Thermal Management in the 3D-SiP World of the Future

Size: px
Start display at page:

Download "Thermal Management in the 3D-SiP World of the Future"

Transcription

1 Thermal Management in the 3D-SiP World of the Future Presented by W. R. Bottoms March 181 th, 2013

2 Smaller, More Powerful Portable Devices Are Driving Up Power Density Power (both power delivery and power integrity) and physical density of bandwidth are the two major limiting factors for the digital electronics industry. Neither of these limiting factors will be resolved without improvements in Thermal Management 2

3 N mvc-tra ffic N mvc Changing Landscape M Units 2,500 2,000 1,500 1, Bandit Phones Branded Phones Smartphones MOBILE PHONE MARKET Exabytes Networking & Server % 3.6% ,100 GLOBAL MOBILE DATA TRAFFIC ( ) % 1, % 1,535 Traffic doubles every year 1, % % PoP + WLCSP+ FCCSP 4.2% 250 Capacity strain on infrastructure 1, % 40 Si Interposer + 3D 12.2% In every case Thermal 1, Heterogeneous Management Integration SiP 1,285 1, % Cisco % 25 is the limiting factor 57.1% CAAGR % Packaging Technology Ultra Low Alpha Large Die, Large Package Heterogeneous Integration SiP Silicon Interposer + 3D Traffic doubles every year Ericsson CAAGR % Smart Phone Packaging Technology Data transmission and memory are Capacity strain joining on infrastructure logic making significant and growing power demands 2015 Source: Cisco and Ericsson Measurements in Global Networks Where we are Where we are going 3

4 Thermal Density Is Impacting Everything 4 Qualcomm Presentation At RTI 3D Conference 2012

5 The first and most effective technique for thermal management is to reduce power requirement 5

6 Thermal Management Solutions Reduce Power Requirements Continue Moore s Law scaling As long as it s effective Use equivalent scaling through functional diversification Use the 3 rd dimension New Materials New device and package architectures 6

7 The 45 Year History Of Knowing What Comes Next Is Over Progress has been paced by Moore s Law and driven by: Focus was on design and fab Shrinking geometries Expanding wafer size Higher density designs For digital circuits there are now limitations that can t be met by these activities alone. 7

8 Power Density Limitations Of Moore s Law It Will Not Be Able To Keep Up This Pace Of Progress CMOS Power is no longer scaling with feature size A majority of the capacitance is in the interconnect Resistivity of Copper is rising with decreased feature size Power is rising with increased frequency International Electron Devices Meeting December 2012 Kurt Ronse, IMEC 14-nm chips likely will deliver about 15 to 20 percent performance boosts over the prior generation, rather than the typical 30 percent boost 8

9 Problems Arising From Shrinking CMOS Gate tunneling current increases Subthreshold channel leakage current increases Device parameter variability increases Source/drain resistance increases Copper interconnect resistivity increases Power no longer scales with feature size, both static and dynamic power dissipation increase due to these barriers. 9

10 How Can We Reduce Power In Scaling CMOS? Reduce leakage currents Reduce on-chip Interconnect power by: Decrease conductor resistance Decrease capacitance Reduce interconnect length Reduce operating frequency Reduce operating voltage Voltage regulator per core Reduce high speed electrical signal length (new transistor designs) (new material) (new material) (3D integration) (increased parallelism) (reduced frequency& size) (new IC designs; FINFET) (serdes with short path To very wide bus) 10

11 Decrease The Operating Voltage Qi Wang, Cadence technical marketing group director In the last 10 to 20 years, there has been a lot of effort devoted to performance, but we have left a lot of margin on the power side. Why do we keep Vdd at 1 volt? There s no point. You can drop Vdd to 0.3 or 0.4. People need a safer way to do circuit design. Note: This decreases power requirement but increases need for low cost high k dielectrics 11

12 Functional diversification and Heterogeneous integration enable equivalent scaling This has been titled More than Moore 12

13 Moore s Law Scaling Can Not Maintain The Pace Of Progress And Packaging Enables Equivalent Scaling More Moore : Scaling Beyond CMOS Λ. 14nm 28nm 32nm Baseline CMOS: CPU, Memory, Logic Information Processing Digital content System-on-Chip 45nm 65nm 90nm Analog/RF Passives HV Power Sensors Actuators More than Moore : Functional Diversification Biochips Fluidics o o o o Interacting with people and environment Non-digital content System-in-Package (SiP) 13

14 More Than Moore Heterogeneous Integration Enabled By Sip Functional diversification delivers equivalent scaling The most cost efficient, energy efficient and highest performance is achieved when each circuit fabric type is fabricated with process and materials optimized for that component The contribution of Assembly and Packaging to MtM is System in Package integration SiP. The package provides: The use of the most efficient component for each function The delivery of the resources to the components necessary for their function The delivery of output/removal of heat and by products from operation of the SiP Protection of the components in the package 14

15 Examples Of 3d-SiP Products 15 Source: Fraunhofer IZM

16 Use of the third Dimension 3D System Integration 16

17 Cost (arbitrary units) Semiconductor Electronics Has Been Characterized By An S-curve Production Ramp-up Model and Technology/Cycle Timing Development First Conf. Papers Production In the first S-Curve cycle in the semiconductor industry the Technology was the transistor First Two Companies in Production 1 10, Volume (arbitrary units) Time (arbitrary units) 17

18 Cost (arbitrary units) Can The 3D IC Maintain Progress Through A Third S-curve Cycle? Production Ramp-up Model and Technology/Cycle Timing D 3D IC 10, D 2D Transistors Integrated Circuits Volume (arbitrary units) 18

19 Speed and Power Advantages of 3D 3D interconnect decreases path lengths. For n TSV stacked layers, this may reduce global interconnect path lengths by square root of n Reduction in interconnect length Faster circuit speed Reduced power consumption Standby power reduced by 75% compared to PoP and MCP packages Smaller physical size Eventually, lower cost 19

20 3D Components For Smart Phones 20 Source: Yole

21 Thermal management challenges for 3D-SiP Architecture Finding solutions is not going to be easy High thermal dissipation density Hot spots Differential thermal expansion Heterogeneous integration Both circuit type and material The result is thermal limitations for: Bandwidth Power density Cost Reliability 21

22 Hot Spots management is critical for Heterogeneous Integration 22 Qualcomm Presentation At RTI 3D Conference 2012

23 New Materials are an essential tool in Thermal Management 23

24 New Materials Will Be Required Many are in use today Many are in development Cu interconnect Ultra Low k dielectrics High k dielectrics Organic semiconductors Green Materials Pb free Halogen free Nanotubes Nano Wires Macromolecules Nano Particles Composite materials But improvements are needed 24

25 Thermal Management Materials Requirements Examples Thermal Interface Mat. Mold Compound Conductors Adhesives Underfill Adhesion Functional Properties Moisture Resistance Modulus Fracture Toughness CTE Highly coupled Material Properties Novel materials to achieve optimal performance for each parameter 25

26 New Materials Requirements New dielectrics Both high and low K New conductors Both thermal and electrical Improved thermal interface materials Nano-materials Particularly as fillers for composite materials 26

27 Dielectrics And Conductors Are Changing Si based Low k dielectrics in engineering status today Properties Value k 1.8 n E (GPa) 3.0 H (GPa) 0.5 Adhesion, Critical Load (mn) TBD Etch stability 0.5% HF at RT P 1% KOH at 50 o C P Porosity > 40% Source: SBA Materials 27

28 Dielectrics And Conductors Are Changing Composite Copper is in evaluation. Current status: The first electrical performance improvement in copper since 1913 makes composite copper the most electrically conducting material known at room temperature. Targets for improvement compared to conventional copper are: 100 % increase in electrical conductivity 100% increase in thermal conductivity 300% increase in tensile strength 28 Source: NanoRidge

29 Graphene Supports >10X Cu A/Cm 2 29

30 Graphene Has Superior Electromigration Lifetime 30

31 Carbon Conductors Look Better Than Cu Many questions still to be answered before graphene or CNT can be considered as a practical interconnect materials. The results so far are very promising. 31

32 Other Techniques For Thermal Management 32

33 High Thermal Conductivity Materials For Thermal Management In Stacked Die Composite underfill and inter-layer dielectric with high thermal conductivity Thin, high efficiency heat sink Composite Mold Compound with high thermal conductivity Thermal Vias in the stack Composite Mold Compound with high thermal conductivity 33

34 Reduce Power The low hanging Fruit Move the photons as close to the transistors as possible 34

35 Microfluidic Cooling Is One Solution T. Brunschwiler et al., 3D-IC 2009 (IBM) 35

36 What Can We Do To Meet Thermal Challenges With 3D-SiP Archtecture? Reduce the power dissipation Use the 3 rd dimension. Stacking can reduce power by as much as the square root of the number of layers Reduce operating frequency. Increased parallelism can restore performance at lower power cost. Reduce operating voltage. You don t need the voltage if you operate at lower frequency. Smart power management in the package. Turn off the power to sections of the circuit not in use; voltage regulator per core. New materials (for reduced power, improved thermal tolerance and improved heat removal) Ultra-low K dielectrics. Power dissipation is proportional to C. Composite copper. Improved thermal and electrical conductivity. Direct band gap semiconductors. Extreme CMOS with Ge and IIIV compounds for higher speed and lower power. Carbon nanotubes for improved conductors and heat spreaders. Graphene for improved conductors and heat spreaders. Nanowires for improved conductors with reduced edge and grain boundary scattering. Nano-ribbons for improved conductors with reduced edge and grain boundary scattering Nano-solders for higher conductivity and reduced processing temperatures New Device and Package architectures Microfluidics to the package and to the chip Move photonics closer to the transistors. On package and, eventually, on chip. Increased parallelism to meet bandwidth requirements at lower voltage. Bus widths of several thousand. Heterogeneous integration in SiP allowing optimal materials and process selection for each different circuit fabric type. 36

37 Thermal Management In The 3d-sip World Of The Future These thermal management techniques Reduce the power dissipation combined New materials can reduce thermal density by more New than device 2 orders and package of magnitude architectures and increase thermal dissipation efficiency. Reduce frequency by increasing parallelism Lower operating voltage Smart power management in the package However, thermal management will continue Examples: to low be k, a composite primary copper, limiting nano-solders, factor high k materials, 3D integration, thermal vias, for heat the spreaders, electronics SiP to industry; limit interconnect at least distance until the CMOS switch is replaced. 37

38 Thank You for your attention 38

Packaging Roadmap: The impact of miniaturization. Bob Pfahl, inemi Celestica-iNEMI Technology Forum May 15, 2007

Packaging Roadmap: The impact of miniaturization. Bob Pfahl, inemi Celestica-iNEMI Technology Forum May 15, 2007 Packaging Roadmap: The impact of miniaturization Bob Pfahl, inemi Celestica-iNEMI Technology Forum May 15, 2007 The Challenges for the Next Decade Addressing the consumer experience using the converged

More information

HOW TO CONTINUE COST SCALING. Hans Lebon

HOW TO CONTINUE COST SCALING. Hans Lebon HOW TO CONTINUE COST SCALING Hans Lebon OUTLINE Scaling & Scaling Challenges Imec Technology Roadmap Wafer size scaling : 450 mm 2 COST SCALING IMPROVED PERFORMANCE 3 GLOBAL TRAFFIC FORECAST Cloud Traffic

More information

EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING

EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING Henry H. Utsunomiya Interconnection Technologies, Inc. Suwa City, Nagano Prefecture, Japan henryutsunomiya@mac.com ABSTRACT This presentation will outline

More information

450mm and Moore s Law Advanced Packaging Challenges and the Impact of 3D

450mm and Moore s Law Advanced Packaging Challenges and the Impact of 3D 450mm and Moore s Law Advanced Packaging Challenges and the Impact of 3D Doug Anberg VP, Technical Marketing Ultratech SOKUDO Lithography Breakfast Forum July 10, 2013 Agenda Next Generation Technology

More information

Semiconductor Industry Perspective

Semiconductor Industry Perspective Semiconductor Industry Perspective National Academy of Engineering Workshop on the Offshoring of Engineering Washington, D.C. October 25, 2006 Dr. Robert Doering Texas Instruments, Inc. A Few Introductory

More information

The Future of Packaging ~ Advanced System Integration

The Future of Packaging ~ Advanced System Integration The Future of Packaging ~ Advanced System Integration Enabling a Microelectronic World R. Huemoeller SVP, Adv. Product / Platform Develop June 2013 Product Segments End Market % Share Summary 2 New Product

More information

New Process Technologies Will silicon CMOS carry us to the end of the Roadmap?

New Process Technologies Will silicon CMOS carry us to the end of the Roadmap? HPEC Workshop 2006 New Process Technologies Will silicon CMOS carry us to the end of the Roadmap? Craig L. Keast, Chenson Chen, Mike Fritze, Jakub Kedzierski, Dave Shaver HPEC 2006-1 Outline A brief history

More information

POSSUM TM Die Design as a Low Cost 3D Packaging Alternative

POSSUM TM Die Design as a Low Cost 3D Packaging Alternative POSSUM TM Die Design as a Low Cost 3D Packaging Alternative The trend toward 3D system integration in a small form factor has accelerated even more with the introduction of smartphones and tablets. Integration

More information

Enabling Breakthroughs In Technology

Enabling Breakthroughs In Technology Enabling Breakthroughs In Technology Mike Mayberry Director of Components Research VP, Technology and Manufacturing Group Intel Corporation June 2011 Defined To be defined Enabling a Steady Technology

More information

FinFET vs. FD-SOI Key Advantages & Disadvantages

FinFET vs. FD-SOI Key Advantages & Disadvantages FinFET vs. FD-SOI Key Advantages & Disadvantages Amiad Conley Technical Marketing Manager Process Diagnostics & Control, Applied Materials ChipEx-2014, Apr 2014 1 Moore s Law The number of transistors

More information

Research in Support of the Die / Package Interface

Research in Support of the Die / Package Interface Research in Support of the Die / Package Interface Introduction As the microelectronics industry continues to scale down CMOS in accordance with Moore s Law and the ITRS roadmap, the minimum feature size

More information

Innovation to Advance Moore s Law Requires Core Technology Revolution

Innovation to Advance Moore s Law Requires Core Technology Revolution Innovation to Advance Moore s Law Requires Core Technology Revolution Klaus Schuegraf, Ph.D. Chief Technology Officer Silicon Systems Group Applied Materials UC Berkeley Seminar March 9 th, 2012 Innovation

More information

Recent Developments in Multifunctional Integration. Stephan Guttowski, Head of Technology Park»Heterointegration«, Fraunhofer FMD

Recent Developments in Multifunctional Integration. Stephan Guttowski, Head of Technology Park»Heterointegration«, Fraunhofer FMD Recent Developments in Multifunctional Integration Stephan Guttowski, Head of Technology Park»Heterointegration«, Fraunhofer FMD Founding Participants 2 One-Stop-Shop for developments from wafer technologies

More information

LOW LEAKAGE CNTFET FULL ADDERS

LOW LEAKAGE CNTFET FULL ADDERS LOW LEAKAGE CNTFET FULL ADDERS Rajendra Prasad Somineni srprasad447@gmail.com Y Padma Sai S Naga Leela Abstract As the technology scales down to 32nm or below, the leakage power starts dominating the total

More information

Embedded System Design and Synthesis. Transition. Evolution of computation. Two major sources of changing problems. Impact of scaling on delay

Embedded System Design and Synthesis. Transition. Evolution of computation. Two major sources of changing problems. Impact of scaling on delay Transition http://robertdick.org/esds/ Office: EECS 2417-E Department of Electrical Engineering and Computer Science University of Michigan Classes will transition from covering background on embedded

More information

CMP for More Than Moore

CMP for More Than Moore 2009 Levitronix Conference on CMP Gerfried Zwicker Fraunhofer Institute for Silicon Technology ISIT Itzehoe, Germany gerfried.zwicker@isit.fraunhofer.de Contents Moore s Law and More Than Moore Comparison:

More information

Fraunhofer IZM - ASSID

Fraunhofer IZM - ASSID FRAUNHOFER-INSTITUT FÜR Zuverlässigkeit und Mikrointegration IZM Fraunhofer IZM - ASSID All Silicon System Integration Dresden Heterogeneous 3D Wafer Level System Integration 3D system integration is one

More information

Nanotechnology and its effect on Electronics Manufacturing

Nanotechnology and its effect on Electronics Manufacturing Nanotechnology and its effect on Electronics Manufacturing Dr. Alan Rae Vice President, Market & Business Development, NanoDynamics, Inc. Dr. Robert C. Pfahl, Jr. VP of Operations, inemi Topics Covered

More information

Beyond Moore the challenge for Europe

Beyond Moore the challenge for Europe Beyond Moore the challenge for Europe Dr. Alfred J. van Roosmalen Vice-President Business Development, NXP Semiconductors Company member of MEDEA+/CATRENE/AENEAS/Point-One FIT-IT 08 Spring Research Wien,

More information

Intel's 65 nm Logic Technology Demonstrated on 0.57 µm 2 SRAM Cells

Intel's 65 nm Logic Technology Demonstrated on 0.57 µm 2 SRAM Cells Intel's 65 nm Logic Technology Demonstrated on 0.57 µm 2 SRAM Cells Mark Bohr Intel Senior Fellow Director of Process Architecture & Integration Intel 1 What are We Announcing? Intel has fabricated fully-functional

More information

Intel s High-k/Metal Gate Announcement. November 4th, 2003

Intel s High-k/Metal Gate Announcement. November 4th, 2003 Intel s High-k/Metal Gate Announcement November 4th, 2003 1 What are we announcing? Intel has made significant progress in future transistor materials Two key parts of this new transistor are: The gate

More information

Recent Trends in Semiconductor IC Device Manufacturing

Recent Trends in Semiconductor IC Device Manufacturing Recent Trends in Semiconductor IC Device Manufacturing August 2007 Dr. Stephen Daniels Executive Director National Centre for Plasma Moore s Law Moore s First Law Chip Density will double ever 18months.

More information

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION 6.1 Introduction In this chapter we have made a theoretical study about carbon nanotubes electrical properties and their utility in antenna applications.

More information

Chapter 7 Introduction to 3D Integration Technology using TSV

Chapter 7 Introduction to 3D Integration Technology using TSV Chapter 7 Introduction to 3D Integration Technology using TSV Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Why 3D Integration An Exemplary TSV Process

More information

White Paper Stratix III Programmable Power

White Paper Stratix III Programmable Power Introduction White Paper Stratix III Programmable Power Traditionally, digital logic has not consumed significant static power, but this has changed with very small process nodes. Leakage current in digital

More information

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 ECE 658 Sp 2018 Semiconductor Materials and Device Characterizations OUTLINE Background FinFET Future Roadmap Keeping up w/ Moore s Law

More information

Integrated Photonics using the POET Optical InterposerTM Platform

Integrated Photonics using the POET Optical InterposerTM Platform Integrated Photonics using the POET Optical InterposerTM Platform Dr. Suresh Venkatesan CIOE Conference Shenzhen, China Sept. 5, 2018 POET Technologies Inc. TSXV: PUBLIC POET PTK.V Technologies Inc. PUBLIC

More information

Newer process technology (since 1999) includes :

Newer process technology (since 1999) includes : Newer process technology (since 1999) includes : copper metalization hi-k dielectrics for gate insulators si on insulator strained silicon lo-k dielectrics for interconnects Immersion lithography for masks

More information

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method S.P. Venu Madhava Rao E.V.L.N Rangacharyulu K.Lal Kishore Professor, SNIST Professor, PSMCET Registrar, JNTUH Abstract As the process technology

More information

Semiconductor and LED Markets. Jon Sabol Vice President and General Manager Semiconductor and LED Division

Semiconductor and LED Markets. Jon Sabol Vice President and General Manager Semiconductor and LED Division Semiconductor and LED Markets Jon Sabol Vice President and General Manager Semiconductor and LED Division Semiconductor & LED Investing in Semiconductor and LED $ Millions 300 200 27% CAGR 100 0 * FY06

More information

Performance Optimization of Dynamic and Domino logic Carry Look Ahead Adder using CNTFET in 32nm technology

Performance Optimization of Dynamic and Domino logic Carry Look Ahead Adder using CNTFET in 32nm technology IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 5, Ver. I (Sep - Oct. 2015), PP 30-35 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Performance Optimization of Dynamic

More information

Semiconductor Process Reliability SVTW 2012 Esko Mikkola, Ph.D. & Andrew Levy

Semiconductor Process Reliability SVTW 2012 Esko Mikkola, Ph.D. & Andrew Levy Semiconductor Process Reliability SVTW 2012 Esko Mikkola, Ph.D. & Andrew Levy 1 IC Failure Modes Affecting Reliability Via/metallization failure mechanisms Electro migration Stress migration Transistor

More information

Organic Packaging Substrate Workshop Overview

Organic Packaging Substrate Workshop Overview Organic Packaging Substrate Workshop Overview Organized by: International Electronics Manufacturing Initiative (inemi) Mario A. Bolanos November 17-18, 2009 1 Organic Packaging Substrate Workshop Work

More information

Advanced PDK and Technologies accessible through ASCENT

Advanced PDK and Technologies accessible through ASCENT Advanced PDK and Technologies accessible through ASCENT MOS-AK Dresden, Sept. 3, 2018 L. Perniola*, O. Rozeau*, O. Faynot*, T. Poiroux*, P. Roseingrave^ olivier.faynot@cea.fr *Cea-Leti, Grenoble France;

More information

PROCESS-VOLTAGE-TEMPERATURE (PVT) VARIATIONS AND STATIC TIMING ANALYSIS

PROCESS-VOLTAGE-TEMPERATURE (PVT) VARIATIONS AND STATIC TIMING ANALYSIS PROCESS-VOLTAGE-TEMPERATURE (PVT) VARIATIONS AND STATIC TIMING ANALYSIS The major design challenges of ASIC design consist of microscopic issues and macroscopic issues [1]. The microscopic issues are ultra-high

More information

IFSIN. WEB PAGE Fall ://weble.upc.es/ifsin/

IFSIN. WEB PAGE   Fall ://weble.upc.es/ifsin/ IFSIN IMPLEMENTACIÓ FÍSICA DE SISTEMES INTEGRATS NANOMÈTRICS IMPLEMENTACIÓN N FÍSICA F DE SISTEMAS INTEGRADOS NANOMÉTRICOS PHYSICAL IMPLEMENTATION OF NANOMETER INTEGRATED SYSTEMS Fall 2008 Prof. Xavier

More information

Fabricating 2.5D, 3D, 5.5D Devices

Fabricating 2.5D, 3D, 5.5D Devices Fabricating 2.5D, 3D, 5.5D Devices Bob Patti, CTO rpatti@tezzaron.com Tezzar on Semiconduct or 04/15/2013 1 Gen4 Dis-Integrated 3D Memory DRAM layers 42nm node 2 million vertical connections per lay per

More information

NANOELECTRONIC TECHNOLOGY: CHALLENGES IN THE 21st CENTURY

NANOELECTRONIC TECHNOLOGY: CHALLENGES IN THE 21st CENTURY NANOELECTRONIC TECHNOLOGY: CHALLENGES IN THE 21st CENTURY S. M. SZE National Chiao Tung University Hsinchu, Taiwan And Stanford University Stanford, California ELECTRONIC AND SEMICONDUCTOR INDUSTRIES

More information

SoC Technology in the Era of 3-D Tri-Gate Transistors for Low Power, High Performance, and High Density Applications

SoC Technology in the Era of 3-D Tri-Gate Transistors for Low Power, High Performance, and High Density Applications SoC Technology in the Era of 3-D Tri-Gate Transistors for Low Power, High Performance, and High Density Applications Vice President, Technology Manufacturing Group Intel Corporation August 2013 Outlines

More information

Design of Nano-Electro Mechanical (NEM) Relay Based Nano Transistor for Power Efficient VLSI Circuits

Design of Nano-Electro Mechanical (NEM) Relay Based Nano Transistor for Power Efficient VLSI Circuits Design of Nano-Electro Mechanical (NEM) Relay Based Nano Transistor for Power Efficient VLSI Circuits Arul C 1 and Dr. Omkumar S 2 1 Research Scholar, SCSVMV University, Kancheepuram, India. 2 Associate

More information

Lecture Notes 5 CMOS Image Sensor Device and Fabrication

Lecture Notes 5 CMOS Image Sensor Device and Fabrication Lecture Notes 5 CMOS Image Sensor Device and Fabrication CMOS image sensor fabrication technologies Pixel design and layout Imaging performance enhancement techniques Technology scaling, industry trends

More information

Sustaining the Si Revolution: From 3D Transistors to 3D Integration

Sustaining the Si Revolution: From 3D Transistors to 3D Integration Sustaining the Si Revolution: From 3D Transistors to 3D Integration Tsu Jae King Liu Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA USA February 23, 2015

More information

Image Sensor Advanced Package Solution. Prepared by : JL Huang & KingPak RD division

Image Sensor Advanced Package Solution. Prepared by : JL Huang & KingPak RD division Image Sensor Advanced Package Solution Prepared by : JL Huang & KingPak RD division Contents CMOS image sensor marketing overview Comparison between different type of CMOS image sensor package Overview

More information

CS4617 Computer Architecture

CS4617 Computer Architecture 1/26 CS4617 Computer Architecture Lecture 2 Dr J Vaughan September 10, 2014 2/26 Amdahl s Law Speedup = Execution time for entire task without using enhancement Execution time for entire task using enhancement

More information

!"#$"%&' ()#*+,-+.&/0(

!#$%&' ()#*+,-+.&/0( !"#$"%&' ()#*+,-+.&/0( Multi Chip Modules (MCM) or Multi chip packaging Industry s first MCM from IBM. Generally MCMs are horizontal or two-dimensional modules. Defined as a single unit containing two

More information

G450C. Global 450mm Consortium at CNSE. Michael Liehr, General Manager G450C, Vice President for Research

G450C. Global 450mm Consortium at CNSE. Michael Liehr, General Manager G450C, Vice President for Research Global 450mm Consortium at CNSE Michael Liehr, General Manager G450C, Vice President for Research - CNSE Overview - G450C Vision - G450C Mission - Org Structure - Scope - Timeline The Road Ahead for Nano-Fabrication

More information

Low Transistor Variability The Key to Energy Efficient ICs

Low Transistor Variability The Key to Energy Efficient ICs Low Transistor Variability The Key to Energy Efficient ICs 2 nd Berkeley Symposium on Energy Efficient Electronic Systems 11/3/11 Robert Rogenmoser, PhD 1 BEES_roro_G_111103 Copyright 2011 SuVolta, Inc.

More information

Design of low threshold Full Adder cell using CNTFET

Design of low threshold Full Adder cell using CNTFET Design of low threshold Full Adder cell using CNTFET P Chandrashekar 1, R Karthik 1, O Koteswara Sai Krishna 1 and Ardhi Bhavana 1 1 Department of Electronics and Communication Engineering, MLR Institute

More information

Nanotechnology, the infrastructure, and IBM s research projects

Nanotechnology, the infrastructure, and IBM s research projects Nanotechnology, the infrastructure, and IBM s research projects Dr. Paul Seidler Coordinator Nanotechnology Center, IBM Research - Zurich Nanotechnology is the understanding and control of matter at dimensions

More information

Why Scaling? CPU speed Chip size R, C CPU can increase speed by reducing occupying area.

Why Scaling? CPU speed Chip size R, C CPU can increase speed by reducing occupying area. Why Scaling? Higher density : Integration of more transistors onto a smaller chip : reducing the occupying area and production cost Higher Performance : Higher current drive : smaller metal to metal capacitance

More information

TSI, or through-silicon insulation, is the

TSI, or through-silicon insulation, is the Vertical through-wafer insulation: Enabling integration and innovation PETER HIMES, Silex Microsystems AB, Järfälla SWEDEN Through-wafer insulation has been used to develop technologies such as Sil-Via

More information

By Christopher Henderson This article is a continuation of last month s article on leadframes.

By Christopher Henderson This article is a continuation of last month s article on leadframes. Leadframes Part II By Christopher Henderson This article is a continuation of last month s article on leadframes. Today, we mainly use plated leadframes. Plated leadframes can help improve adhesion of

More information

Signal Integrity Modeling and Measurement of TSV in 3D IC

Signal Integrity Modeling and Measurement of TSV in 3D IC Signal Integrity Modeling and Measurement of TSV in 3D IC Joungho Kim KAIST joungho@ee.kaist.ac.kr 1 Contents 1) Introduction 2) 2.5D/3D Architectures with TSV and Interposer 3) Signal integrity, Channel

More information

Tunneling Field Effect Transistors for Low Power ULSI

Tunneling Field Effect Transistors for Low Power ULSI Tunneling Field Effect Transistors for Low Power ULSI Byung-Gook Park Inter-university Semiconductor Research Center and School of Electrical and Computer Engineering Seoul National University Outline

More information

Design of Gate-All-Around Tunnel FET for RF Performance

Design of Gate-All-Around Tunnel FET for RF Performance Drain Current (µa/µm) International Journal of Computer Applications (97 8887) International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing ICIIIOSP-213 Design

More information

Towards a Reconfigurable Nanocomputer Platform

Towards a Reconfigurable Nanocomputer Platform Towards a Reconfigurable Nanocomputer Platform Paul Beckett School of Electrical and Computer Engineering RMIT University Melbourne, Australia 1 The Nanoscale Cambrian Explosion Disparity: Widerangeof

More information

Flexline - A Flexible Manufacturing Method for Wafer Level Packages (Extended Abstract)

Flexline - A Flexible Manufacturing Method for Wafer Level Packages (Extended Abstract) Flexline - A Flexible Manufacturing Method for Wafer Level Packages (Extended Abstract) by Tom Strothmann, *Damien Pricolo, **Seung Wook Yoon, **Yaojian Lin STATS ChipPAC Inc.1711 W Greentree Drive Tempe,

More information

CIRCUITS. Raj Nair Donald Bennett PRENTICE HALL

CIRCUITS. Raj Nair Donald Bennett PRENTICE HALL POWER INTEGRITY ANALYSIS AND MANAGEMENT I CIRCUITS Raj Nair Donald Bennett PRENTICE HALL Upper Saddle River, NJ Boston Indianapolis San Francisco New York Toronto Montreal London Munich Paris Madrid Capetown

More information

ATV 2011: Computer Engineering

ATV 2011: Computer Engineering ATV 2011: Technology Trends in Computer Engineering Professor Per Larsson-Edefors ATV 2011, L1, Per Larsson-Edefors Page 1 Solid-State Devices www.cse.chalmers.se/~perla/ugrad/ SemTech/Lectures_2000.pdf

More information

Lecture 04 CSE 40547/60547 Computing at the Nanoscale Interconnect

Lecture 04 CSE 40547/60547 Computing at the Nanoscale Interconnect Lecture 04 CSE 40547/60547 Computing at the Nanoscale Interconnect Introduction - So far, have considered transistor-based logic in the face of technology scaling - Interconnect effects are also of concern

More information

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations Workshop on Frontiers of Extreme Computing Santa Cruz, CA October 24, 2005 ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations Peter M. Zeitzoff Outline Introduction MOSFET scaling and

More information

Introduction to CMC 3D Test Chip Project

Introduction to CMC 3D Test Chip Project Introduction to CMC 3D Test Chip Project Robert Mallard CMC Microsystems Apr 20, 2011 1 Overview of today s presentation Introduction to the project objectives CMC Why 3D chip stacking? The key to More

More information

ICT Micro- and nanoelectronics technologies

ICT Micro- and nanoelectronics technologies EPoSS Proposers' Day, 2 Feb 2017, Brussels ICT 31-2017 Micro- and nanoelectronics technologies Eric Fribourg-Blanc, Henri Rajbenbach, Andreas Lymberis European Commission DG CONNECT (Communications Networks,

More information

Lecture #29. Moore s Law

Lecture #29. Moore s Law Lecture #29 ANNOUNCEMENTS HW#15 will be for extra credit Quiz #6 (Thursday 5/8) will include MOSFET C-V No late Projects will be accepted after Thursday 5/8 The last Coffee Hour will be held this Thursday

More information

Low Power Design of Successive Approximation Registers

Low Power Design of Successive Approximation Registers Low Power Design of Successive Approximation Registers Rabeeh Majidi ECE Department, Worcester Polytechnic Institute, Worcester MA USA rabeehm@ece.wpi.edu Abstract: This paper presents low power design

More information

Research Needs for Device Sciences Modeling and Simulation (May 6, 2005)

Research Needs for Device Sciences Modeling and Simulation (May 6, 2005) Research Needs for Device Sciences Modeling and Simulation (May 6, 2005) SRC Device Sciences 2005 Modeling and Simulation Task Force Contributing organizations: Axcelis, Freescale, IBM, Intel, LSI, SRC,

More information

MICROPROCESSOR TECHNOLOGY

MICROPROCESSOR TECHNOLOGY MICROPROCESSOR TECHNOLOGY Assis. Prof. Hossam El-Din Moustafa Lecture 3 Ch.1 The Evolution of The Microprocessor 17-Feb-15 1 Chapter Objectives Introduce the microprocessor evolution from transistors to

More information

FOR SEMICONDUCTORS 2007 EDITION

FOR SEMICONDUCTORS 2007 EDITION INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2007 EDITION INTERCONNECT THE ITRS IS DEVISED AND INTENDED FOR TECHNOLOGY ASSESSMENT ONLY AND IS WITHOUT REGARD TO ANY COMMERCIAL CONSIDERATIONS PERTAINING

More information

Course Content. Course Content. Course Format. Low Power VLSI System Design Lecture 1: Introduction. Course focus

Course Content. Course Content. Course Format. Low Power VLSI System Design Lecture 1: Introduction. Course focus Course Content Low Power VLSI System Design Lecture 1: Introduction Prof. R. Iris Bahar E September 6, 2017 Course focus low power and thermal-aware design digital design, from devices to architecture

More information

Design of Ultra-Low Power PMOS and NMOS for Nano Scale VLSI Circuits

Design of Ultra-Low Power PMOS and NMOS for Nano Scale VLSI Circuits Circuits and Systems, 2015, 6, 60-69 Published Online March 2015 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/10.4236/cs.2015.63007 Design of Ultra-Low Power PMOS and NMOS for Nano Scale

More information

LOW-POWER SOFTWARE-DEFINED RADIO DESIGN USING FPGAS

LOW-POWER SOFTWARE-DEFINED RADIO DESIGN USING FPGAS LOW-POWER SOFTWARE-DEFINED RADIO DESIGN USING FPGAS Charlie Jenkins, (Altera Corporation San Jose, California, USA; chjenkin@altera.com) Paul Ekas, (Altera Corporation San Jose, California, USA; pekas@altera.com)

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices - 2014 Lecture Course Part of SS Module PY4P03 Dr. P. Stamenov School of Physics and CRANN, Trinity College, Dublin 2, Ireland Hilary Term, TCD 3 th of Feb 14 MOSFET Unmodified Channel

More information

Extending The Life Of 200mm Fabs And The Re-use of Second Hand Tools

Extending The Life Of 200mm Fabs And The Re-use of Second Hand Tools Extending The Life Of 200mm Fabs And The Re-use of Second Hand Tools Gareth Bignell, FE Equipment Procurement Director SEMICON Europa 2012 Presentation Summary 2 An introduction to STMicroelectronics The

More information

3D TSV Micro Cu Column Chip-to-Substrate/Chip Assmbly/Packaging Technology

3D TSV Micro Cu Column Chip-to-Substrate/Chip Assmbly/Packaging Technology 3D TSV Micro Cu Column Chip-to-Substrate/Chip Assmbly/Packaging Technology by Seung Wook Yoon, *K. T. Kang, W. K. Choi, * H. T. Lee, Andy C. B. Yong and Pandi C. Marimuthu STATS ChipPAC LTD, 5 Yishun Street

More information

Market and technology trends in advanced packaging

Market and technology trends in advanced packaging Close Market and technology trends in advanced packaging Executive OVERVIEW Recent advances in device miniaturization trends have placed stringent requirements for all aspects of product manufacturing.

More information

ISSCC 2003 / SESSION 1 / PLENARY / 1.1

ISSCC 2003 / SESSION 1 / PLENARY / 1.1 ISSCC 2003 / SESSION 1 / PLENARY / 1.1 1.1 No Exponential is Forever: But Forever Can Be Delayed! Gordon E. Moore Intel Corporation Over the last fifty years, the solid-state-circuits industry has grown

More information

R&D Requirements from the 2004 inemi Roadmap. April 7, 2005 Dr. Robert C. Pfahl, Jr. VP of Operations, inemi

R&D Requirements from the 2004 inemi Roadmap. April 7, 2005 Dr. Robert C. Pfahl, Jr. VP of Operations, inemi R&D Requirements from the 2004 inemi Roadmap April 7, 2005 Dr. Robert C. Pfahl, Jr. VP of Operations, inemi Topics Covered Overview of inemi and the 2004 Roadmap Situation Analysis Highlights from the

More information

Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India

Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India Advanced Low Power CMOS Design to Reduce Power Consumption in CMOS Circuit for VLSI Design Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India Abstract: Low

More information

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL OUTLINE Introduction Platform Overview Device Library Overview What s Next? Conclusion OUTLINE Introduction Platform Overview

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Innovations Push Package-on-Package Into New Markets. Flynn Carson. STATS ChipPAC Inc Kato Rd Fremont, CA 94538

Innovations Push Package-on-Package Into New Markets. Flynn Carson. STATS ChipPAC Inc Kato Rd Fremont, CA 94538 Innovations Push Package-on-Package Into New Markets by Flynn Carson STATS ChipPAC Inc. 47400 Kato Rd Fremont, CA 94538 Copyright 2010. Reprinted from Semiconductor International, April 2010. By choosing

More information

MEDIA RELEASE FOR IMMEDIATE RELEASE 26 JULY 2016

MEDIA RELEASE FOR IMMEDIATE RELEASE 26 JULY 2016 MEDIA RELEASE FOR IMMEDIATE RELEASE 26 JULY 2016 A*STAR S IME KICKS OFF CONSORTIA TO DEVELOP ADVANCED PACKAGING SOLUTIONS FOR NEXT-GENERATION INTERNET OF THINGS APPLICATIONS AND HIGH-PERFORMANCE WIRELESS

More information

Introduction. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Introduction. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Introduction July 30, 2002 1 What is this book all about? Introduction to digital integrated circuits.

More information

Parallel Computing 2020: Preparing for the Post-Moore Era. Marc Snir

Parallel Computing 2020: Preparing for the Post-Moore Era. Marc Snir Parallel Computing 2020: Preparing for the Post-Moore Era Marc Snir THE (CMOS) WORLD IS ENDING NEXT DECADE So says the International Technology Roadmap for Semiconductors (ITRS) 2 End of CMOS? IN THE LONG

More information

3D ICs: Recent Advances in the Industry

3D ICs: Recent Advances in the Industry 3D ICs: Recent Advances in the Industry Suresh Ramalingam Senior Director, Advanced Packaging Outline 3D IC Background 3D IC Technology Development Summary Acknowledgements Stacked Silicon Interconnect

More information

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches University of Pennsylvania From the SelectedWorks of Nipun Sinha 29 Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches Nipun Sinha, University of Pennsylvania Timothy S.

More information

Technology Development & Integration Challenges for Lead Free Implementation. Vijay Wakharkar. Assembly Technology Development Intel Corporation

Technology Development & Integration Challenges for Lead Free Implementation. Vijay Wakharkar. Assembly Technology Development Intel Corporation Technology Development & Integration Challenges for Lead Free Implementation Vijay Wakharkar Assembly Technology Development Intel Corporation Legal Information THIS DOCUMENT AND RELATED MATERIALS AND

More information

Low Power VLSI Circuit Synthesis: Introduction and Course Outline

Low Power VLSI Circuit Synthesis: Introduction and Course Outline Low Power VLSI Circuit Synthesis: Introduction and Course Outline Ajit Pal Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Agenda Why Low

More information

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE RESEARCH ARTICLE OPEN ACCESS Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE Mugdha Sathe*, Dr. Nisha Sarwade** *(Department of Electrical Engineering, VJTI, Mumbai-19)

More information

The 3D Silicon Leader

The 3D Silicon Leader The 3D Silicon Leader 3D Silicon IPD for smaller and more reliable Implantable Medical Devices ATW on Advanced Packaging for Wireless Medical Devices Mohamed Mehdi Jatlaoui, Sébastien Leruez, Olivier Gaborieau,

More information

Beyond Transistor Scaling: New Devices for Ultra Low Energy Information Processing

Beyond Transistor Scaling: New Devices for Ultra Low Energy Information Processing Beyond Transistor Scaling: New Devices for Ultra Low Energy Information Processing Prof. Tsu Jae King Liu Department of Electrical Engineering and Computer Sciences University of California, Berkeley,

More information

UNIT III VLSI CIRCUIT DESIGN PROCESSES. In this chapter we will be studying how to get the schematic into stick diagrams or layouts.

UNIT III VLSI CIRCUIT DESIGN PROCESSES. In this chapter we will be studying how to get the schematic into stick diagrams or layouts. UNIT III VLSI CIRCUIT DESIGN PROCESSES In this chapter we will be studying how to get the schematic into stick diagrams or layouts. MOS circuits are formed on four basic layers: N-diffusion P-diffusion

More information

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 730 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee4800fall2010.html

More information

Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap

Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap Peter De Dobbelaere Luxtera Inc. 09/19/2016 Luxtera Proprietary www.luxtera.com Luxtera Company Introduction $100B+ Shift

More information

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1 Topics What is semiconductor Basic semiconductor devices Basics of IC processing CMOS technologies 2006/9/27 2 1 What is Semiconductor

More information

Mobile Electrostatic Carrier (MEC) evaluation for a GaAs wafer backside manufacturing process

Mobile Electrostatic Carrier (MEC) evaluation for a GaAs wafer backside manufacturing process Mobile Electrostatic Carrier (MEC) evaluation for a GaAs wafer backside manufacturing process H.Stieglauer 1, J.Nösser 1, A.Miller 1, M.Lanz 1, D.Öttlin 1, G.Jonsson 1, D.Behammer 1, C.Landesberger 2,

More information

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs 1 CMOS Digital Integrated Circuits 3 rd Edition Categories of Materials Materials can be categorized into three main groups regarding their

More information

How to Build an LED Projector

How to Build an LED Projector How to Build an LED Projector SLEDS Project Organization Overview Design/Grow SLEDS (UIowa & Teledyne) Test/Optimize discrete SLEDS devices (U Iowa) Develop CMOS Drivers & Process, Package, Test Arrays

More information

PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER

PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER What I will show you today 200mm/8-inch GaN-on-Si e-mode/normally-off technology

More information

Active Decap Design Considerations for Optimal Supply Noise Reduction

Active Decap Design Considerations for Optimal Supply Noise Reduction Active Decap Design Considerations for Optimal Supply Noise Reduction Xiongfei Meng and Resve Saleh Dept. of ECE, University of British Columbia, 356 Main Mall, Vancouver, BC, V6T Z4, Canada E-mail: {xmeng,

More information