: MOSFET I-V Characteristics 1. Learning Outcomes Lab 5: MOSFET I-V Characteristics In this lab, students will determine the MOSFET I-V characteristics of both a P-Channel MOSFET and an N- Channel MOSFET. Also examined is the effect

More information

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 11-1 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of

More information

EXPERIMENT NO -9 TRANSITOR COMMON -BASE CONFIGURATION CHARACTERISTICS

EXPERIMENT NO -9 TRANSITOR COMMON -BASE CONFIGURATION CHARACTERISTICS Contents EXPERIMENT NO -9 TRANSITOR COMMON -BASE CONFIGURATION CHARACTERISTICS... 3 EXPERIMENT NO -10. FET CHARACTERISTICS... 8 Experiment # 11 Non-inverting amplifier... 13 Experiment #11(B) Inverting

More information

Field Effect Transistor (FET) FET 1-1

Field Effect Transistor (FET) FET 1-1 Field Effect Transistor (FET) FET 1-1 Outline MOSFET transistors ntroduction to MOSFET MOSFET Types epletion-type MOSFET Characteristics Biasing Circuits and Examples Comparison between JFET and epletion-type

More information

MODEL ANSWER SUMMER 17 EXAMINATION 17319

MODEL ANSWER SUMMER 17 EXAMINATION 17319 MODEL ANSWER SUMMER 17 EXAMINATION 17319 Subject Title: Electronics Devices and Circuits. Subject Code: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word

More information

Lab 5: MOSFET I-V Characteristics

Lab 5: MOSFET I-V Characteristics 1. Learning Outcomes Lab 5: MOSFET I-V Characteristics In this lab, students will determine the MOSFET I-V characteristics of both a P-Channel MOSFET and an N- Channel MOSFET. Also examined is the effect

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST 2 Date : 19/09/2016 Max Marks: 40 Subject & Code : Analog and Digital Electronics (15CS32) Section: III A and B Name of faculty: Deepti.C Time : 8:30 am-10:00 am Note: Answer five

More information

Physics 481 Experiment 3

Physics 481 Experiment 3 Physics 481 Experiment 3 LAST Name (print) FIRST Name (print) TRANSISTORS (BJT & FET) npn BJT n-channel MOSFET 1 Experiment 3 Transistors: BJT & FET In this experiment transistor properties and transistor

More information

ITT Technical Institute. ET215 Devices 1. Unit 7 Chapter 4, Sections

ITT Technical Institute. ET215 Devices 1. Unit 7 Chapter 4, Sections ITT Technical Institute ET215 Devices 1 Unit 7 Chapter 4, Sections 4.1 4.3 Chapter 4 Section 4.1 Structure of Field-Effect Transistors Recall that the BJT is a current-controlling device; the field-effect

More information

INTRODUCTION TO ELECTRONICS EHB 222E

INTRODUCTION TO ELECTRONICS EHB 222E INTRODUCTION TO ELECTRONICS EHB 222E MOS Field Effect Transistors (MOSFETS II) MOSFETS 1/ INTRODUCTION TO ELECTRONICS 1 MOSFETS Amplifiers Cut off when v GS < V t v DS decreases starting point A, once

More information

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN OBJECTIVES 1. To design and DC bias the JFET transistor oscillator for a 9.545 MHz sinusoidal signal. 2. To simulate JFET transistor oscillator using MicroCap

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source)

L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source) L.107.4 MOSFETS, IDENTIFICATION, CURVES. PAGE 1 I. Review of JFET (DRAW symbol for n-channel type, with grounded source) 1. "normally on" device A. current from source to drain when V G = 0 no need to

More information

Gallium Nitride MMIC Power Amplifier

Gallium Nitride MMIC Power Amplifier Gallium Nitride MMIC Power Amplifier August 2015 Rev 4 DESCRIPTION AMCOM s is an ultra-broadband GaN MMIC power amplifier. It has 21dB gain, and >41dBm output power over the 0.03 to 6GHz band. This MMIC

More information

8. Characteristics of Field Effect Transistor (MOSFET)

8. Characteristics of Field Effect Transistor (MOSFET) 1 8. Characteristics of Field Effect Transistor (MOSFET) 8.1. Objectives The purpose of this experiment is to measure input and output characteristics of n-channel and p- channel field effect transistors

More information

Department of Biomedical Engineering BME 317. Medical Electronics Lab

Department of Biomedical Engineering BME 317. Medical Electronics Lab Department of Biomedical Engineering BME 317 Medical Electronics Lab Modified by Dr.Husam AL.Hamad and Eng.Roba AL.Omari Summer 2009 Exp # Title Page 1 2 3 4 An Introduction To Basic Laboratory Equipments

More information

AN102. JFET Biasing Techniques. Introduction. Three Basic Circuits. Constant-Voltage Bias

AN102. JFET Biasing Techniques. Introduction. Three Basic Circuits. Constant-Voltage Bias AN12 JFET Biasing Techniques Introduction Engineers who are not familiar with proper biasing methods often design FET amplifiers that are unnecessarily sensitive to device characteristics. One way to obtain

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 7 DC BIASING FETS

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 7 DC BIASING FETS KOM751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU Control and Automation Dept. 1 7 DC BIASING FETS Most of the content is from the textbook: Electronic devices and circuit theory, Robert L. Boylestad,

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

ITT Technical Institute. ET215 Devices 1. Unit 8 Chapter 4, Sections

ITT Technical Institute. ET215 Devices 1. Unit 8 Chapter 4, Sections ITT Technical Institute ET215 Devices 1 Unit 8 Chapter 4, Sections 4.4 4.5 Chapter 4 Section 4.4 MOSFET Characteristics A Metal-Oxide semiconductor field-effect transistor is the other major category of

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EC 6304 ELECTRONIC CIRCUITS I. (Regulations 2013)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EC 6304 ELECTRONIC CIRCUITS I. (Regulations 2013) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EC 6304 ELECTRONIC CIRCUITS I (Regulations 2013 UNIT-1 Part A 1. What is a Q-point? [N/D 16] The operating point also known as quiescent

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Prof. Paolo Colantonio a.a. 20 2 Field effect transistors (FETs) are probably the simplest form of transistor, widely used in both analogue and digital applications They are characterised by a very high

More information

Lecture 16: Small Signal Amplifiers

Lecture 16: Small Signal Amplifiers Lecture 16: Small Signal Amplifiers Prof. Niknejad Lecture Outline Review: Small Signal Analysis Two Port Circuits Voltage Amplifiers Current Amplifiers Transconductance Amps Transresistance Amps Example:

More information

MOSFET Amplifier Biasing

MOSFET Amplifier Biasing MOSFET Amplifier Biasing Chris Winstead April 6, 2015 Standard Passive Biasing: Two Supplies V D V S R G I D V SS To analyze the DC behavior of this biasing circuit, it is most convenient to use the following

More information

UNIT II JFET, MOSFET, SCR & UJT

UNIT II JFET, MOSFET, SCR & UJT UNIT II JFET, MOSFET, SCR & UJT JFET JFET as an Amplifier and its Output Characteristics JFET Applications MOSFET Working Principles, SCR Equivalent Circuit and V-I Characteristics. SCR as a Half wave

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

UNIT 4 BIASING AND STABILIZATION

UNIT 4 BIASING AND STABILIZATION UNIT 4 BIASING AND STABILIZATION TRANSISTOR BIASING: To operate the transistor in the desired region, we have to apply external dec voltages of correct polarity and magnitude to the two junctions of the

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 6 FIELD-EFFECT TRANSISTORS

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 6 FIELD-EFFECT TRANSISTORS KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 6 FIELD-EFFECT TRANSISTORS Most of the content is from the textbook: Electronic devices and circuit theory, Robert

More information

Common-Source Amplifiers

Common-Source Amplifiers Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Spring Term 2007 6.101 Introductory Analog Electronics Laboratory Laboratory

More information

Boosting output in high-voltage op-amps with a current buffer

Boosting output in high-voltage op-amps with a current buffer Boosting output in high-voltage op-amps with a current buffer Author: Joe Kyriakakis, Apex Microtechnology Date: 02/18/2014 Categories: Current, Design Tools, High Voltage, MOSFETs & Power MOSFETs, Op

More information

EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices

EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices EE 230 Fall 2006 Experiment 11 Small Signal Linear Operation of Nonlinear Devices Purpose: The purpose of this laboratory experiment is to investigate the use of small signal concepts for designing and

More information

Questions on JFET: 1) Which of the following component is a unipolar device?

Questions on JFET: 1) Which of the following component is a unipolar device? Questions on JFET: 1) Which of the following component is a unipolar device? a) BJT b) FET c) DJT d) EFT 2) Current Conduction in FET takes place due e) Majority charge carriers only f) Minority charge

More information

Subject Code: Model Answer Page No: / N

Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

DIGITAL VLSI LAB ASSIGNMENT 1

DIGITAL VLSI LAB ASSIGNMENT 1 DIGITAL VLSI LAB ASSIGNMENT 1 Problem 1: NMOS and PMOS plots using Cadence. In this exercise, you are required to generate both NMOS and PMOS I-V device characteristics (I/P and O/P) using Cadence (Use

More information

Chapter 6: Field-Effect Transistors

Chapter 6: Field-Effect Transistors Chapter 6: Field-Effect Transistors Islamic University of Gaza Dr. Talal Skaik MOSFETs MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful. There are

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Neamen Microelectronics Chapter 4-1 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 4 Basic FET Amplifiers Neamen Microelectronics Chapter 4-2 In this chapter, we will: Investigate

More information

FP1189. Functional Diagram. Product Description. Product Features. Applications. Typical Performance (5) Specifications. Absolute Maximum Rating

FP1189. Functional Diagram. Product Description. Product Features. Applications. Typical Performance (5) Specifications. Absolute Maximum Rating FP9 Product Features MHz +7 dbm PdB + dbm Output IP High Drain Efficiency. db @ 9 MHz Lead-free/Green/RoHScompliant SOT-9 Package MTTF > Years Applications Mobile Infrastructure CATV / DBS W-LAN / ISM

More information

INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

More information

FP2189. Functional Diagram. Product Description. Product Features. Applications. Typical Performance (5) Specifications. Absolute Maximum Rating

FP2189. Functional Diagram. Product Description. Product Features. Applications. Typical Performance (5) Specifications. Absolute Maximum Rating FP89 -Watt HFET Product Features 5 MHz +3 dbm PdB +3 dbm Output IP3 High Drain Efficiency 8.5 db @ 9 MHz Lead-free/Green/RoHS-compliant SOT-89 Package MTTF > Years Applications Mobile Infrastructure CATV

More information