POST CMOS PATHFINDING. Leti Innovation Days June 28-29, 2017

Size: px
Start display at page:

Download "POST CMOS PATHFINDING. Leti Innovation Days June 28-29, 2017"

Transcription

1 POST CMOS PATHFINDING

2 DEVELOPING THE BUILDING BLOCKS FOR DATA PROCESSING The challenges to continue the performance improvement of data processing systems are multiple Improve the energy efficiency to maintain at least constant the overall dissipation while continuing the exponential increase in computational power Reduce the bottleneck in the memory-processing communication Increase the density of the functions while reaching the limits of scaling In LETI we are addressing these issues with a number of technological developments Efficient use of new devices 3D integration at different granularities New computing architectures 2

3 Hybrid logic DEVELOPING THE BUILDING BLOCKS FOR DATA PROCESSING Power efficient FDSOI 22FD 12FD 20nm L G ISPD SiC RSD Si channel 25nm T BOX Non planar / Stacked NW 14nm nm nm 2014 Disruptive scaling Alternative to scaling and diversification 10nm Cryo CMOS Si Quantum bits CoolCube TM for 3D VLSI 5nm 2020 Mechanical switches 2026 Early design coupling 3

4 STACKED NANOWIRES FOR 7NM AND BEYOND Technological challenges Strain implementation Access resistance (material, aspect ratio) Parasitic capacitances decrease Selective removal (SiGe vs Si/Si vs SiGe) Surface roughness control and multivt platform Atom probe tomography Electron tomography (a)si NWs (b) Rectangular Si NW (c) Circular Si NW (d) SiN HM NWs (111) (001) 200nm (e) 5nm 20nm 10nm 10nm 10nm P. Cherns al. EMC 08 T. Ernst IEDM 2006, C. Dupré IEDM 2008, E. Bernard IEEE EDL 2009, S. Barraud IEDM

5 OUR VIEW TODAY FOR COMPUTING 3D FOR DESIGN OPTIMISATION 3D Cu-Cu 1-Entire core 2-Logic bloc 3-Logic gates 4-Transistors 3D TSV Parallel 3D Granularity scale Sequential 3D Monolithic 3D Gain obtained by shortening interconnection, optimising function and cost by partitioning and reducing latency 5

6 COOLCUBE TM Design tools and 2D vs 3D benchmark Further density scaling Cost optimization Added functionnality L G ~50 nm TiN THFO nm Tsi 10 nm Average gain benchmark 2D vs 3D Area gain=55% Perf gain = 23% Power gain = 12% III-V on top of SiGe, with IBM-Zurich - VLSI 2017 Module developments Energy-delay product of FPGA benchmark circuits for 2D and 3D architectures Full 300mm integration route Compact modeling, DRM, PDK IC design P Batude, IEDM 09, P Batude, IEDM 11, L Pasini, IWJT 14, P Batude, IITC 14, C Fenouillet-Beranger, IEDM 14, P Batude, VLSI 15, L. Pasini, VLSI 15 & 16, L Brunet, VLSI 16 6

7 REVERSE ENGINEERING 14NM NODE Future of 3D developments Top layer performance has been demonstrated Inter metal interconnects can sustain the thermal budget 300mm run back and forth between research and fabrication fab Lithographic alignment is achieved CoolCube TM is supporting the shift in computing paradigms 7

8 OUR VIEW TODAY TO SCALE UP COMPUTING Chiplets On Interposer Specialisation in the interposer: System-in- Package, Silicon (Passive or active), photonic Application dependent Scalable and standardised components High performance integration: Scale-out Heterogeneous integration Multicore architectures Low Cost Chiplet Small chips Advanced technology Generic High volume 8

9 Technology Accessibility NEW ARCHITECTURES DEVELOPMENT: NEURAL NETWORK DESIGN Partner Inputs Outcomes N2D2 Learning and Test DB DB Application constraints Data conditioning Modeling Optimization Learning Eval. Program. Synthesis Emulated NN Digital IC MPSOC DSP GPU FPGA PNeuro Spike NN Energy Efficiency Integration constraints (Credit: maxsattana / Fotolia) Learning toolbox Mix Signal IC Spider Reptile NVRAM + Spike 9

10 NEW TECHNOLOGIES FOR NEW ARCHITECTURES: RRAM AS SYNAPSES Thermal effect PCM GST GeTe GST + HfO 2 Electronic effect oxygen vacancies OXRAM Electrochemical effect CBRAM Ag / GeS 2 TiN/HfO 2 /Ti/TiN M.Suri, et. al, IEDM 2011 M.Suri, et. al, IMW 2012, JAP 2012 O.Bichler et al. IEEE TED 2012 M.Suri et al., EPCOS 2013 D.Garbin et al., IEEE Nano 2013 D.Garbin et al. IEDM 2014 D.Garbin et al., IEEE TED

11 3D INTEGRATION COUPLED WITH RRAM Introduction Ti/TiN Ti/TiN HfO2 Ti/TiN Ti/TiN HfO2 Short term structure RRAM on top level to avoid contamination issue Reuse of existing masks plus ebeam to build 1T1R No W or Cu between the 2 levels avoid contamination in first trial 1 base ebeam required for RRAM definition RRAM based on HfO 2 /Ti/TiN low temp materials (~ 350 C) no critical problems to integrate on the top level 11

12 MULTICORE SPIKING NEUROMORPHIC PROCESSOR IN FDSOI 28NM CMOS Dynamic Neuromorphic Asynchronous Processor Scalable-Learning (DynapSEL) Tape out 11/16 silicon expected 07/17 Chip Name Process Supply Voltage DynapSEL ST28FDSOI 1V IO Number (internal 59) Chip area Core Numbers Neuron Type 2.8mm x 2.6mm 4 non-plastic cores 1 plastic core Analog AExp I&F Non-plastic Synapse Type Plastic Synapse Type Throughput of Router Scalability TCAM based 4-bit Linear 4-bit digital 1G Events/second 16 x16 chips nonplastic core) 4 x4 chips (plastic cores) 12

13 SI QUANTUM ELECTRONICS Si CMOS technology Cryogenic peripheral electronics M. Veldhorst et al. (UNSW) Nature 526, (2015) Qubit device gate 2 source drain gate 1 Large-scale qubit integration S S S S S D M D M D M D M D S S S S S M D M D M D M D M S S S S S D M D M D M D M D S S S S S M D M D M D M D M S S S S S D M D M D M D M D S S S S S M D M D M D M D M S S S S S 13

14 FIRST QBIT IN SI ON 300MM BASED ON FDSOI 28NM FLOW a) FFT S G1 G2 D Two QDs in series coupled by tunnel junction Buried Oxide SiO 2 Quantization of the energy levels at low T b) Si Backside = additional Gate Current (A) x10-12 Ramsey T 2 * = 270 ns Burst (ns) x

15 TOWARDS A REAL MULTI-QUANTUM BIT SYSTEM IN SI Near-term: Pairs of Split-Gates over a single Si NanoWire Spacing 40nm or lower One side for data qubits, other side for readout via reflectometry Tunable Nearest neighbor coupling via (local) ground plane defined under the BOx 15

16 CONCLUSIONS Time is short to show the work on materials that is also ongoing with Academia and tool suppliers but please come back and you will see the results LETI continue working on looking for new and disruptive ways to push forward computational power in the most efficient way 16

17 Leti, technology research institute Commissariat à l énergie atomique et aux énergies alternatives Minatec Campus 17 rue des Martyrs Grenoble Cedex France

HPC in the Loop and Cyber-Physical Systems

HPC in the Loop and Cyber-Physical Systems High-Performance and Embedded Architecture and Compilation HPC in the Loop and Cyber-Physical Systems Marc Duranton HiPEAC vision coordinator CEA Fellow Commissariat à l énergie atomique et aux énergies

More information

Advanced PDK and Technologies accessible through ASCENT

Advanced PDK and Technologies accessible through ASCENT Advanced PDK and Technologies accessible through ASCENT MOS-AK Dresden, Sept. 3, 2018 L. Perniola*, O. Rozeau*, O. Faynot*, T. Poiroux*, P. Roseingrave^ olivier.faynot@cea.fr *Cea-Leti, Grenoble France;

More information

RF DEVICES: BREAKTHROUGHS THANKS TO NEW MATERIALS. Jean-René Lequepeys. Leti Devices Workshop December 3, 2017

RF DEVICES: BREAKTHROUGHS THANKS TO NEW MATERIALS. Jean-René Lequepeys. Leti Devices Workshop December 3, 2017 RF DEVICES: BREAKTHROUGHS THANKS TO NEW MATERIALS Jean-René Lequepeys CELLULAR RF MARKETS RF cellular markets are still progressing Smartphones remain the main driver Declining growth rate but more complex

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

VERSATILE SILICON PHOTONIC PLATFORM FOR DATACOM AND COMPUTERCOM APPLICATIONS. B Szelag CEA-Leti

VERSATILE SILICON PHOTONIC PLATFORM FOR DATACOM AND COMPUTERCOM APPLICATIONS. B Szelag CEA-Leti VERSATILE SILICON PHOTONIC PLATFORM FOR DATACOM AND COMPUTERCOM APPLICATIONS B Szelag CEA-Leti OUTLINE Silicon photonic : 200mm CMOS core technology towards 300mm Emergent needs vs core process Technological

More information

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging Christophe Kopp, St ephane Bernab e, Badhise Ben Bakir,

More information

Convergence Challenges of Photonics with Electronics

Convergence Challenges of Photonics with Electronics Convergence Challenges of Photonics with Electronics Edward Palen, Ph.D., P.E. PalenSolutions - Optoelectronic Packaging Consulting www.palensolutions.com palensolutions@earthlink.net 415-850-8166 October

More information

FD-SOI FOR RF IC DESIGN. SITRI LETI Workshop Mercier Eric 08 september 2016

FD-SOI FOR RF IC DESIGN. SITRI LETI Workshop Mercier Eric 08 september 2016 FD-SOI FOR RF IC DESIGN SITRI LETI Workshop Mercier Eric 08 september 2016 UTBB 28 nm FD-SOI : RF DIRECT BENEFITS (1/2) 3 back-end options available Routing possible on the AluCap level no restriction

More information

How material engineering contributes to delivering innovation in the hyper connected world

How material engineering contributes to delivering innovation in the hyper connected world How material engineering contributes to delivering innovation in the hyper connected world Paul BOUDRE, Soitec CEO Leti Innovation Days - July 2018 Grenoble, France We live in a world of data In perpetual

More information

sensors & systems Imagine future imaging... Leti, technology research institute Contact:

sensors & systems Imagine future imaging... Leti, technology research institute Contact: Imaging sensors & systems Imagine future imaging... Leti, technology research institute Contact: leti.contact@cea.fr From consumer markets to high-end applications smart home IR array for human activity

More information

ICT Micro- and nanoelectronics technologies

ICT Micro- and nanoelectronics technologies EPoSS Proposers' Day, 2 Feb 2017, Brussels ICT 31-2017 Micro- and nanoelectronics technologies Eric Fribourg-Blanc, Henri Rajbenbach, Andreas Lymberis European Commission DG CONNECT (Communications Networks,

More information

Sustaining the Si Revolution: From 3D Transistors to 3D Integration

Sustaining the Si Revolution: From 3D Transistors to 3D Integration Sustaining the Si Revolution: From 3D Transistors to 3D Integration Tsu Jae King Liu Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA USA February 23, 2015

More information

3D Integration developments & manufacturing CEA-LETI. D. Henry CEA-Leti-Minatec

3D Integration developments & manufacturing CEA-LETI. D. Henry CEA-Leti-Minatec 3D Integration developments & manufacturing offer @ CEA-LETI D. Henry CEA-Leti-Minatec Outline Introduction 3D Integration R&D activities overview 3D integration Manufacturing offer : Open 3D platform

More information

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL OUTLINE Introduction Platform Overview Device Library Overview What s Next? Conclusion OUTLINE Introduction Platform Overview

More information

Course Outcome of M.Tech (VLSI Design)

Course Outcome of M.Tech (VLSI Design) Course Outcome of M.Tech (VLSI Design) PVL108: Device Physics and Technology The students are able to: 1. Understand the basic physics of semiconductor devices and the basics theory of PN junction. 2.

More information

Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap

Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap Peter De Dobbelaere Luxtera Inc. 09/19/2016 Luxtera Proprietary www.luxtera.com Luxtera Company Introduction $100B+ Shift

More information

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Alternatives to standard MOSFETs. What problems are we really trying to solve? Alternatives to standard MOSFETs A number of alternative FET schemes have been proposed, with an eye toward scaling up to the 10 nm node. Modifications to the standard MOSFET include: Silicon-in-insulator

More information

Si photonics for the Zettabyte Era. Marco Romagnoli. CNIT & TeCIP - Scuola Superiore Sant Anna

Si photonics for the Zettabyte Era. Marco Romagnoli. CNIT & TeCIP - Scuola Superiore Sant Anna Si photonics for the Zettabyte Era Marco Romagnoli CNIT & TeCIP - Scuola Superiore Sant Anna Semicon 2013 Dresden 8-10 October 2013 Zetabyte era Disaggregation at system level Integration at chip level

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.1: Nanoscale FET Anda Mocuta Introduction: technologies/concepts covered by the Roadmap

More information

Thermal Management in the 3D-SiP World of the Future

Thermal Management in the 3D-SiP World of the Future Thermal Management in the 3D-SiP World of the Future Presented by W. R. Bottoms March 181 th, 2013 Smaller, More Powerful Portable Devices Are Driving Up Power Density Power (both power delivery and power

More information

Device architectures for the 5nm technology node and beyond Nadine Collaert

Device architectures for the 5nm technology node and beyond Nadine Collaert Device architectures for the 5nm technology node and beyond Nadine Collaert Distinguished member of technical staff, imec Outline Introduction Beyond FinFET: lateral nanowires and vertical transistors

More information

NEREID 2 General Workshop, Athens, April 2017

NEREID 2 General Workshop, Athens, April 2017 NEREID 2 General Workshop, Athens, April 2017 «Nanoscale FET» Roadmap WP3 Task 3.1 Francis Balestra, Grenoble INP/CNRS NanoElectronics Roadmap for Europe: Identification and Dissemination Coordinators

More information

IFSIN. WEB PAGE Fall ://weble.upc.es/ifsin/

IFSIN. WEB PAGE   Fall ://weble.upc.es/ifsin/ IFSIN IMPLEMENTACIÓ FÍSICA DE SISTEMES INTEGRATS NANOMÈTRICS IMPLEMENTACIÓN N FÍSICA F DE SISTEMAS INTEGRADOS NANOMÉTRICOS PHYSICAL IMPLEMENTATION OF NANOMETER INTEGRATED SYSTEMS Fall 2008 Prof. Xavier

More information

Nano-crystalline Oxide Semiconductor Materials for Semiconductor and Display Technology Sanghun Jeon Ph.D. Associate Professor

Nano-crystalline Oxide Semiconductor Materials for Semiconductor and Display Technology Sanghun Jeon Ph.D. Associate Professor Nano-crystalline Oxide Semiconductor Materials for Semiconductor and Display Technology Sanghun Jeon Ph.D. Associate Professor Department of Applied Physics Korea University Personnel Profile (Affiliation

More information

Binary Neural Network and Its Implementation with 16 Mb RRAM Macro Chip

Binary Neural Network and Its Implementation with 16 Mb RRAM Macro Chip Binary Neural Network and Its Implementation with 16 Mb RRAM Macro Chip Assistant Professor of Electrical Engineering and Computer Engineering shimengy@asu.edu http://faculty.engineering.asu.edu/shimengyu/

More information

HOW TO CONTINUE COST SCALING. Hans Lebon

HOW TO CONTINUE COST SCALING. Hans Lebon HOW TO CONTINUE COST SCALING Hans Lebon OUTLINE Scaling & Scaling Challenges Imec Technology Roadmap Wafer size scaling : 450 mm 2 COST SCALING IMPROVED PERFORMANCE 3 GLOBAL TRAFFIC FORECAST Cloud Traffic

More information

FinFET Devices and Technologies

FinFET Devices and Technologies FinFET Devices and Technologies Jack C. Lee The University of Texas at Austin NCCAVS PAG Seminar 9/25/14 Material Opportunities for Semiconductors 1 Why FinFETs? Planar MOSFETs cannot scale beyond 22nm

More information

Towards a Reconfigurable Nanocomputer Platform

Towards a Reconfigurable Nanocomputer Platform Towards a Reconfigurable Nanocomputer Platform Paul Beckett School of Electrical and Computer Engineering RMIT University Melbourne, Australia 1 The Nanoscale Cambrian Explosion Disparity: Widerangeof

More information

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2)

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2) 1 CHAPTER 3: IMPLEMENTATION TECHNOLOGY (PART 2) Whatwillwelearninthischapter? we learn in this 2 How transistors operate and form simple switches CMOS logic gates IC technology FPGAs and other PLDs Basic

More information

III-V CMOS: Quo Vadis?

III-V CMOS: Quo Vadis? III-V CMOS: Quo Vadis? J. A. del Alamo, X. Cai, W. Lu, A. Vardi, and X. Zhao Microsystems Technology Laboratories Massachusetts Institute of Technology Compound Semiconductor Week 2018 Cambridge, MA, May

More information

Enabling Breakthroughs In Technology

Enabling Breakthroughs In Technology Enabling Breakthroughs In Technology Mike Mayberry Director of Components Research VP, Technology and Manufacturing Group Intel Corporation June 2011 Defined To be defined Enabling a Steady Technology

More information

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore Semiconductor Memory: DRAM and SRAM Outline Introduction Random Access Memory (RAM) DRAM SRAM Non-volatile memory UV EPROM EEPROM Flash memory SONOS memory QD memory Introduction Slow memories Magnetic

More information

Nanoscale III-V CMOS

Nanoscale III-V CMOS Nanoscale III-V CMOS J. A. del Alamo Microsystems Technology Laboratories Massachusetts Institute of Technology SEMI Advanced Semiconductor Manufacturing Conference Saratoga Springs, NY; May 16-19, 2016

More information

ON THE WAY TO PHOTONIC INTERPOSERS, BUILDING BLOCKS FOR USR-OPTICAL COMMUNICATION. OPTICS Workshop DATE 2017 Yvain THONNART Mar.

ON THE WAY TO PHOTONIC INTERPOSERS, BUILDING BLOCKS FOR USR-OPTICAL COMMUNICATION. OPTICS Workshop DATE 2017 Yvain THONNART Mar. ON THE WAY TO PHOTONIC INTERPOSERS, BUILDING BLOCKS FOR USR-OPTICAL COMMUNICATION OUTLINE Motivations Interposer technologies for manycores Our goal An optically interconnected manycore on interposer Silicon

More information

Advanced Digital Integrated Circuits. Lecture 2: Scaling Trends. Announcements. No office hour next Monday. Extra office hour Tuesday 2-3pm

Advanced Digital Integrated Circuits. Lecture 2: Scaling Trends. Announcements. No office hour next Monday. Extra office hour Tuesday 2-3pm EE241 - Spring 20 Advanced Digital Integrated Circuits Lecture 2: Scaling Trends and Features of Modern Technologies Announcements No office hour next Monday Extra office hour Tuesday 2-3pm 2 1 Outline

More information

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects By Mieke Van Bavel, science editor, imec, Belgium; Joris Van Campenhout, imec, Belgium; Wim Bogaerts, imec s associated

More information

Innovation to Advance Moore s Law Requires Core Technology Revolution

Innovation to Advance Moore s Law Requires Core Technology Revolution Innovation to Advance Moore s Law Requires Core Technology Revolution Klaus Schuegraf, Ph.D. Chief Technology Officer Silicon Systems Group Applied Materials UC Berkeley Seminar March 9 th, 2012 Innovation

More information

New Process Technologies Will silicon CMOS carry us to the end of the Roadmap?

New Process Technologies Will silicon CMOS carry us to the end of the Roadmap? HPEC Workshop 2006 New Process Technologies Will silicon CMOS carry us to the end of the Roadmap? Craig L. Keast, Chenson Chen, Mike Fritze, Jakub Kedzierski, Dave Shaver HPEC 2006-1 Outline A brief history

More information

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations Workshop on Frontiers of Extreme Computing Santa Cruz, CA October 24, 2005 ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations Peter M. Zeitzoff Outline Introduction MOSFET scaling and

More information

FinFET vs. FD-SOI Key Advantages & Disadvantages

FinFET vs. FD-SOI Key Advantages & Disadvantages FinFET vs. FD-SOI Key Advantages & Disadvantages Amiad Conley Technical Marketing Manager Process Diagnostics & Control, Applied Materials ChipEx-2014, Apr 2014 1 Moore s Law The number of transistors

More information

2.5D & 3D Package Signal Integrity A Paradigm Shift

2.5D & 3D Package Signal Integrity A Paradigm Shift 2.5D & 3D Package Signal Integrity A Paradigm Shift Nozad Karim Technology & Platform Development November, 2011 Enabling a Microelectronic World Content Traditional package signal integrity vs. 2.5D/3D

More information

NANOELECTRONIC TECHNOLOGY: CHALLENGES IN THE 21st CENTURY

NANOELECTRONIC TECHNOLOGY: CHALLENGES IN THE 21st CENTURY NANOELECTRONIC TECHNOLOGY: CHALLENGES IN THE 21st CENTURY S. M. SZE National Chiao Tung University Hsinchu, Taiwan And Stanford University Stanford, California ELECTRONIC AND SEMICONDUCTOR INDUSTRIES

More information

Si and InP Integration in the HELIOS project

Si and InP Integration in the HELIOS project Si and InP Integration in the HELIOS project J.M. Fedeli CEA-LETI, Grenoble ( France) ECOC 2009 1 Basic information about HELIOS HELIOS photonics ELectronics functional Integration on CMOS www.helios-project.eu

More information

3D ICs: Recent Advances in the Industry

3D ICs: Recent Advances in the Industry 3D ICs: Recent Advances in the Industry Suresh Ramalingam Senior Director, Advanced Packaging Outline 3D IC Background 3D IC Technology Development Summary Acknowledgements Stacked Silicon Interconnect

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C18 Introduction to MEMS Design Fall 008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 7: Noise &

More information

450mm and Moore s Law Advanced Packaging Challenges and the Impact of 3D

450mm and Moore s Law Advanced Packaging Challenges and the Impact of 3D 450mm and Moore s Law Advanced Packaging Challenges and the Impact of 3D Doug Anberg VP, Technical Marketing Ultratech SOKUDO Lithography Breakfast Forum July 10, 2013 Agenda Next Generation Technology

More information

SOI technology platforms for 5G: Opportunities of collaboration

SOI technology platforms for 5G: Opportunities of collaboration SOI technology platforms for 5G: Opportunities of collaboration Dr. Ionut RADU Director, R&D SOITEC MOS AK workshop, Silicon Valley December 6th, 2017 Sourcing value from substrate Robert E. White ISBN-13:

More information

+1 (479)

+1 (479) Introduction to VLSI Design http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Invention of the Transistor Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable

More information

LOW-POWER SOFTWARE-DEFINED RADIO DESIGN USING FPGAS

LOW-POWER SOFTWARE-DEFINED RADIO DESIGN USING FPGAS LOW-POWER SOFTWARE-DEFINED RADIO DESIGN USING FPGAS Charlie Jenkins, (Altera Corporation San Jose, California, USA; chjenkin@altera.com) Paul Ekas, (Altera Corporation San Jose, California, USA; pekas@altera.com)

More information

Nanowire-Based Programmable Architectures

Nanowire-Based Programmable Architectures Nanowire-Based Programmable Architectures ANDR E E DEHON ACM Journal on Emerging Technologies in Computing Systems, Vol. 1, No. 2, July 2005, Pages 109 162 162 INTRODUCTION Goal : to develop nanowire-based

More information

White Paper Stratix III Programmable Power

White Paper Stratix III Programmable Power Introduction White Paper Stratix III Programmable Power Traditionally, digital logic has not consumed significant static power, but this has changed with very small process nodes. Leakage current in digital

More information

Integrated Photonics using the POET Optical InterposerTM Platform

Integrated Photonics using the POET Optical InterposerTM Platform Integrated Photonics using the POET Optical InterposerTM Platform Dr. Suresh Venkatesan CIOE Conference Shenzhen, China Sept. 5, 2018 POET Technologies Inc. TSXV: PUBLIC POET PTK.V Technologies Inc. PUBLIC

More information

Digital Integrated Circuits EECS 312

Digital Integrated Circuits EECS 312 14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980

More information

The Future of Packaging ~ Advanced System Integration

The Future of Packaging ~ Advanced System Integration The Future of Packaging ~ Advanced System Integration Enabling a Microelectronic World R. Huemoeller SVP, Adv. Product / Platform Develop June 2013 Product Segments End Market % Share Summary 2 New Product

More information

CMP for More Than Moore

CMP for More Than Moore 2009 Levitronix Conference on CMP Gerfried Zwicker Fraunhofer Institute for Silicon Technology ISIT Itzehoe, Germany gerfried.zwicker@isit.fraunhofer.de Contents Moore s Law and More Than Moore Comparison:

More information

Research Needs for Device Sciences Modeling and Simulation (May 6, 2005)

Research Needs for Device Sciences Modeling and Simulation (May 6, 2005) Research Needs for Device Sciences Modeling and Simulation (May 6, 2005) SRC Device Sciences 2005 Modeling and Simulation Task Force Contributing organizations: Axcelis, Freescale, IBM, Intel, LSI, SRC,

More information

Fabricating 2.5D, 3D, 5.5D Devices

Fabricating 2.5D, 3D, 5.5D Devices Fabricating 2.5D, 3D, 5.5D Devices Bob Patti, CTO rpatti@tezzaron.com Tezzar on Semiconduct or 04/15/2013 1 Gen4 Dis-Integrated 3D Memory DRAM layers 42nm node 2 million vertical connections per lay per

More information

Integration, Architecture, and Applications of 3D CMOS Memristor Circuits

Integration, Architecture, and Applications of 3D CMOS Memristor Circuits Integration, Architecture, and Applications of 3D CMOS Memristor Circuits K. T. Tim Cheng and Dimitri Strukov Univ. of California, Santa Barbara ISPD 2012 1 3D Hybrid CMOS/NANO add-on nanodevices layer

More information

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Anri Nakajima Research Center for Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama, Higashi-Hiroshima,

More information

SDR-BASED TEST BENCH TO EVALUATE ANALOG CANCELLATION TECHNIQUES FOR IN-BAND FULL-DUPLEX TRANSCEIVER

SDR-BASED TEST BENCH TO EVALUATE ANALOG CANCELLATION TECHNIQUES FOR IN-BAND FULL-DUPLEX TRANSCEIVER SDR-BASED TEST BENCH TO EVALUATE ANALOG CANCELLATION TECHNIQUES FOR IN-BAND FULL-DUPLEX TRANSCEIVER Patrick Rosson, David Dassonville, Xavier Popon, Sylvie Mayrargue CEA-Leti Minatec Campus Cleen Workshop,

More information

HAPTIC A PROMISING NEW SOLUTION FOR AN ADVANCED HUMAN-MACHINE INTERFACE

HAPTIC A PROMISING NEW SOLUTION FOR AN ADVANCED HUMAN-MACHINE INTERFACE HAPTIC A PROMISING NEW SOLUTION FOR AN ADVANCED HUMAN-MACHINE INTERFACE F. Casset OUTLINE Haptic definition and main applications Haptic state of the art Our solution: Thin-film piezoelectric actuators

More information

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 730 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee4800fall2010.html

More information

Silicon Photonics: an Industrial Perspective

Silicon Photonics: an Industrial Perspective Silicon Photonics: an Industrial Perspective Antonio Fincato Advanced Programs R&D, Cornaredo, Italy OUTLINE 2 Introduction Silicon Photonics Concept 300mm (12 ) Photonic Process Main Silicon Photonics

More information

CMOS Analog Integrate-and-fire Neuron Circuit for Driving Memristor based on RRAM

CMOS Analog Integrate-and-fire Neuron Circuit for Driving Memristor based on RRAM JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.2, APRIL, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.2.174 ISSN(Online) 2233-4866 CMOS Analog Integrate-and-fire Neuron

More information

Power-Delivery Network in 3D ICs: Monolithic 3D vs. Skybridge 3D CMOS

Power-Delivery Network in 3D ICs: Monolithic 3D vs. Skybridge 3D CMOS -Delivery Network in 3D ICs: Monolithic 3D vs. Skybridge 3D CMOS Jiajun Shi, Mingyu Li and Csaba Andras Moritz Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA,

More information

BICMOS Technology and Fabrication

BICMOS Technology and Fabrication 12-1 BICMOS Technology and Fabrication 12-2 Combines Bipolar and CMOS transistors in a single integrated circuit By retaining benefits of bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with

More information

RRAM based analog synapse device for neuromorphic system

RRAM based analog synapse device for neuromorphic system RRAM based analog synapse device for neuromorphic system Kibong Moon, Euijun Cha, and Hyunsang Hwang Pohang University of Science and Technology (POSTECH), Korea The 13 th Korea-U.S. Forum on Nanotechnology,

More information

Implementation of Neuromorphic System with Si-based Floating-body Synaptic Transistors

Implementation of Neuromorphic System with Si-based Floating-body Synaptic Transistors JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.2, APRIL, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.2.210 ISSN(Online) 2233-4866 Implementation of Neuromorphic System

More information

BCD Smart Power Roadmap Trends and Challenges. Giuseppe Croce NEREID WORKSHOP Smart Energy Bertinoro, October 20 th

BCD Smart Power Roadmap Trends and Challenges. Giuseppe Croce NEREID WORKSHOP Smart Energy Bertinoro, October 20 th BCD Smart Power Roadmap Trends and Challenges Giuseppe Croce NEREID WORKSHOP Smart Energy Bertinoro, October 20 th Outline 2 Introduction Major Trends in Smart Power ASICs An insight on (some) differentiating

More information

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 33-1 Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007 Contents: 1. MOSFET scaling

More information

PUSHING LITHOGRAPHY TO ENABLE ULTIMATE NANO-ELECTRONICS. LUC VAN DEN HOVE President & CEO imec

PUSHING LITHOGRAPHY TO ENABLE ULTIMATE NANO-ELECTRONICS. LUC VAN DEN HOVE President & CEO imec PUSHING LITHOGRAPHY TO ENABLE ULTIMATE NANO-ELECTRONICS LUC VAN DEN HOVE President & CEO imec OUTLINE! Industry drivers! Roadmap extension! Lithography options! Innovation through global collaboration

More information

Chapter 7 Introduction to 3D Integration Technology using TSV

Chapter 7 Introduction to 3D Integration Technology using TSV Chapter 7 Introduction to 3D Integration Technology using TSV Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Why 3D Integration An Exemplary TSV Process

More information

Silicon on Insulator (SOI) Spring 2018 EE 532 Tao Chen

Silicon on Insulator (SOI) Spring 2018 EE 532 Tao Chen Silicon on Insulator (SOI) Spring 2018 EE 532 Tao Chen What is Silicon on Insulator (SOI)? SOI silicon on insulator, refers to placing a thin layer of silicon on top of an insulator such as SiO2. The devices

More information

Neuromorphic Analog VLSI

Neuromorphic Analog VLSI Neuromorphic Analog VLSI David W. Graham West Virginia University Lane Department of Computer Science and Electrical Engineering 1 Neuromorphic Analog VLSI Each word has meaning Neuromorphic Analog VLSI

More information

Dual-K K Versus Dual-T T Technique for Gate Leakage Reduction : A Comparative Perspective

Dual-K K Versus Dual-T T Technique for Gate Leakage Reduction : A Comparative Perspective Dual-K K Versus Dual-T T Technique for Gate Leakage Reduction : A Comparative Perspective S. P. Mohanty, R. Velagapudi and E. Kougianos Dept of Computer Science and Engineering University of North Texas

More information

Design and CAD Challenges in 45nm CMOS and beyond David J. Frank Ruchir Puri Dorel Toma

Design and CAD Challenges in 45nm CMOS and beyond David J. Frank Ruchir Puri Dorel Toma Design and CAD Challenges in 45nm CMOS and beyond David J. Frank Ruchir Puri Dorel Toma IBM T.J. Watson Research Center US Technology Development Center P.O. Box 28 Tokyo Electron US Holdings Yorktown

More information

CMOL: Hybrid of CMOS with Overlaid Nanogrid and Nanodevice Structure. John Zacharkow

CMOL: Hybrid of CMOS with Overlaid Nanogrid and Nanodevice Structure. John Zacharkow CMOL: Hybrid of CMOS with Overlaid Nanogrid and Nanodevice Structure John Zacharkow Overview Introduction Background CMOS Review CMOL Breakdown Benefits/Shortcoming Looking into the Future Introduction

More information

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece5950 Simple Transistor

More information

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random 45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11 Process-induced Variability I: Random Random Variability Sources and Characterization Comparisons of Different MOSFET

More information

Trends and Challenges in VLSI Technology Scaling Towards 100nm

Trends and Challenges in VLSI Technology Scaling Towards 100nm Trends and Challenges in VLSI Technology Scaling Towards 100nm Stefan Rusu Intel Corporation stefan.rusu@intel.com September 2001 Stefan Rusu 9/2001 2001 Intel Corp. Page 1 Agenda VLSI Technology Trends

More information

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Low-Power VLSI Seong-Ook Jung 2013. 5. 27. sjung@yonsei.ac.kr VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Contents 1. Introduction 2. Power classification & Power performance

More information

CMOS VLSI IC Design. A decent understanding of all tasks required to design and fabricate a chip takes years of experience

CMOS VLSI IC Design. A decent understanding of all tasks required to design and fabricate a chip takes years of experience CMOS VLSI IC Design A decent understanding of all tasks required to design and fabricate a chip takes years of experience 1 Commonly used keywords INTEGRATED CIRCUIT (IC) many transistors on one chip VERY

More information

Si CMOS Technical Working Group

Si CMOS Technical Working Group Si CMOS Technical Working Group CTR, Spring 2008 meeting Markets Interconnects TWG Breakouts Reception TWG reports Si CMOS: photonic integration E-P synergy - Integration - Standardization - Cross-market

More information

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1 Topics What is semiconductor Basic semiconductor devices Basics of IC processing CMOS technologies 2006/9/27 2 1 What is Semiconductor

More information

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A. Rylyakov, C. Schow, B. Lee, W. Green, J. Van Campenhout, M. Yang, F. Doany, S. Assefa, C. Jahnes, J. Kash, Y. Vlasov IBM

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

InGaAs MOSFETs for CMOS:

InGaAs MOSFETs for CMOS: InGaAs MOSFETs for CMOS: Recent Advances in Process Technology J. A. del Alamo, D. Antoniadis, A. Guo, D.-H. Kim 1, T.-W. Kim 2, J. Lin, W. Lu, A. Vardi and X. Zhao Microsystems Technology Laboratories,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/6/e1501326/dc1 Supplementary Materials for Organic core-sheath nanowire artificial synapses with femtojoule energy consumption Wentao Xu, Sung-Yong Min, Hyunsang

More information

Smart Power Delivery using CMOS IC Technology: Promises and Needs

Smart Power Delivery using CMOS IC Technology: Promises and Needs Rensselaer Polytechnic Institute Electrical, Computer, and Systems Eng. Department Troy, NY Smart Power Delivery using CMOS IC Technology: Promises and Needs R.J. Gutmann (gutmar@rpi.edu) and J. Sun Faculty

More information

ATV 2011: Computer Engineering

ATV 2011: Computer Engineering ATV 2011: Technology Trends in Computer Engineering Professor Per Larsson-Edefors ATV 2011, L1, Per Larsson-Edefors Page 1 Solid-State Devices www.cse.chalmers.se/~perla/ugrad/ SemTech/Lectures_2000.pdf

More information

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab Silicon Photonics Photo-Detector Announcement Mario Paniccia Intel Fellow Director, Photonics Technology Lab Agenda Intel s Silicon Photonics Research 40G Modulator Recap 40G Photodetector Announcement

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration (VLSI): bucketloads! Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

Eigen # Hole s Wavefunctions, E-k and Equi-Energy Contours from a P-FinFET. Lecture 5

Eigen # Hole s Wavefunctions, E-k and Equi-Energy Contours from a P-FinFET. Lecture 5 Eigen # Gate Gate Hole s Wavefunctions, E-k and Equi-Energy Contours from a P-FinFET Lecture 5 Thin-Body MOSFET Carrier Transport quantum confinement effects low-field mobility: Orientation and Si Thickness

More information

Practical Information

Practical Information EE241 - Spring 2013 Advanced Digital Integrated Circuits MW 2-3:30pm 540A/B Cory Practical Information Instructor: Borivoje Nikolić 509 Cory Hall, 3-9297, bora@eecs Office hours: M 11-12, W 3:30pm-4:30pm

More information

The 3 D Tri Gate transistor is a variant of the FinFET developed at UC Berkeley, and is being used in Intel s 22nmgeneration. microprocessors.

The 3 D Tri Gate transistor is a variant of the FinFET developed at UC Berkeley, and is being used in Intel s 22nmgeneration. microprocessors. On May 4, 2011, Intel Corporation announced what it called the most radical shift in semiconductor technology in 50 years. A new 3 dimensional transistor design will enable the production of integrated

More information

Advanced Digital Design

Advanced Digital Design Advanced Digital Design Introduction & Motivation by A. Steininger and M. Delvai Vienna University of Technology Outline Challenges in Digital Design The Role of Time in the Design The Fundamental Design

More information

Recent Developments in Multifunctional Integration. Stephan Guttowski, Head of Technology Park»Heterointegration«, Fraunhofer FMD

Recent Developments in Multifunctional Integration. Stephan Guttowski, Head of Technology Park»Heterointegration«, Fraunhofer FMD Recent Developments in Multifunctional Integration Stephan Guttowski, Head of Technology Park»Heterointegration«, Fraunhofer FMD Founding Participants 2 One-Stop-Shop for developments from wafer technologies

More information

Nanotechnology, the infrastructure, and IBM s research projects

Nanotechnology, the infrastructure, and IBM s research projects Nanotechnology, the infrastructure, and IBM s research projects Dr. Paul Seidler Coordinator Nanotechnology Center, IBM Research - Zurich Nanotechnology is the understanding and control of matter at dimensions

More information

TCAM Core Design in 3D IC for Low Matchline Capacitance and Low Power

TCAM Core Design in 3D IC for Low Matchline Capacitance and Low Power Invited Paper TCAM Core Design in 3D IC for Low Matchline Capacitance and Low Power Eun Chu Oh and Paul D. Franzon ECE Dept., North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC, USA

More information

Session 3: Solid State Devices. Silicon on Insulator

Session 3: Solid State Devices. Silicon on Insulator Session 3: Solid State Devices Silicon on Insulator 1 Outline A B C D E F G H I J 2 Outline Ref: Taurand Ning 3 SOI Technology SOl materials: SIMOX, BESOl, and Smart Cut SIMOX : Synthesis by IMplanted

More information