RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

Size: px
Start display at page:

Download "RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET"

Transcription

1 Technical Data RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET RF Power transistor designed for applications operating at frequencies between 960 and 400 MHz, % to 20% duty cycle. This device is suitable for use in pulsed applications. Typical Pulsed Performance: V DD =50Volts,I DQ =0mA,P out = 0 Watts Peak (2 W Avg.), f = 090 MHz, Pulse Width = 00 μsec, Duty Cycle = 20% Power Gain 25 db Drain Efficiency 69% Features Characterized with Series Equivalent Large--Signal Impedance Parameters Qualified Up to a Maximum of 50 V DD Operation Integrated ESD Protection Greater Negative Gate--Source Voltage Range for Improved Class C Operation RoHS Compliant In Tape and Reel. R4 Suffix = 00 Units per 2 mm, 7 inch Reel. Document Number: MRF6V000N Rev. 3, 7/ MHz, 0 W, 50 V PULSED LATERAL N -CHANNEL RF POWER MOSFET CASE , STYLE PLD -.5 PLASTIC Table. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage V DSS --0.5, +00 Vdc Gate--Source Voltage V GS --6.0, +0 Vdc Storage Temperature Range T stg to +50 C Case Operating Temperature T C 50 C Operating Junction Temperature T J 200 C Table 2. Thermal Characteristics Characteristic Symbol Value (,2) Unit Thermal Resistance, Junction to Case Case Temperature 79 C, 0 W Pulsed, 00 μsec Pulse Width, 20% Duty Cycle Z θjc.6 C/W. MTTF calculator available at Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 2. Refer to AN955, Thermal Measurement Methodology of RF Power Amplifiers. Go to Select Documentation/Application Notes -- AN955., Inc., All rights reserved.

2 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A4) C (Minimum) Machine Model (per EIA/JESD22--A5) A (Minimum) Charge Device Model (per JESD22--C0) IV (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Rating Package Peak Temperature Unit Per JESD22--A3, IPC/JEDEC J--STD C Table 5. Electrical Characteristics (T A =25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Off Characteristics Gate--Source Leakage Current (V GS =5Vdc,V DS =0Vdc) Drain--Source Breakdown Voltage (V GS =0Vdc,I D =7mA) Zero Gate Voltage Drain Leakage Current (V DS =50Vdc,V GS =0Vdc) Zero Gate Voltage Drain Leakage Current (V DS = 00 Vdc, V GS =0Vdc) On Characteristics Gate Threshold Voltage (V DS =0Vdc,I D =36μAdc) Gate Quiescent Voltage (V DD =50Vdc,I D = 0 madc, Measured in Functional Test) Drain--Source On--Voltage (V GS =0Vdc,I D =70mAdc) Dynamic Characteristics Reverse Transfer Capacitance (V DS =50Vdc± 30 MHz, V GS =0Vdc) Output Capacitance (V DS =50Vdc± 30 MHz, V GS =0Vdc) Input Capacitance (V DS =50Vdc,V GS =0Vdc± 30 MHz) I GSS 0 μadc V (BR)DSS 00 Vdc I DSS 50 μadc I DSS 2.5 ma V GS(th) Vdc V GS(Q) Vdc V DS(on) 0.2 Vdc C rss 0. pf C oss 3.38 pf C iss 9.55 pf Functional Tests (In Freescale Test Fixture, 50 ohm system) V DD =50Vdc,I DQ =0mA,P out = 0 W Peak (2 W Avg.), f = 090 MHz, Pulsed, 00 μsec Pulse Width, 20% Duty Cycle Power Gain G ps db Drain Efficiency η D % Input Return Loss IRL db 2

3 V BIAS + C2 L C3 C2 C9 C8 C7 C3 V SUPPLY RF INPUT Z C Z2 Z3 C5 C6 Z4 C6 C4 Z5 R Z6 R2 Z7 DUT Z8 C0 Z9 C5 L2 Z0 C Z C4 Z2 RF OUTPUT Z Z2 Z3 Z4 Z5 Z6 Z x Microstrip x 0.20 Microstrip x Microstrip x Microstrip x x 0.85 Taper 0.35 x Microstrip 0.74 x Microstrip Z x Microstrip Z x Microstrip Z x Microstip Z x Microstrip Z x Microstrip PCB Arlon CuClad 250GX , 0.030, ε r =2.55 Figure. MR6V000NR4 Test Circuit Schematic Table 6. MR6V000NR4 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C, C9, C2 43 pf Chip Capacitors ATC00B430JT500XT ATC C2 0 μf, 35 V Tantalum Capacitor T49D06K035AT Kemet C3, C8 2.2 μf, 00 V Chip Capacitors GQM885C2A2R2CB0B Murata C4, C6 7.5 pf Chip Capacitors ATC00B7R5CT500XT ATC C5, C6 3.0 pf Chip Capacitors ATC00B3R0CT500XT ATC C7 0. μf Chip Capacitor C206C04K5RACTR Kemet C0, C5 0.3 pf Chip Capacitors ATC00B0R3BT500XT ATC C 5.6 pf Chip Capacitor ATC00B5R6CT500XT ATC C3 470 μf, 63 V Chip Capacitor 477KXM063M Illlinois Capacitor C4 47 pf Chip Capacitor ATC00B470JT500XT ATC L 8 nh Inductor A03TKLC Coilcraft L2 5 nh Inductor A02TKLC Coilcraft R 3300 Ω, /4 W Chip Resistor CRCW206330FKEA Vishay R2 0 Ω, /4 W Chip Resistor CRCW2060R0FKEA Vishay 3

4 C2 L C3 R C2 C8 C7 C9 C3 C C6 C5 C4 C6 R2 C5 C0 L2 C C4 MRF6V000N Rev. 3 Figure 2. Test Circuit Component Layout 4

5 TYPICAL CHARACTERISTICS 00 Measured with ±30 MHz V GS =0Vdc 0 C, CAPACITANCE (pf) 0 C iss C oss I D, DRAIN CURRENT (AMPS) T J = 200 C T J = 50 C T J = 75 C 0. C rss T C =25 C 0 00 V DS, DRAIN--SOURCE VOLTAGE (VOLTS) V DS, DRAIN--SOURCE VOLTAGE (VOLTS) Figure 3. Capacitance versus Drain -Source Voltage Figure 4. DC Safe Operating Area G ps, POWER GAIN (db) G ps η D V DD =50Vdc,I DQ = 0 ma, f = 090 MHz Pulse Width = 00 μsec, Duty Cycle = 20% P out, OUTPUT POWER (WATTS) PULSED Figure 5. Pulsed Power Gain and Drain Efficiency versus Output Power 70 η D, DRAIN EFFICIENCY (%) P out, OUTPUT POWER (dbm) PULSED P3dB = dbm (.65 W) PdB = 40.8 dbm (0.42 W) Ideal Actual V DD =50Vdc,I DQ = 0 ma, f = 090 MHz Pulse Width = 00 μsec, Duty Cycle = 20% P in, INPUT POWER (dbm) PULSED Figure 6. Pulsed Output Power versus Input Power G ps, POWER GAIN (db) V DD =30V 35 V 40 V 45 V P out, OUTPUT POWER (WATTS) PULSED Figure 7. Pulsed Power Gain versus Output Power 50 V I DQ = 0 ma, f = 090 MHz Pulse Width = 00 μsec Duty Cycle = 20% P out, OUTPUT POWER (WATTS) PULSED T C =--30_C 25_C P in, INPUT POWER (WATTS) PULSED Figure 8. Pulsed Output Power versus Input Power 85_C V DD =50Vdc I DQ =0mA f = 090 MHz Pulse Width = 00 μsec Duty Cycle = 20%

6 TYPICAL CHARACTERISTICS η D G ps, POWER GAIN (db) _C 25_C V DD =50Vdc,I DQ = 0 ma, f = 090 MHz Pulse Width = 00 μsec, Duty Cycle = 20% P out, OUTPUT POWER (WATTS) PULSED T C =--30_C Figure 9. Pulsed Power Gain and Drain Efficiency versus Output Power G ps η D, DRAIN EFFICIENCY (%) MTTF (HOURS) T J, JUNCTION TEMPERATURE ( C) This above graph displays calculated MTTF in hours when the device is operated at V DD =50Vdc,P out = 0 W Peak, Pulse Width = 00 μsec, Duty Cycle = 20%, and η D = 69%. MTTF calculator available at Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 0. MTTF versus Junction Temperature 250 6

7 Z o =50Ω Z load f = 090 MHz Z source f = 090 MHz f MHz V DD =50Vdc,I DQ =0mA,P out = 0 W Peak Z source Ω Z load Ω j j34.32 Z source = Test circuit impedance as measured from gate to ground. Z load = Test circuit impedance as measured from drain to ground. Input Matching Network Device Under Test Output Matching Network Z source Z load Figure. Series Equivalent Source and Load Impedance 7

8 PACKAGE DIMENSIONS A F B D 2 R L ZONE V ZONE W G Q 4 N K H 4 3 ZONE X VIEW Y--Y S (0.89) X 45_ 5_ U C P Y NOTES:. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y4.5M, CONTROLLING DIMENSION: INCH 3. RESIN BLEED/FLASH ALLOWABLE IN ZONE V, W, AND X. STYLE : PIN. DRAIN 2. GATE 3. SOURCE 4. SOURCE CASE ISSUE D PLD -.5 PLASTIC Y 0_ DRAFT E inches mm SOLDER FOOTPRINT INCHES MILLIMETERS DIM MIN MAX MIN MAX A B C D E F G H J K L N P Q R S U ZONE V ZONE W ZONE X

9 PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following documents to aid your design process. Application Notes AN955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB22: Using Data Sheet Impedances for RF LDMOS Devices Software Electromigration MTTF Calculator For Software, do a Part Number search at and select the Part Number link. Go to the Software & Tools tab on the part s Product Summary page to download the respective tool. The following table summarizes revisions to this document. REVISION HISTORY Revision Date Description 0 June 2008 Initial Release of Data Sheet Feb Corrected Z source, j7.33 to.5 + j8.96 and Z load, j34.77 to j34.32 in Fig., Series Equivalent Source and Load Impedance data table and replotted data, p. 7 2 June 2009 Modified data sheet to reflect MSL rating change from to 3 as a result of the standardization of packing process as described in Product and Process Change Notification number, PCN356, p. 2 Added Electromigration MTTF Calculator availability to Product Documentation, Tools and Software, p. 9 3 July 200 Reporting of pulsed thermal data now shown using the Z θjc symbol, Table 2, Thermal Characteristics, p. Corrected errors made in the translation of the printed circuit board to the schematic, Fig., Test Circuit Schematic and Z list, p. 3 9

10 How to Reach Us: Home Page: Web Support: USA/Europe or Locations Not Listed:, Inc. Technical Information Center, EL East Elliot Road Tempe, Arizona or Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen Muenchen, Germany (English) (English) (German) (French) Japan: Japan Ltd. Headquarters ARCO Tower 5F --8--, Shimo--Meguro, Meguro--ku, Tokyo Japan or support.japan@freescale.com Asia/Pacific: China Ltd. Exchange Building 23F No. 8 Jianguo Road Chaoyang District Beijing China support.asia@freescale.com For Literature Requests Only: Literature Distribution Center or Fax: LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. reserves the right to make changes without further notice to any products herein. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals, must be validated for each customer application by customer s technical experts. does not convey any license under its patent rights nor the rights of others. products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should Buyer purchase or use products for any such unintended or unauthorized application, Buyer shall indemnify and hold and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of, Inc. All other product or service names are the property of their respective owners., Inc All rights reserved. Document Number: MRF6V000N 0 Rev. 3, 7/200

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for applications operating at 10 MHz. These devices are suitable for use in pulsed

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for CW and pulsed applications operating at 1300 MHz. These devices are suitable

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed primarily for large--signal output applications at 2450 MHz. Devices are suitable

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for applications operating at frequencies between 1.8 and 600 MHz. These devices

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for Class A or Class AB base station applications with frequencies up to 2000 MHz. Suitable for analog

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed primarily for CW large--signal output and driver applications with frequencies up to 600 MHz. Devices

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed primarily for large- signal output applications at 2450 MHz. Device is suitable for use in industrial,

More information

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Designed for GSM and GSM EDGE base station applications with frequencies from 18 to 2 MHz. Suitable for TDMA,

More information

Characteristic Symbol Value Unit Thermal Resistance, Junction-to-Case R θjc 6 C/W

Characteristic Symbol Value Unit Thermal Resistance, Junction-to-Case R θjc 6 C/W Technical Data Silicon Lateral FET, N-Channel Enhancement-Mode MOSFET Designed for use in medium voltage, moderate power amplifiers such as portable analog and digital cellular radios and PC RF modems.

More information

RF LDMOS Wideband 2-Stage Power Amplifiers

RF LDMOS Wideband 2-Stage Power Amplifiers Technical Data RF LDMOS Wideband 2-Stage Power Amplifiers Designed for broadband commercial and industrial applications with frequencies from 132 MHz to 960 MHz. The high gain and broadband performance

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed primarily for pulsed wideband applications with frequencies up to 150 MHz. Device is unmatched and is

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed primarily for CW large-signal output and driver applications at 2450 MHz. Devices are suitable for use

More information

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed primarily for pulsed wideband applications with frequencies up to 235 MHz. Device is unmatched and is

More information

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Designed primarily for CW large-signal output and driver applications with frequencies up to 600 MHz. Devices

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for CDMA base station applications with frequencies from 1930 to 1990 MHz. Suitable for CDMA and multicarrier

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies from 470 to 860 MHz. The high gain

More information

RF LDMOS Wideband 2-Stage Power Amplifiers

RF LDMOS Wideband 2-Stage Power Amplifiers Technical Data RF LDMOS Wideband 2-Stage Power Amplifiers Designed for broadband commercial and industrial applications with frequencies from 132 MHz to 960 MHz. The high gain and broadband performance

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed primarily for CW large--signal output and driver applications with frequencies up to

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed for Class A or Class AB power amplifier applications with frequencies up to 2000 MHz.

More information

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These RF power transistors are designed for applications operating at frequencies between

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for WiMAX base station applications with frequencies up to 2700 MHz. Suitable for WiMAX, WiBro, BWA,

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for pulse and CW wideband applications with frequencies up to 500 MHz. Devices

More information

Characteristic Symbol Value (1,2) Unit. Test Methodology. Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115)

Characteristic Symbol Value (1,2) Unit. Test Methodology. Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115) Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for GSM and GSM EDGE base station applications with frequencies from 1805 to 1880 MHz. Can be used

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA and LTE base station applications with frequencies from 211 to 217 MHz. Can be used in

More information

Figure 1. MRF6S27015NR1(GNR1) Test Circuit Schematic

Figure 1. MRF6S27015NR1(GNR1) Test Circuit Schematic Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for CDMA base station applications with frequencies from 2000 to 2700 MHz. Suitable for WiMAX, WiBro,

More information

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Designed for CDMA base station applications with frequencies from 2600 to 2700 MHz Suitable for WiMAX, WiBro

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA base station applications with frequencies from 2110 to 2170 MHz. Suitable for TDMA, CDMA

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed primarily for pulsed wideband applications with frequencies up to 500 MHz. Devices are unmatched and

More information

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed for CDMA base station applications with frequencies from 920 to 960 MHz. Can be used in Class AB and

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MW4IC00 wideband integrated circuit is designed for use as a distortion signature device in analog predistortion systems. It uses Freescale

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF power transistors designed for applications operating at frequencies from 900 to

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for W-CDMA and LTE base station applications with frequencies from 211 to 217 MHz. Can be used in Class

More information

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These high ruggedness devices are designed for use in high VSWR military, aerospace and defense,

More information

RF Power Field Effect Transistor Array N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor Array N-Channel Enhancement-Mode Lateral MOSFET Technical Data Document Number: Rev. 6, 7/2005 Will be replaced by MRF9002NR2 in Q305. N suffix indicates 260 C reflow capable. The PFP-16 package has had lead-free terminations from its initial release.

More information

Characteristic Symbol Value (2,3) Unit

Characteristic Symbol Value (2,3) Unit LIFETIME BUY Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA base station applications with frequencies from 2110 to 2170 MHz. Suitable

More information

Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier

Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier Technical Data Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier The is a General Purpose Amplifier that is internally input and output prematched. It is designed for

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MWE6IC9N wideband integrated circuit is designed with on-chip matching that makes it usable from 869 to 96 MHz. This multi-stage structure

More information

Table 5. Electrical Characteristics (T A = 25 C unless otherwise noted)

Table 5. Electrical Characteristics (T A = 25 C unless otherwise noted) Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies up to 00 MHz The high gain and broadband

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed primarily for CW large--signal output and driver applications with frequencies up to 600 MHz. Devices

More information

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed for CDMA base station applications with frequencies from 865 to 96 MHz. Can

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA and LTE base station applications with frequencies from 2110 to 2170 MHz. Can be used

More information

V GS(th) Vdc. V GS(Q) 2.6 Vdc. V GG(Q) Vdc. V DS(on) Vdc

V GS(th) Vdc. V GS(Q) 2.6 Vdc. V GG(Q) Vdc. V DS(on) Vdc Freescale Semiconductor Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for CDMA and multicarrier base station applications with frequencies from

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with frequencies up to 1000 MHz The high gain and

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF power transistors designed for CW and pulse applications operating at 1300 MHz. These devices are suitable

More information

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs RF power transistors suitable for both narrowband and broadband CW or pulse

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET RF power transistor suitable for industrial heating applications operating at 2450 MHz. Device

More information

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input and output matched. It

More information

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a General Purpose Amplifier that is internally input and output matched. It is designed for a broad

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies up to 1000 MHz The high gain and

More information

Characteristic Symbol Value (2,3) Unit

Characteristic Symbol Value (2,3) Unit LIFETIME BUY Technical Data RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed for W--CDMA base station applications with frequencies from 1805 to 1880 MHz. Suitable

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for Class A or Class AB base station applications with frequencies up to 1500 MHz. Suitable for analog

More information

LIFETIME BUY LAST ORDER 3 OCT 08 LAST SHIP 14 MAY 09. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF374A

LIFETIME BUY LAST ORDER 3 OCT 08 LAST SHIP 14 MAY 09. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF374A Technical Data Document Number: Rev. 5, 5/26 LIFETIME BUY RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 12.5 W CW high efficiency RF power transistor is designed for consumer and commercial cooking

More information

Gallium Arsenide PHEMT RF Power Field Effect Transistor

Gallium Arsenide PHEMT RF Power Field Effect Transistor Technical Data Gallium Arsenide PHEMT RF Power Field Effect Transistor Designed for WLL base station applications with frequencies from 3400 to 3600 MHz. Suitable for TDMA and CDMA amplifier applications.

More information

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These 350 W CW transistors are designed for industrial, scientific and medical (ISM) applications

More information

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input and output matched. It

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 250 W CW RF power transistor is designed for consumer and commercial cooking applications

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed primarily for CW large--signal output and driver applications with frequencies up to 450 MHz. Devices

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for CDMA, W--CDMA and LTE base station applications with frequencies from 7 to 1 MHz. Can be used

More information

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Designed primarily for wideband applications with frequencies up to 0 MHz. Device is unmatched and is suitable

More information

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These 350 W CW RF power transistors are designed for consumer and commercial cooking applications

More information

P D Storage Temperature Range T stg - 65 to +175 C Operating Junction Temperature T J 200 C

P D Storage Temperature Range T stg - 65 to +175 C Operating Junction Temperature T J 200 C Technical Data Document Number: MRF6S186 Rev. 2, 5/26 Replaced by MRF6S186NR1/NBR1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9838. Freescale Semiconductor. Technical Data MHL9838. Rev.

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9838. Freescale Semiconductor. Technical Data MHL9838. Rev. Technical Data Rev. 4, 1/2005 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. Cellular

More information

ARCHIVE INFORMATION. PCS Band RF Linear LDMOS Amplifier MHL Freescale Semiconductor. Technical Data MHL Rev. 4, 1/2005

ARCHIVE INFORMATION. PCS Band RF Linear LDMOS Amplifier MHL Freescale Semiconductor. Technical Data MHL Rev. 4, 1/2005 Technical Data Rev. 4, 1/25 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. PCS Band

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data Document Number: Rev. 0, 7/2016 RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 220 W CW high efficiency RF power transistor is designed

More information

ARCHIVE INFORMATION MW4IC2230MBR1 MW4IC2230GMBR1. Freescale Semiconductor. Technical Data. Document Number: MW4IC2230 Rev.

ARCHIVE INFORMATION MW4IC2230MBR1 MW4IC2230GMBR1. Freescale Semiconductor. Technical Data. Document Number: MW4IC2230 Rev. Technical Data Replaced by MW4IC2230NBR1(GNBR1). There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead- free terminations.

More information

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case. Test Conditions

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case. Test Conditions Technical Data Document Number: Rev. 5, 5/2006 RF LDMOS Wideband Integrated Power Amplifier The wideband integrated circuit is designed for base station applications. It uses Freescale s newest High Voltage

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MW7IC3825N wideband integrated circuit is designed with on--chip matching that makes it usable from 3400--3600 MHz. This multi--stage structure

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9236MN. Freescale Semiconductor. Technical Data

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9236MN. Freescale Semiconductor. Technical Data Technical Data Cellular Band RF Linear LDMOS Amplifier Designed for ultra- linear amplifier applications in ohm systems operating in the cellular frequency band. A silicon FET Class A design provides outstanding

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9318. Freescale Semiconductor. Technical Data MHL9318. Rev.

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9318. Freescale Semiconductor. Technical Data MHL9318. Rev. Technical Data Rev. 3, 1/2005 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. Cellular

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MW4IC2230N wideband integrated circuit is designed for W-CDMA base station applications. It uses Freescale s newest High Voltage (26 to

More information

Characteristic Symbol Value (2,3) Unit. Test Methodology

Characteristic Symbol Value (2,3) Unit. Test Methodology Freescale Semiconductor Technical Data Document Number: MW7IC2750N Rev. 4, 10/2011 RF LDMOS Wideband Integrated Power Amplifiers The MW7IC2750N wideband integrated circuit is designed with on--chip matching

More information

ARCHIVE INFORMATION. RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFETs MRF6P3300HR3 MRF6P3300HR5. Freescale Semiconductor

ARCHIVE INFORMATION. RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFETs MRF6P3300HR3 MRF6P3300HR5. Freescale Semiconductor Technical Data Document Number: MRF6P3300H Rev. 2, /08 MRF6P3300HR3/HR replaced by MRFE6P3300HR3/HR. Refer to Device Migration PCN1289 for more details. RF Power Field Effect Transistor N-Channel Enhancement-Mode

More information

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3 SEMICONDUCTOR TECHNICAL DATA Order this document by MRF9085/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA and LTE base station applications with frequencies from 2300 to 2620 MHz. Can be used

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies to 5 MHz. The high gain and broadband

More information

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET Technical Data Document Number: Rev. 2, 11/2018 RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET Designed for handheld two--way radio applications with frequencies

More information

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These RF power transistors are designed for pulse applications operating at 1030 to 1090 MHz and can be used over

More information

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs RF power transistors suitable for both narrowband and broadband CW or pulse

More information

Characteristic Symbol Value (2,3) Unit. Test Methodology

Characteristic Symbol Value (2,3) Unit. Test Methodology Freescale Semiconductor Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MD7IC21100N wideband integrated circuit is designed with on--chip matching that makes it usable from 2110 to 2170

More information

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET Technical Data RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET This high ruggedness device is designed for use in high VSWR industrial, scientific and medical applications

More information

Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family

Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family Application Note Rev., 1/3 NOTE: The theory in this application note is still applicable, but some of the products referenced may be discontinued. Quiescent Current Thermal Tracking Circuit in the RF Integrated

More information

RF LDMOS Wideband Integrated Power Amplifier MHVIC2115R2. Freescale Semiconductor, I. The Wideband IC Line SEMICONDUCTOR TECHNICAL DATA

RF LDMOS Wideband Integrated Power Amplifier MHVIC2115R2. Freescale Semiconductor, I. The Wideband IC Line SEMICONDUCTOR TECHNICAL DATA MOTOROLA nc. SEMICONDUCTOR TECHNICAL DATA Order this document by /D The Wideband IC Line RF LDMOS Wideband Integrated Power Amplifier The wideband integrated circuit is designed for base station applications.

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MD7IC2250N wideband integrated circuit is designed with on--chip matching that makes it usable from 2000 to 2200 MHz. This multi--stage

More information

921 MHz-960 MHz SiFET RF Integrated Power Amplifier

921 MHz-960 MHz SiFET RF Integrated Power Amplifier Technical Data 9 MHz-96 MHz SiFET RF Integrated Power Amplifier The MHVIC9HNR integrated circuit is designed for GSM base stations, uses Freescale s newest High Voltage (6 Volts) LDMOS IC technology, and

More information

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs These 1300 W RF power transistors are designed for applications operating

More information

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data Document Number: AFT2S15N Rev. 1, 11/213 RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These 1.5 W RF power LDMOS transistors are designed

More information

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs Designed for mobile two--way radio applications with frequencies from 136

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with frequencies to 175 MHz. The high gain and

More information

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These 750 W CW transistors are designed for industrial, scientific and medical (ISM) applications in the 700 to 1300

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MDE6IC9120N/GN wideband integrated circuit is designed with on-chip matching that makes it usable from 920 to 960 MHz. This multi-stage

More information

RF LDMOS Wideband Integrated Power Amplifier

RF LDMOS Wideband Integrated Power Amplifier Freescale Semiconductor Technical Data RF LDMOS Wideband Integrated Power Amplifier The MW7IC22N wideband integrated circuit is designed with on--chip matching that makes it usable from 185 to 217 MHz.

More information

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET Technical Data RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET RF power transistor designed for both narrowband and broadband ISM, broadcast and aerospace applications

More information

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for broadcast and commercial aerospace broadband applications with frequencies from

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MD7IC2755N wideband integrated circuit is designed with on--chip matching that makes it usable from 2500--2700 MHz. This multi--stage structure

More information

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input matched and

More information

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These 350 W CW transistors are designed for industrial, scientific and medical (ISM) applications in the 700 to 1300

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily for wideband RF power amplifiers

More information

ARCHIVE INFORMATION. RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET MRF21120R6. Freescale Semiconductor.

ARCHIVE INFORMATION. RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET MRF21120R6. Freescale Semiconductor. Technical Data RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Designed for W- CDMA base station applications with frequencies from 2110 to 2170 MHz. Suitable for FM, TDMA,

More information

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF MOSFET Line N Channel Enhancement Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies from 800

More information