Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Size: px
Start display at page:

Download "Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier"

Transcription

1 Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a General Purpose Amplifier that is internally input and output matched. It is designed for a broad range of Class A, small-signal, high linearity, general purpose applications. It is suitable for applications with frequencies from to 6 MHz such as Cellular, PCS, BWA, WLL, PHS, CATV, VHF, UHF, UMTS and general small-signal RF. Features Frequency: to 6 MHz P1dB: 16 9 MHz Small-Signal Gain: 19 9 MHz Third Order Output Intercept Point: 3 9 MHz Single 5 Volt Supply Internally Matched to 5 Ohms Low Cost SOT- 89 Surface Mount Package RoHS Compliant In Tape and Reel. T1 Suffix = 1 Units per 12 mm, 7 inch Reel. Document Number: Rev. 5, 3/28-6 MHz, 19 db 16 dbm InGaP HBT CASE , STYLE 1 SOT-89 PLASTIC Table 1. Typical Performance (1) Characteristic Symbol 9 MHz Small-Signal Gain (S21) Input Return Loss (S11) 214 MHz 35 MHz Unit G p db IRL db Table 2. Maximum Ratings Rating Symbol Value Unit Supply Voltage V CC 7 V Supply Current I CC 25 ma RF Input Power P in 1 dbm Storage Temperature Range T stg -65 to +15 C Output Return Loss (S22) Power Compression Third Order Output Intercept Point ORL db P1db dbm IP dbm Junction Temperature (2) T J 15 C 2. For reliable operation, the junction temperature should not exceed 15 C. 1., T C = 25 C, 5 ohm system Table 3. Thermal Characteristics (,, T C = 25 C) Characteristic Symbol Value (3) Unit Thermal Resistance, Junction to Case R θjc 77 C/W 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to Select Documentation/Application Notes - AN1955., Inc., All rights reserved. 1

2 Table 4. Electrical Characteristics (, 9 MHz, T C = 25 C, 5 ohm system, in Freescale Application Circuit) Characteristic Symbol Min Typ Max Unit Small-Signal Gain (S21) G p db Input Return Loss (S11) IRL -14 db Output Return Loss (S22) ORL -2 db Power 1dB Compression P1dB 16 dbm Third Order Output Intercept Point IP3 3 dbm Noise Figure NF 3.8 db Supply Current (1) I CC ma Supply Voltage (1) V CC 5 V 1. For reliable operation, the junction temperature should not exceed 15 C. 2

3 Table 5. Functional Pin Description Pin Number Pin Function 2 1 RF in 2 Ground 3 RF out /DC Supply Figure 1. Functional Diagram Table 6. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD 22-A114) 1A (Minimum) Machine Model (per EIA/JESD 22-A115) A (Minimum) Charge Device Model (per JESD 22-C11) IV (Minimum) Table 7. Moisture Sensitivity Level Test Methodology Rating Package Peak Temperature Unit Per JESD 22-A113, IPC/JEDEC J-STD C 3

4 5 OHM TYPICAL CHARACTERISTICS 25 G p, SMALL SIGNAL GAIN (db) T C = 85 C -4 C 25 C f, FREQUENCY (GHz) S11, S22 (db) S22 S f, FREQUENCY (GHz) 4 Figure 2. Small- Signal Gain (S21) versus Frequency Figure 3. Input/Output Return Loss versus Frequency 23 2 G p, SMALL SIGNAL GAIN (db) MHz 196 MHz 26 MHz 35 MHz 214 MHz P1dB, 1 db COMPRESSION POINT (dbm) P out, OUTPUT POWER (dbm) f, FREQUENCY (GHz) Figure 4. Small- Signal Gain versus Output Figure 5. P1dB versus Frequency Power I CC, COLLECTOR CURRENT (ma) V CC, COLLECTOR VOLTAGE (V) f, FREQUENCY (GHz) Figure 6. Collector Current versus Collector Voltage IP3, THIRD ORDER OUTPUT INTERCEPT POINT (dbm) MHz Tone Spacing Figure 7. Third Order Output Intercept Point versus Frequency 4

5 5 OHM TYPICAL CHARACTERISTICS IP3, THIRD ORDER OUTPUT INTERCEPT POINT (dbm) f = 9 MHz 1 MHz Tone Spacing V CC, COLLECTOR VOLTAGE (V) Figure 8. Third Order Output Intercept Point versus Collector Voltage IP3, THIRD ORDER OUTPUT INTERCEPT POINT (dbm) f = 9 MHz 1 MHz Tone Spacing T, TEMPERATURE ( C) Figure 9. Third Order Output Intercept Point versus Case Temperature IMD, THIRD ORDER INTERMODULATION DISTORTION (dbc) f = 9 MHz 1 MHz Tone Spacing P out, OUTPUT POWER (dbm) Figure 1. Third Order Intermodulation versus Output Power MTTF (YEARS) T J, JUNCTION TEMPERATURE ( C) NOTE: The MTTF is calculated with, Figure 11. MTTF versus Junction Temperature NF, NOISE FIGURE (db) ACPR, ADJACENT CHANNEL POWER RATIO (dbc) f = 214 MHz Single Carrier W CDMA, 3.84 MHz Channel Bandwidth Input Signal PAR = 8.5 Probability (CCDF) f, FREQUENCY (GHz) Figure 12. Noise Figure versus Frequency P out, OUTPUT POWER (dbm) Figure 13. Single- Carrier W- CDMA Adjacent Channel Power Ratio versus Output Power 5

6 5 OHM APPLICATION CIRCUIT: 4-3 MHz V SUPPLY R1 C3 C4 L1 RF INPUT Z1 Z2 DUT Z3 Z4 Z5 RF OUTPUT C1 V CC C2 Z1, Z5.347 x.58 Microstrip Z2.575 x.58 Microstrip Z3.172 x.58 Microstrip Z4.43 x.58 Microstrip PCB Getek Grade ML2C,.31, ε r = 4.1 Figure Ohm Test Circuit Schematic 3 S21, S11, S22 (db) S21 S22 C1 R1 L1 C4 C3 C S f, FREQUENCY (MHz) Figure 15. S21, S11 and S22 versus Frequency MMG3XX Rev 2 Figure Ohm Test Circuit Component Layout Table 8. 5 Ohm Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C2, C3.1 μf Chip Capacitors C63C13J5RAC Kemet C4 1 pf Chip Capacitor C63C12J5RAC Kemet L1 47 nh Chip Inductor BK2125HM471-T Taiyo Yuden R1 Chip Resistor ERJ3GEYRV Panasonic 6

7 5 OHM APPLICATION CIRCUIT: 3-36 MHz V SUPPLY R1 C3 C4 L1 RF INPUT Z1 Z2 DUT Z3 Z4 Z5 RF OUTPUT C1 V CC C2 Z1, Z5.347 x.58 Microstrip Z2.575 x.58 Microstrip Z3.172 x.58 Microstrip Z4.43 x.58 Microstrip PCB Getek Grade ML2C,.31, ε r = 4.1 Figure Ohm Test Circuit Schematic 3 2 S21 R1 S21, S11, S22 (db) 1 1 S22 C1 L1 C4 C3 C2 2 3 S f, FREQUENCY (MHz) Figure 18. S21, S11 and S22 versus Frequency MMG3XX Rev 2 Figure Ohm Test Circuit Component Layout Table 9. 5 Ohm Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C2 15 pf Chip Capacitors C63C151J5RAC Kemet C3.1 μf Chip Capacitor C63C13J5RAC Kemet C4 1 pf Chip Capacitor C63C12J5RAC Kemet L1 56 nh Chip Inductor HK16856NJ-T Taiyo Yuden R1 Chip Resistor ERJ3GEYRV Panasonic 7

8 5 OHM TYPICAL CHARACTERISTICS Table 1. Common Emitter S-Parameters (,, T C = 25 C, 5 Ohm System) f S 11 S 21 S 12 S 22 MHz S 11 φ S 21 φ S 12 φ S 22 φ (continued) 8

9 5 OHM TYPICAL CHARACTERISTICS Table 1. Common Emitter S-Parameters (,, T C = 25 C, 5 Ohm System) (continued) f S 11 S 21 S 12 S 22 MHz S 11 φ S 21 φ S 12 φ S 22 φ

10 diameter Recommended Solder Stencil NOTES: 1. THERMAL AND RF GROUNDING CONSIDERATIONS SHOULD BE USED IN PCB LAYOUT DESIGN. 2. DEPENDING ON PCB DESIGN RULES, AS MANY VIAS AS POSSIBLE SHOULD BE PLACED ON THE LANDING PATTERN. 3. IF VIAS CANNOT BE PLACED ON THE LANDING PATTERN, THEN AS MANY VIAS AS POSSIBLE SHOULD BE PLACED AS CLOSE TO THE LANDING PATTERN AS POSSIBLE FOR OPTIMAL THERMAL AND RF PERFORMANCE. 4. RECOMMENDED VIA PATTERN SHOWN HAS.381 x.762 MM PITCH. Figure 2. Recommended Mounting Configuration 1

11 PACKAGE DIMENSIONS 11

12 12

13 13

14 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes AN1955: Thermal Measurement Methodology of RF Power Amplifiers AN31: General Purpose Amplifier Biasing The following table summarizes revisions to this document. REVISION HISTORY Revision Date Description 3 Mar. 27 Corrected and updated Part Numbers in Tables 8 and 9, Component Designations and Values, to RoHS compliant part numbers, p. 6, 7 4 July 27 Replaced Case Outline with , Issue D, p. 1, Case updated to add missing dimension for Pin 1 and Pin 3. 5 Mar. 28 Removed Footnote 2, Continuous voltage and current applied to device, from Table 2, Maximum Ratings, p. 1 Corrected Fig. 13, Single-Carrier W-CDMA Adjacent Channel Power Ratio versus Output Power y-axis (ACPR) unit of measure to dbc, p. 5 Corrected S-Parameter table frequency column label to read MHz versus GHz and corrected frequency values from GHz to MHz, p. 8, 9 14

15 How to Reach Us: Home Page: Web Support: USA/Europe or Locations Not Listed:, Inc. Technical Information Center, EL East Elliot Road Tempe, Arizona or Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen Muenchen, Germany (English) (English) (German) (French) Japan: Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo Japan or support.japan@freescale.com Asia/Pacific: Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong support.asia@freescale.com For Literature Requests Only: Literature Distribution Center P.O. Box 545 Denver, Colorado or Fax: LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. reserves the right to make changes without further notice to any products herein. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals, must be validated for each customer application by customer s technical experts. does not convey any license under its patent rights nor the rights of others. products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should Buyer purchase or use products for any such unintended or unauthorized application, Buyer shall indemnify and hold and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale and the Freescale logo are trademarks of, Inc. All other product or service names are the property of their respective owners., Inc All rights reserved. RF Document Device Number: Data Freescale Rev. 5, 3/28Semiconductor 15

Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier

Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier Technical Data Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier The is a General Purpose Amplifier that is internally input and output prematched. It is designed for

More information

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input and output matched. It

More information

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input and output matched. It

More information

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input matched and

More information

Characteristic Symbol Value (2) Unit R JC 92.0 C/W

Characteristic Symbol Value (2) Unit R JC 92.0 C/W Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input and output

More information

RF LDMOS Wideband 2-Stage Power Amplifiers

RF LDMOS Wideband 2-Stage Power Amplifiers Technical Data RF LDMOS Wideband 2-Stage Power Amplifiers Designed for broadband commercial and industrial applications with frequencies from 132 MHz to 960 MHz. The high gain and broadband performance

More information

Characteristic Symbol Value (2) Unit R JC 57 C/W

Characteristic Symbol Value (2) Unit R JC 57 C/W Freescale Semiconductor Technical Data BTS Driver Broadband Amplifier The is a general purpose amplifier that is internally input and output matched. It is designed for a broad range of Class A, small--signal,

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9318. Freescale Semiconductor. Technical Data MHL9318. Rev.

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9318. Freescale Semiconductor. Technical Data MHL9318. Rev. Technical Data Rev. 3, 1/2005 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. Cellular

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9838. Freescale Semiconductor. Technical Data MHL9838. Rev.

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9838. Freescale Semiconductor. Technical Data MHL9838. Rev. Technical Data Rev. 4, 1/2005 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. Cellular

More information

RF LDMOS Wideband 2-Stage Power Amplifiers

RF LDMOS Wideband 2-Stage Power Amplifiers Technical Data RF LDMOS Wideband 2-Stage Power Amplifiers Designed for broadband commercial and industrial applications with frequencies from 132 MHz to 960 MHz. The high gain and broadband performance

More information

ARCHIVE INFORMATION. PCS Band RF Linear LDMOS Amplifier MHL Freescale Semiconductor. Technical Data MHL Rev. 4, 1/2005

ARCHIVE INFORMATION. PCS Band RF Linear LDMOS Amplifier MHL Freescale Semiconductor. Technical Data MHL Rev. 4, 1/2005 Technical Data Rev. 4, 1/25 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. PCS Band

More information

Gallium Arsenide PHEMT RF Power Field Effect Transistor

Gallium Arsenide PHEMT RF Power Field Effect Transistor Technical Data Gallium Arsenide PHEMT RF Power Field Effect Transistor Designed for WLL base station applications with frequencies from 3400 to 3600 MHz. Suitable for TDMA and CDMA amplifier applications.

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9236MN. Freescale Semiconductor. Technical Data

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9236MN. Freescale Semiconductor. Technical Data Technical Data Cellular Band RF Linear LDMOS Amplifier Designed for ultra- linear amplifier applications in ohm systems operating in the cellular frequency band. A silicon FET Class A design provides outstanding

More information

Characteristic Symbol Value Unit Thermal Resistance, Junction-to-Case R θjc 6 C/W

Characteristic Symbol Value Unit Thermal Resistance, Junction-to-Case R θjc 6 C/W Technical Data Silicon Lateral FET, N-Channel Enhancement-Mode MOSFET Designed for use in medium voltage, moderate power amplifiers such as portable analog and digital cellular radios and PC RF modems.

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data Reference Design Library Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Device Characteristics (From Device Data Sheet) Designed for broadband commercial and industrial

More information

ARCHIVE INFORMATION MW4IC2230MBR1 MW4IC2230GMBR1. Freescale Semiconductor. Technical Data. Document Number: MW4IC2230 Rev.

ARCHIVE INFORMATION MW4IC2230MBR1 MW4IC2230GMBR1. Freescale Semiconductor. Technical Data. Document Number: MW4IC2230 Rev. Technical Data Replaced by MW4IC2230NBR1(GNBR1). There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead- free terminations.

More information

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally prematched and designed for a broad range

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MW4IC2230N wideband integrated circuit is designed for W-CDMA base station applications. It uses Freescale s newest High Voltage (26 to

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed primarily for large--signal output applications at 2450 MHz. Devices are suitable

More information

RF Power Field Effect Transistor Array N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor Array N-Channel Enhancement-Mode Lateral MOSFET Technical Data Document Number: Rev. 6, 7/2005 Will be replaced by MRF9002NR2 in Q305. N suffix indicates 260 C reflow capable. The PFP-16 package has had lead-free terminations from its initial release.

More information

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input prematched and designed for a broad

More information

921 MHz-960 MHz SiFET RF Integrated Power Amplifier

921 MHz-960 MHz SiFET RF Integrated Power Amplifier Technical Data 9 MHz-96 MHz SiFET RF Integrated Power Amplifier The MHVIC9HNR integrated circuit is designed for GSM base stations, uses Freescale s newest High Voltage (6 Volts) LDMOS IC technology, and

More information

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case. Test Conditions

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case. Test Conditions Technical Data Document Number: Rev. 5, 5/2006 RF LDMOS Wideband Integrated Power Amplifier The wideband integrated circuit is designed for base station applications. It uses Freescale s newest High Voltage

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed primarily for CW large-signal output and driver applications at 2450 MHz. Devices are suitable for use

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MW4IC00 wideband integrated circuit is designed for use as a distortion signature device in analog predistortion systems. It uses Freescale

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for applications operating at 10 MHz. These devices are suitable for use in pulsed

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed primarily for large- signal output applications at 2450 MHz. Device is suitable for use in industrial,

More information

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Designed primarily for CW large-signal output and driver applications with frequencies up to 600 MHz. Devices

More information

RF LDMOS Wideband Integrated Power Amplifier MHVIC2115R2. Freescale Semiconductor, I. The Wideband IC Line SEMICONDUCTOR TECHNICAL DATA

RF LDMOS Wideband Integrated Power Amplifier MHVIC2115R2. Freescale Semiconductor, I. The Wideband IC Line SEMICONDUCTOR TECHNICAL DATA MOTOROLA nc. SEMICONDUCTOR TECHNICAL DATA Order this document by /D The Wideband IC Line RF LDMOS Wideband Integrated Power Amplifier The wideband integrated circuit is designed for base station applications.

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for CW and pulsed applications operating at 1300 MHz. These devices are suitable

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with frequencies up to 1000 MHz The high gain and

More information

Figure 1. MRF6S27015NR1(GNR1) Test Circuit Schematic

Figure 1. MRF6S27015NR1(GNR1) Test Circuit Schematic Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for CDMA base station applications with frequencies from 2000 to 2700 MHz. Suitable for WiMAX, WiBro,

More information

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Designed for GSM and GSM EDGE base station applications with frequencies from 18 to 2 MHz. Suitable for TDMA,

More information

LIFETIME BUY LAST ORDER 1 JUL 11 LAST SHIP 30 JUN MHz -960 MHz SiFET RF Integrated Power Amplifier MHVIC910HNR2. Freescale Semiconductor

LIFETIME BUY LAST ORDER 1 JUL 11 LAST SHIP 30 JUN MHz -960 MHz SiFET RF Integrated Power Amplifier MHVIC910HNR2. Freescale Semiconductor LIFETIME BUY Technical Data 9 MHz -96 MHz SiFET RF Integrated Power Amplifier The MHVIC9HNR integrated circuit is designed for GSM base stations, uses Freescale s newest High Voltage (6 Volts) LDMOS IC

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MWE6IC9N wideband integrated circuit is designed with on-chip matching that makes it usable from 869 to 96 MHz. This multi-stage structure

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for applications operating at frequencies between 1.8 and 600 MHz. These devices

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies up to 1000 MHz The high gain and

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA and LTE base station applications with frequencies from 211 to 217 MHz. Can be used in

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for Class A or Class AB base station applications with frequencies up to 2000 MHz. Suitable for analog

More information

Enhancement Mode phemt

Enhancement Mode phemt Freescale Semiconductor Technical Data Enhancement Mode phemt Technology (E -phemt) High Linearity Amplifier The MMG15241H is a high dynamic range, low noise amplifier MMIC, housed in a SOT--89 standard

More information

Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family

Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family Application Note Rev., 1/3 NOTE: The theory in this application note is still applicable, but some of the products referenced may be discontinued. Quiescent Current Thermal Tracking Circuit in the RF Integrated

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for W-CDMA and LTE base station applications with frequencies from 211 to 217 MHz. Can be used in Class

More information

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET RF Power transistor designed for applications operating at frequencies between 960 and 400 MHz, % to 20% duty

More information

LIFETIME BUY LAST ORDER 3 OCT 08 LAST SHIP 14 MAY 09. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF374A

LIFETIME BUY LAST ORDER 3 OCT 08 LAST SHIP 14 MAY 09. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF374A Technical Data Document Number: Rev. 5, 5/26 LIFETIME BUY RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed primarily for pulsed wideband applications with frequencies up to 150 MHz. Device is unmatched and is

More information

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Designed for CDMA base station applications with frequencies from 2600 to 2700 MHz Suitable for WiMAX, WiBro

More information

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed for CDMA base station applications with frequencies from 920 to 960 MHz. Can be used in Class AB and

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed primarily for CW large--signal output and driver applications with frequencies up to 600 MHz. Devices

More information

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier The MMA312BV is a 2--stage high efficiency, Class AB InGaP HBT amplifier

More information

Low Voltage 1:18 Clock Distribution Chip

Low Voltage 1:18 Clock Distribution Chip Freescale Semiconductor Technical Data Low Voltage 1:18 Clock Distribution Chip The is a 1:18 low voltage clock distribution chip with 2.5 V or 3.3 V LVCMOS output capabilities. The device features the

More information

P D Storage Temperature Range T stg - 65 to +175 C Operating Junction Temperature T J 200 C

P D Storage Temperature Range T stg - 65 to +175 C Operating Junction Temperature T J 200 C Technical Data Document Number: MRF6S186 Rev. 2, 5/26 Replaced by MRF6S186NR1/NBR1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition

More information

V GS(th) Vdc. V GS(Q) 2.6 Vdc. V GG(Q) Vdc. V DS(on) Vdc

V GS(th) Vdc. V GS(Q) 2.6 Vdc. V GG(Q) Vdc. V DS(on) Vdc Freescale Semiconductor Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for CDMA and multicarrier base station applications with frequencies from

More information

Figure 4. MMG15241H Driving MD7IC2250N Board Layout. Table 1. MMG15241H Driving MD7IC2250N Test Circuit Component Designations and Values

Figure 4. MMG15241H Driving MD7IC2250N Board Layout. Table 1. MMG15241H Driving MD7IC2250N Test Circuit Component Designations and Values Freescale Semiconductor Technical Data RF Power Reference Design RF Power Amplifier Lineup GaAs E--pHEMT Driving RF LDMOS Amplifier Lineup Characteristics This reference design provides a prepared high-gain

More information

CMOS Micro-Power Comparator plus Voltage Follower

CMOS Micro-Power Comparator plus Voltage Follower Freescale Semiconductor Technical Data Rev 2, 05/2005 CMOS Micro-Power Comparator plus Voltage Follower The is an analog building block consisting of a very-high input impedance comparator. The voltage

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA base station applications with frequencies from 2110 to 2170 MHz. Suitable for TDMA, CDMA

More information

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed for CDMA base station applications with frequencies from 865 to 96 MHz. Can

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA and LTE base station applications with frequencies from 2110 to 2170 MHz. Can be used

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for WiMAX base station applications with frequencies up to 2700 MHz. Suitable for WiMAX, WiBro, BWA,

More information

Characteristic Symbol Value (1,2) Unit. Test Methodology. Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115)

Characteristic Symbol Value (1,2) Unit. Test Methodology. Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115) Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for GSM and GSM EDGE base station applications with frequencies from 1805 to 1880 MHz. Can be used

More information

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3 SEMICONDUCTOR TECHNICAL DATA Order this document by MRF9085/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with

More information

Quiescent Current Control for the RF Integrated Circuit Device Family

Quiescent Current Control for the RF Integrated Circuit Device Family Application Note Rev., 5/ Quiescent Current Control for the RF Integrated Circuit Device Family By: James Seto INTRODUCTION This application note introduces a bias control circuit that can be used with

More information

Watts W/ C Storage Temperature Range T stg 65 to +200 C Operating Junction Temperature T J 200 C. Test Conditions

Watts W/ C Storage Temperature Range T stg 65 to +200 C Operating Junction Temperature T J 200 C. Test Conditions SEMICONDUCTOR TECHNICAL DATA Order this document by MRF19125/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for PCN and PCS base station applications with frequencies

More information

Characteristic Symbol Value (2,3) Unit

Characteristic Symbol Value (2,3) Unit LIFETIME BUY Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA base station applications with frequencies from 2110 to 2170 MHz. Suitable

More information

Driver or Pre -driver Amplifier for Doherty Power Amplifiers

Driver or Pre -driver Amplifier for Doherty Power Amplifiers Technical Data Driver or Pre -driver Amplifier for Doherty Power Amplifiers The MMG30301B is a 1 W high gain amplifier designed as a driver or pre--driver for Doherty power amplifiers in wireless infrastructure

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies from 470 to 860 MHz. The high gain

More information

2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT

2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT Freescale Semiconductor Technical Data 2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT The MMZ25333B is a versatile 3--stage power amplifier targeted at driver and pre--driver

More information

ARCHIVE INFORMATION. RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET MRF21120R6. Freescale Semiconductor.

ARCHIVE INFORMATION. RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET MRF21120R6. Freescale Semiconductor. Technical Data RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Designed for W- CDMA base station applications with frequencies from 2110 to 2170 MHz. Suitable for FM, TDMA,

More information

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier The MMA25312B is a 2--stage high efficiency InGaP HBT driver amplifier

More information

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Collector Emitter Breakdown

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Collector Emitter Breakdown SEMICONDUCTOR TECHNICAL DATA Order this document by MRF20060R/D The RF Sub Micron Bipolar Line The MRF20060R and MRF20060RS are designed for class AB broadband commercial and industrial applications at

More information

Table 5. Electrical Characteristics (T A = 25 C unless otherwise noted)

Table 5. Electrical Characteristics (T A = 25 C unless otherwise noted) Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies up to 00 MHz The high gain and broadband

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for CDMA base station applications with frequencies from 1930 to 1990 MHz. Suitable for CDMA and multicarrier

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MDE6IC9120N/GN wideband integrated circuit is designed with on-chip matching that makes it usable from 920 to 960 MHz. This multi-stage

More information

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions SEMICONDUCTOR TECHNICAL DATA Order this document by MRF21125/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for W CDMA base station applications with frequencies from

More information

Characteristic Symbol Value (1,2) Unit Thermal Resistance, Junction to Case Case Temperature 80 C, 20 W CW

Characteristic Symbol Value (1,2) Unit Thermal Resistance, Junction to Case Case Temperature 80 C, 20 W CW Technical Data Document Number: MRF5S9100 Rev. 4, 5/2006 Replaced by MRF5S9100NR1/NBR1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate

More information

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier The MMZ9312B is a 2--stage high efficiency, Class AB InGaP HBT amplifier

More information

MRFIC2006. The MRFIC Line SEMICONDUCTOR TECHNICAL DATA

MRFIC2006. The MRFIC Line SEMICONDUCTOR TECHNICAL DATA SEMICONDUCTOR TECHNICAL DATA Order this document by /D The MRFIC Line The is an Integrated PA designed for linear operation in the MHz to. GHz frequency range. The design utilizes Motorola s advanced MOSAIC

More information

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Designed primarily for wideband applications with frequencies up to 0 MHz. Device is unmatched and is suitable

More information

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Emitter Base Break

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Emitter Base Break SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF Sub Micron Bipolar Line Designed for broadband commercial and industrial applications at frequencies from 1800 to 2000 MHz. The high gain and

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for Class A or Class AB base station applications with frequencies up to 1500 MHz. Suitable for analog

More information

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier The MMZ9332B is a 2--stage, high linearity InGaP HBT broadband amplifier

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for CDMA, W--CDMA and LTE base station applications with frequencies from 7 to 1 MHz. Can be used

More information

Enhancement Mode phemt

Enhancement Mode phemt Freescale Semiconductor Technical Data Enhancement Mode phemt Technology (E -phemt) Low Noise Amplifier The MML09231H is a single--stage low noise amplifier (LNA) with active bias and high isolation for

More information

FlexTimer and ADC Synchronization

FlexTimer and ADC Synchronization Freescale Semiconductor Application Note AN3731 Rev. 0, 06/2008 FlexTimer and ADC Synchronization How FlexTimer is Used to Synchronize PWM Reloading and Hardware ADC Triggering by: Eduardo Viramontes Systems

More information

3.8 GHz Linear Power Amplifier and BTS Driver High Efficiency/Linearity Amplifier

3.8 GHz Linear Power Amplifier and BTS Driver High Efficiency/Linearity Amplifier Technical Data 3.8 GHz Linear Power Amplifier and BTS Driver High Efficiency/Linearity Amplifier The MMZ38333B is a 3--stage high linearity InGaP HBT broadband amplifier designed for small cells and LTE

More information

Driver or Pre -driver General Purpose Amplifier

Driver or Pre -driver General Purpose Amplifier Freescale Semiconductor Technical Data Driver or Pre -driver General Purpose Amplifier The MMG30271B is a 1/2 W, Class AB, high gain amplifier designed as a driver or pre--driver for cellular base station

More information

Characteristic Symbol Value (2,3) Unit

Characteristic Symbol Value (2,3) Unit LIFETIME BUY Technical Data RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed for W--CDMA base station applications with frequencies from 1805 to 1880 MHz. Suitable

More information

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF MOSFET Line N Channel Enhancement Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies from 800

More information

RF LDMOS Wideband Integrated Power Amplifiers. Freescale Semiconductor, I MW5IC2030MBR1 MW5IC2030GMBR1. The Wideband IC Line

RF LDMOS Wideband Integrated Power Amplifiers. Freescale Semiconductor, I MW5IC2030MBR1 MW5IC2030GMBR1. The Wideband IC Line MOTOROLA nc. SEMICONDUCTOR TECHNICAL DATA Order this document by MW5IC23M/D The Wideband IC Line RF LDMOS Wideband Integrated Power Amplifiers The MW5IC23 wideband integrated circuit is designed for base

More information

2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT

2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT Technical Data 2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT The MMZ27333B is a versatile 3--stage power amplifier targeted at driver and pre--driver applications for macro and

More information

Enhancement Mode phemt

Enhancement Mode phemt Freescale Semiconductor Technical Data Enhancement Mode phemt Technology (E -phemt) Low Noise Amplifier The MML09212H is a 2--stage low noise amplifier (LNA) with active bias and high isolation for use

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA and LTE base station applications with frequencies from 2300 to 2620 MHz. Can be used

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MD7IC2250N wideband integrated circuit is designed with on--chip matching that makes it usable from 2000 to 2200 MHz. This multi--stage

More information

Low-Power CMOS Ionization Smoke Detector IC

Low-Power CMOS Ionization Smoke Detector IC Freescale Semiconductor Technical Data Rev 4, 05/2005 Low-Power CMOS Ionization Smoke Detector IC The, when used with an ionization chamber and a small number of external components, will detect smoke.

More information

path loss, multi-path, fading, and polarization loss. The transmission characteristics of the devices such as carrier frequencies, channel bandwidth,

path loss, multi-path, fading, and polarization loss. The transmission characteristics of the devices such as carrier frequencies, channel bandwidth, Freescale Semiconductor Application Note Document Number: AN2935 Rev. 1.2, 07/2005 MC1319x Coexistence By: R. Rodriguez 1 Introduction The MC1319x device is a ZigBee and IEEE 802.15.4 Standard compliant

More information

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) ON CHARACTERISTICS Gate Threshold Voltage (V DS = 10 Vdc, I D = 100 µa) Chara

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) ON CHARACTERISTICS Gate Threshold Voltage (V DS = 10 Vdc, I D = 100 µa) Chara SEMICONDUCTOR TECHNICAL DATA Order this document by MRF182/D The RF MOSFET Line N Channel Enhancement Mode Lateral MOSFETs High Gain, Rugged Device Broadband Performance from HF to 1 GHz Bottom Side Source

More information

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit ON CHARACTERISTICS DC Current Gain (I

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit ON CHARACTERISTICS DC Current Gain (I SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF Line The is designed for output stages in band IV and V TV transmitter amplifiers. It incorporates high value emitter ballast resistors, gold

More information

2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT

2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT Technical Data 2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT The MMZ25332B4 is a versatile 2--stage power amplifier targeted at driver and pre--driver applications for macro

More information

Using the Break Controller (BC) etpu Function Covers the MCF523x, MPC5500, and all etpu-equipped Devices

Using the Break Controller (BC) etpu Function Covers the MCF523x, MPC5500, and all etpu-equipped Devices Freescale Semiconductor Application Note Document Number: AN2845 Rev. 0, 04/2005 Using the Break Controller (BC) etpu Function Covers the MCF523x, MPC5500, and all etpu-equipped Devices by: Milan Brejl

More information

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier The MMZ25332B is a 2--stage, high linearity InGaP HBT broadband amplifier

More information

Low-Pressure Sensing Using MPX2010 Series Pressure Sensors

Low-Pressure Sensing Using MPX2010 Series Pressure Sensors Freescale Semiconductor Application Note Rev 1, 05/2005 Low-Pressure Sensing Using MPX2010 Series Pressure by: Memo Romero and Raul Figueroa Sensor Products Division Systems and Applications Engineering

More information