EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design


 Elfreda Banks
 9 months ago
 Views:
Transcription
1 EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design References: Analog Integrated Circuit Design by D. Johns and K. Martin and Design of Analog CMOS Integrated Circuits by B. Razavi All figures in this set of slides are taken from the above books Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia 1
2 Gain Smallsignal bandwidth Largesignal performance Output swing Input commonmode range Linearity Noise/offset Supply rejection General Considerations 2
3 OneStage Op Amps 3
4 OneStage Op Amp in Unity Gain Configuration 4
5 Cascode Op Amps 5
6 Unity Gain One Stage Cascode 6
7 Folded Cascode Op Amps 7
8 Folded Cascode Stages 8
9 Folded Cascode (cont.) 9
10 Folded Cascode (cont.) A v g m1 {[(g m 3 + g mb3 )r o3 (r o1 r o5 )] [(g m 7 + g mb 7 )r o7 r o9 ]} 10
11 Telescopic versus Folded Cascode 11
12 Example FoldedCascode Op Amp 12
13 SingleEnded Output Cascode Op Amps 13
14 Triple Cascode A v app. (g m r o ) 3 /2 Limited Output Swing Complex biasing 14
15 Output Impedance Enhancement R = out A g r r 1 m2 o2 o1 15
16 Gain Boosting in Cascode Stage 16
17 Differential Gain Boosting 17
18 Differential Gain Boosting 18
19 Differential Gain Boosting 19
20 TwoStage Op Amps 20
21 SingleEnded Output TwoStage Op Amp 21
22 TwoStage CMOS Opamp Popular opamp design approach A good example to review many important design concepts Output buffer is typically used to drive resistive loads For capacitive loads (typical case in CMOS) buffer is not required. C c V in A 1 A 2 1 V out Differential input stage Second gain stage Output buffer 22
23 TwoStage CMOS Opamp Example 23
24 First Stage Differential to singleended Gain of the Opamp Second Stage Commonsource stage Output buffer is not required when driving capacitive loads 24
25 Gain of the Opamp Third Stage Source follower Typical gain: between 0.7 to1 Note: g o =1/r o and G L =1/R L g mb is bodyeffect conductance (is zero if source can be tied to substrate) 25
26 V bias Q5 300 Frequency Response v in+ v in Q Q2 v 1 C C v 2 A A2 A3 v out 150 Q3 Q4 i = g m1 v in C eq = C C ( 1 + A 2 ) 26
27 Frequency Response Simplifying assumptions: C C dominates Ignore Q 16 for the time being (it is used for lead compensation) Miller effect results in At midband frequencies 27
28 Overall gain (assuming A 3 1) Frequency Response which results in a unitygain frequency of Note: ω ta is directly proportional to g m1 and inversely proportional to C C. 28
29 Firstorder model Frequency Response 20log( A 1 A 2 ) Gain 20 db/decade (db) ω ta g m1 C C 0 Freq ω p1 ω ta (log) ω p1 Phase (degrees) 0 Freq 90 ω ta (log)
30 Slew Rate Maximum rate of output change when input signal is large. V bias Q5 300 v in+ v in Q Q2 v 1 C C v i = g m1 v in A2 A3 v out Q3 Q4 All the bias current of Q5 goes either into Q1 or Q2. A
31 Slew Rate 31
32 Slew Rate Normally, the designer has not much control overω ta Slewrate can be increased by increasing V eff1 This is one of the reasons for using pchannel input stage: higher slewrate 32
33 Systematic Offset Voltage To ensure inherent (systematic) offset voltage does not exist, nominal current through Q7 should equal to that of Q6 when the differential input is zero. V bias Q5 300 I bias V DD Q6 300 Q1 Q2 V in V in+ Vout Q3 Q4 V SS Q7 33
34 Systematic Offset Voltage Avoid systematic offset by choosing: Found by noting and then setting 34
35 NChannel versus PChannel Input Stage Complimentary opamp can be designed with an nchannel input differential pair and pchannel secondstage Overall gain would be roughly the same in both designs Pchannel Advantages Higher slewrate: for fixed bias current, V eff is larger (assuming similar widths used for maximum gain) Higher frequency of operation: higher transconductance of second stage which results in higher unitygain frequency Lower 1/f noise: holes less likely to be trapped; pchannel transistors have lower 1/f noise Nchannel source follower is preferable (less voltage drop and higher g m ) Nchannel Advantage Lower thermal noise thermal noise is lowered by high transconductance of first stage 35
36 Feedback and Opamp Compensation Y X ( s) = H ( s) 1+ βh ( s) Feedback systems may oscillate The following two are the oscillation conditions: βh ( jω) = 1 βh ( jω) =
37 Stable and Unstable Systems 37
38 Timedomain response of a feedback system 38
39 Onepole system H ( s) = A0 1+ s ω 0 Y X ( s) = A βa0 s 1+ ω 1+ βa 0 ( ) 0 S p ( β ) = ω 0 1+ A 0 Bode plot of the Loop gain 39
40 Multipole system ω > ω 0.1 p2 10 p1 Bode plot of the Loop gain 40
41 Phase Margin Loop Gain 20 db/decade (db) 20log ( LG( jω) ) 0 ω p 1 ω t Freq (log) GM (gain margin) Phase Loop Gain 0 ω p 1 ω t Freq (log) (degrees) PM (phase margin) 41
42 Phase Margin βh( ω 1 ) = 1 e j175 Y X ( s) = 11.5 β Closed loop frequency response 42
43 Phase Margin (Cont.) PM = βh( ωgx ) Phase Margin = 45 43
44 Phase Margin (Cont.) Phase Margin = 45 44
45 Phase Margin (Cont.) At PM = 60 o results in a small overshoot in the step response. If we increase PM, the system will be more stable but the time response slows down. 45
46 Frequency Compensation Push phase crossing point out Push gain crossing point in 46
47 Telescopic Opamp (singleended) example 47
48 Compensation (Cont.) Assume we need a phase margin of 45 o (usually inadequate) and other nondominant poles are at high frequency. 48
49 Compensation of a twostage opamp Miller Effect C eq = C E + (1+ A v 2 )C C f pe = 1 2πR out [C E + (1+ A v 2 )C C ] 49
50 Compensating TwoStage Opamps V bias1 Q5 300 V DD Q6 300 Q1 Q2 V in V in+ V out2 V bias2 Q16 Cc Q3 Q4 Q7 50
51 Compensating TwoStage Opamps v 1 R C C C g v R g v m1 in 1 C 1 m7 1 R 2 C 2 Q16 has V DS16 = 0 therefore it is hard in the triode region. Small signal analysis: without R C, a righthalf plane zero occurs and worsens the phasemargin. 51
52 Compensating TwoStage Opamps Using R C (through Q16) places zero at Zero moved to lefthalf plane to aid compensation Good practical choice is satisfied by letting 52
53 Design Procedure Design example: Find C C with R C =0 for a 55 o phase margin Arbitrarily choose C C =1pF and set R C =0 Using SPICE, find frequency ω t where a 125 phase shift exists, define gain as A Choose new C C soω t becomes unitygain frequency of the loop gain, resulting in a 55 o phase margin. Achieved by setting C C =C C A Might need to iterate on C C a couple of times using SPICE 53
54 Next: Choose R C according to Design Procedure Increasingω t by about 20 percent, leaves zero near finalω t Check that gain continues to decrease at frequencies above the newω t Next: If phase margin is not adequate, increase C C while leaving R C constant. 54
55 Next: Replace R C by a transistor Design Procedure SPICE can be used for iteration to finetune the device dimensions and optimize the phase margin. 55
56 Process and Temperature Independence Can show nondominant pole is roughly given by Recall zero given by If R C tracks inverse of g m7 then zero will trackω p2 : 56
57 Process and Temperature Independence Need to ensure V eff16 /V eff7 is independent of process and temperature variations V bias Q11 25 Q6 300 Q12 25 Q13 V a 25 V b Q16 V b C C 300 Q7 First set V eff13 =V eff7 which makes V a =V b 57
58 Process and Temperature Independence 58
59 Stable Transconductance Biasing 59
60 Stable Transconductance Biasing Transconductance of Q 13 (to the first order) is determined by geometric ratios only. Independent of powersupply voltages, process parameters, temperature, etc. For special case (W/L) 15 =4(W/L) 13 g m13 =1/R B Note that hightemperature will decrease mobility and hence increase effective gatesource voltages. Roughly 25% increase for 100 degree increase Requires a startup circuit (might have all 0 currents) 60
Analysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II)
Analysis and Design of Analog Integrated Circuits Lecture 20 Advanced Opamp Topologies (Part II) Michael H. Perrott April 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Outline of Lecture
More informationChapter 12 Opertational Amplifier Circuits
1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS opamp architectures: the twostage circuit and the singlestage, folded cascode circuit.
More informationAnalog Integrated Circuits Fundamental Building Blocks
Analog Integrated Circuits Fundamental Building Blocks Basic OTA/Opamp architectures Faculty of Electronics Telecommunications and Information Technology Gabor Csipkes Bases of Electronics Department Outline
More informationDesign of HighSpeed OpAmps for Signal Processing
Design of HighSpeed OpAmps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 837252075 jbaker@ieee.org Abstract  As CMOS
More informationA Compact Foldedcascode Operational Amplifier with ClassAB Output Stage
A Compact Foldedcascode Operational Amplifier with ClassAB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design
More informationBasic OpAmp Design and Compensation. Chapter 6
Basic OpAmp Design and Compensation Chapter 6 6.1 OpAmp applications Typical applications of OpAmps in analog integrated circuits: (a) Amplification and filtering (b) Biasing and regulation (c) Switchedcapacitor
More informationECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier
ECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier Objective Design, simulate and test a twostage operational amplifier Introduction Operational amplifiers (opamp) are essential components of
More informationINF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation
INF3410 Fall 2013 Compensation content Introduction Two Stage Opamps Compensation Slew Rate Systematic Offset Advanced Current Mirrors Operational Transconductance Amplifiers Current Mirror Opamps Folded
More informationAnalysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications
Analysis and Design of Analog Integrated Circuits Lecture 8 Key Opamp Specifications Michael H. Perrott April 8, 0 Copyright 0 by Michael H. Perrott All rights reserved. Recall: Key Specifications of Opamps
More informationCSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University
CSE 577 Spring 2011 Basic Amplifiers and Differential Amplifier, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University Don t let the computer
More informationBasic OpAmp Design and Compensation. Chapter 6
Basic OpAmp Design and Compensation Chapter 6 6.1 OpAmp applications Typical applications of OpAmps in analog integrated circuits: (a) Amplification and filtering (b) Biasing and regulation (c) Switchedcapacitor
More informationChapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier
Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in doubleended
More informationECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers
ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic
More informationBUCK Converter Control Cookbook
BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output
More informationUniversity of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier
University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim ElSaadi, Mohammed ElTanani, University of Michigan Abstract This paper
More informationA Unity Gain FullyDifferential 10bit and 40MSps SampleAndHold Amplifier in 0.18μm CMOS
A Unity Gain FullyDifferential 0bit and 40MSps SampleAndHold Amplifier in 0.8μm CMOS Sanaz Haddadian, and Rahele Hedayati Abstract A 0bit, 40 MSps, sample and hold, implemented in 0.8μm CMOS technology
More informationLecture 240 Cascode Op Amps (3/28/10) Page 2401
Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog
More informationRadivoje Đurić, 2015, Analogna Integrisana Kola 1
OTAoutput buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage
More informationDESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER
DESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project
More informationToday s topic: frequency response. Chapter 4
Today s topic: frequency response Chapter 4 1 Smallsignal analysis applies when transistors can be adequately characterized by their operating points and small linear changes about the points. The use
More informationTechnologyIndependent CMOS Op Amp in Minimum Channel Length
TechnologyIndependent CMOS Op Amp in Minimum Channel Length A Thesis Presented to The Academic Faculty by Susanta Sengupta In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
More information6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers
6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication
More informationDesign of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching
RESEARCH ARTICLE OPEN ACCESS Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching Annu Saini, Prity Yadav (M.Tech. Student, Department
More informationDESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1
ISSN 22772685 IJESR/June 2014/ Vol4/Issue6/319323 Himanshu Shekhar et al./ International Journal of Engineering & Science Research DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL
More informationDesign of Low Voltage Low Power CMOS OPAMP
RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OPAMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral
More informationDesign and Layout of Two Stage High Bandwidth Operational Amplifier
Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard
More informationECEN 5008: Analog IC Design. Final Exam
ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Timelimited, 150minute exam. When the time is called, all work must stop. Put your initials on
More informationANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS
ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,
More informationSystem on a Chip. Prof. Dr. Michael Kraft
System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune
More informationLow Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier
RESEARCH ARTICLE OPEN ACCESS Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier Akshay Kumar Kansal 1, Asst Prof. Gayatri Sakya 2 Electronics and Communication Department, 1,2
More informationHigh bandwidth low power operational amplifier design and compensation techniques
Graduate Theses and Dissertations Graduate College 2009 High bandwidth low power operational amplifier design and compensation techniques Vaibhav Kumar Iowa State University Follow this and additional
More informationRailToRail Output OpAmp Design with Negative Miller Capacitance Compensation
RailToRail OpAmp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a twostage opamp design is considered using both Miller
More informationA PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER
A PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER M. TaherzadehSani, R. Lotfi, and O. Shoaei ABSTRACT A novel classab architecture for singlestage operational amplifiers is presented. The structure
More informationELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE
77 ELECTRICAL CIRCUITS 6. PERATAL AMPLIIERS PART III DYNAMIC RESPNSE Introduction In the first 2 handouts on opamps the focus was on DC for the ideal and nonideal opamp. The perfect opamp assumptions
More informationA Compact 2.4V Powerefficient Railtorail Operational Amplifier. Strong inversion operation stops a proposed compact 3V powerefficient
A Compact 2.4V Powerefficient Railtorail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V powerefficient railtorail OpAmp from a lower total supply voltage.
More informationCHAPTER 9 FEEDBACK. NTUEE Electronics L.H. Lu 91
CHAPTER 9 FEEDBACK Chapter Outline 9.1 The General Feedback Structure 9.2 Some Properties of Negative Feedback 9.3 The Four Basic Feedback Topologies 9.4 The Feedback Voltage Amplifier (SeriesShunt) 9.5
More informationLecture 030 ECE4430 Review III (1/9/04) Page 0301
Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material
More informationPole, zero and Bode plot
Pole, zero and Bode plot EC04 305 Lecture notes YESAREKEY December 12, 2007 Authored by: Ramesh.K Pole, zero and Bode plot EC04 305 Lecture notes A rational transfer function H (S) can be expressed as
More informationCurrent Supply Topology. CMOS Cascode Transconductance Amplifier. Basic topology. pchannel cascode current supply is an obvious solution
CMOS Cascode Transconductance Amplifier Basic topology. Current Supply Topology pchannel cascode current supply is an obvious solution Current supply must have a very high source resistance r oc since
More informationOpAmp Simulation Part II
OpAmp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate
More informationChapter 11. Differential Amplifier Circuits
Chapter 11 Differential Amplifier Circuits 11.0 ntroduction Differential amplifier or diffamp is a multitransistor amplifier. t is the fundamental building block of analog circuit. t is virtually formed
More information2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps
2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps Instructor: Dr. Hong Ma Oct. 3, 2007 Fundamental Circuit: Source and Load Sources Power supply Signal Generator Sensor Amplifier output
More informationDesign and Simulation of an Operational Amplifier with High Gain and Bandwidth for Switched Capacitor Filters
IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) eissn: 22781676,pISSN: 23203331, Volume 11, Issue 1 Ver. II (Jan. Feb. 2016), PP 4753 www.iosrjournals.org Design and Simulation
More informationA Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier
A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier Kehul A. Shah 1, N.M.Devashrayee 2 1(Associative Prof., Department of Electronics and Communication,
More informationImproving Amplifier Voltage Gain
15.1 Multistage accoupled Amplifiers 1077 TABLE 15.3 ThreeStage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance
More informationAn Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs
International Journal of Research in Engineering and Innovation Vol1, Issue6 (2017), 6064 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com
More informationDesign and implementation of two stage operational amplifier
Design and implementation of two stage operational amplifier Priyanka T 1, Dr. H S Aravind 2, Yatheesh Hg 3 1M.Tech student, Dept, of ECE JSSATE Bengaluru 2Professor and HOD, Dept, of ECE JSSATE Bengaluru
More informationLecture 350 Low Voltage Op Amps (3/26/02) Page 3501
Lecture 350 Low Voltage Op Amps (3/26/02) Page 3501 LECTURE 350 LOW VOLTAGE OP AMPS (READING: AH 415432) Objective The objective of this presentation is: 1.) How to design standard circuit blocks with
More informationLow Power OpAmp Based on Weak Inversion with MillerCascoded Frequency Compensation
Low Power OpAmp Based on Weak Inversion with MillerCascoded Frequency Compensation Maryam Borhani, Farhad Razaghian Abstract A design for a railtorail input and output operational amplifier is introduced.
More informationA low voltage railtorail operational amplifier with constant operation and improved process robustness
Graduate Theses and Dissertations Graduate College 2009 A low voltage railtorail operational amplifier with constant operation and improved process robustness Rien Lerone Beal Iowa State University Follow
More informationPART. Maxim Integrated Products 1
 + 9; Rev ; / LowCost, HighSlewRate, RailtoRail I/O Op Amps in SC7 General Description The MAX9/MAX9/MAX9 single/dual/quad, lowcost CMOS op amps feature RailtoRail input and output capability
More informationLecture 20: Passive Mixers
EECS 142 Lecture 20: Passive Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture 20 p.
More informationDAT175: Topics in Electronic System Design
DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable
More informationChapter 13: Introduction to Switched Capacitor Circuits
Chapter 13: Introduction to Switched Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 SwitchedCapacitor Amplifiers 13.4 SwitchedCapacitor Integrator 13.5 SwitchedCapacitor
More informationOperational Amplifier Bandwidth Extension Using Negative Capacitance Generation
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 20060706 Operational Amplifier Bandwidth Extension Using Negative Capacitance Generation Adrian P. Genz Brigham Young University
More informationAmplifier Frequency Response, Feedback, Oscillations; OpAmp Block Diagram and GainBandwidth Product
Amplifier Frequency Response, Feedback, Oscillations; OpAmp Block Diagram and GainBandwidth Product Physics116A,12/4/06 Draft Rev. 1, 12/12/06 D. Pellett 2 Negative Feedback and Voltage Amplifier AB
More informationLowNoise Amplifiers
007/Oct 4, 31 1 General Considerations Noise Figure LowNoise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input
More informationA highspeed CMOS current op amp for very low supply voltage operation
Downloaded from orbit.dtu.dk on: Mar 31, 2018 A highspeed CMOS current op amp for very low supply voltage operation Bruun, Erik Published in: Proceedings of the IEEE International Symposium on Circuits
More informationUniversity of Southern California School Of Engineering Department Of Electrical Engineering
University of Southern California School Of Engineering Department Of Electrical Engineering EE 448: Homework Assignment #02 Fall, 2001 ( Assigned 09/10/01; Due 09/19/01) Choma Problem #05: n an attempt
More informationThe Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.
CE Frequency Response The exact analysis is worked out on pp. 63964 of H&S. The Miller Approximation Therefore, we consider the effect of C µ on the input node only V  out V s = r g π m 
More informationDesign and Simulation of Low Dropout Regulator
Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,
More informationAtypical op amp consists of a differential input stage,
IEEE JOURNAL OF SOLIDSTATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 LowVoltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar SánchezSinencio Abstract This paper presents
More informationMultistage Amplifiers
Multistage Amplifiers Singlestage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)
More informationMicroelectronic Devices and Circuits Lecture 22  DiffAmp Anal. III: Cascode, µa Outline Announcements DP:
6.012 Microelectronic Devices and Circuits Lecture 22 DiffAmp Anal. III: Cascode, µa741 Outline Announcements DP: Discussion of Q13, Q13' impact. Gain expressions. Review Output Stages DC Offset of an
More informationLow Cost, General Purpose High Speed JFET Amplifier AD825
a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:
More informationMCP6031/2/3/ µa, High Precision Op Amps. Features. Description. Applications. Design Aids. Package Types. Typical Application
0.9 µa, High Precision Op Amps Features RailtoRail Input and Output Low Offset Voltage: ±150 µv (maximum) Ultra Low Quiescent Current: 0.9 µa Wide Power Supply Voltage: 1.8V to 5.5V Gain Bandwidth Product:
More informationLecture 3 SwitchedCapacitor Circuits Trevor Caldwell
Advanced Analog Circuits Lecture 3 SwitchedCapacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 24pm) Reference Homework 20170111 1 MOD1 & MOD2 ST 2, 3,
More informationA HighGain, LowPower CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold Region
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 20110315 A HighGain, LowPower CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold Region Rishi Pratap
More informationHigh Gain Low Power Operational Amplifier Design and Compensation Techniques
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 20070214 High Gain Low Power Operational Amplifier Design and Compensation Techniques Lisha Li Brigham Young University  Provo
More informationLow voltage, low power, bulkdriven amplifier
University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 52009 Low voltage, low power, bulkdriven amplifier Shama Huda University
More informationExample #6 1. An amplifier with a nominal gain
1. An amplifier with a nominal gain A=1000 V/V exhibits a gain change of 10% as the operating temperature changes from 25 o C to 75 o C. If it is required to constrain the change to 0.1% by applying negative
More informationSingle Supply, Rail to Rail Low Power FETInput Op Amp AD820
a FEATURES True Single Supply Operation Output Swings RailtoRail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load
More information2. Single Stage OpAmps
/74 2. Single Stage OpAmps Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imbcnm.csic.es Integrated
More informationDesign of a Folded Cascode Operational Amplifier in a 1.2 Micron SiliconCarbide CMOS Process
University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 52017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron
More informationLow Dropout Voltage Regulator Operation and Performance Review
Low Drop Voltage Regulator peration and Performance Review Eric Chen & Alex Leng ntroduction n today s power management systems, high power efficiency becomes necessary to maximize the lifetime of the
More informationRail to rail CMOS complementary input stage with only one active differential pair at a time
LETTER IEICE Electronics Express, Vol.11, No.12, 1 5 Rail to rail CMOS complementary input stage with only one active differential pair at a time Maria Rodanas Valero 1a), Alejandro RomanLoera 2, Jaime
More informationTuesday, February 1st, 9:15 12:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo
Bandgap references, sampling switches Tuesday, February 1st, 9:15 12:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Outline Tuesday, February 1st 11.11
More informationHigh Gain Amplifier Design for SwitchedCapacitor Circuit Applications
IOSR Journal of VLSI and Signal Processing (IOSRJVSP) Volume 7, Issue 5, Ver. I (Sep.Oct. 2017), PP 6268 eissn: 2319 4200, pissn No. : 2319 4197 www.iosrjournals.org High Gain Amplifier Design for
More informationChapter 9: Operational Amplifiers
Chapter 9: Operational Amplifiers The Operational Amplifier (or opamp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,
More informationDESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT
DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT PRADEEP G CHAGASHETTI Mr. H.V. RAVISH ARADHYA Department of E&C Department of E&C R.V.COLLEGE of ENGINEERING R.V.COLLEGE of ENGINEERING Bangalore
More informationCommonSource Amplifiers
Lab 2: CommonSource Amplifiers Introduction The commonsource stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderatetohigh gain,
More information16 V, 1 MHz, CMOS RailtoRail Input/Output Operational Amplifier ADA46652
6 V, MHz, CMOS RailtoRail Input/Output Operational Amplifier ADA46652 FEATURES Lower power at high voltage: 29 μa per amplifier typical Low input bias current: pa maximum Wide bandwidth:.2 MHz typical
More informationGechstudentszone.wordpress.com
8.1 Operational Amplifier (OpAmp) UNIT 8: Operational Amplifier An operational amplifier ("opamp") is a DCcoupled highgain electronic voltage amplifier with a differential input and, usually, a singleended
More informationUnit 3: Integratedcircuit amplifiers (contd.)
Unit 3: Integratedcircuit amplifiers (contd.) COMMONSOURCE AND COMMONEMITTER AMPLIFIERS The CommonSource Circuit The most basic IC MOS amplifier is shown in fig.(1). The source of MOS transistor is
More informationUltra Lowvoltage Multipleloop Feedback Switchedcapacitor Filters
Ultra Lowvoltage Multipleloop Feedback Switchedcapacitor Filters By Udhayasimha Puttamreddy Submitted in partial fulfilment of the requirements For the degree of Master of Applied Science At Dalhousie
More informationConstant Current Control for DCDC Converters
APPLICATION NOTE AN:211 Constant Current Control for DCDC Converters Contents Page Introduction 1 Theory of Operation 1 Power Limitations 2 Voltage Loop Stability 2 Current Control Example 7 Component
More informationISSN:
468 Modeling and Design of a CMOS Low Dropout (LDO) Voltage Regulator PRIYADARSHINI JAINAPUR 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore560064,
More informationDesign of Pipeline Analog to Digital Converter
Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analogtodigital converter (ADC) architecture is the most popular topology
More informationExperiment 8 Frequency Response
Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will
More informationTradeoffs and Optimization in Analog CMOS Design
Tradeoffs and Optimization in Analog CMOS Design David M. Binkley University of North Carolina at Charlotte, USA A John Wiley & Sons, Ltd., Publication Contents Foreword Preface Acknowledgmerits List of
More information856 Feedback Networks: Theory and Circuit Applications. Butterworth MFM response, 767 Butterworth response, 767
Index I/O transfer admittance, 448 N stage cascade, 732, 734 Sparameter characterization, 226 ω max, 204 πtype, 148 πtype network model, 137 cparameter, 151, 153 cparameter matrix, 154 gparameter
More informationLOWVOLTAGE, CLASS AB AND HIGH SLEWRATE TWO STAGE OPERATIONAL AMPLIFIERS. CARLOS FERNANDO NIEVALOZANO, B.Sc.E.E
LOWVOLTAGE, CLASS AB AND HIGH SLEWRATE TWO STAGE OPERATIONAL AMPLIFIERS BY CARLOS FERNANDO NIEVALOZANO, B.Sc.E.E A thesis submitted to the Graduate School in partial fulfillment of the requirements
More informationIN RECENT years, lowdropout linear regulators (LDOs) are
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 563 Design of LowPower Analog Drivers Based on SlewRate Enhancement Circuits for CMOS LowDropout Regulators
More informationConstantGm, RailtoRail Input Stage Operational Amplifier in 0.35μm CMOS
2011 International Conference on Network and Electronics Engineering IPCSIT vol.11 (2011) (2011) IACSIT Press, Singapore ConstantGm, RailtoRail Input Stage Operational Amplifier in 0.35μm CMOS Ali Hassanzadeh¹,
More informationResearch Article Volume 6 Issue No. 12
ISSN XXXX XXXX 2016 IJESC Research Article Volume 6 Issue No. 12 A FullyIntegrated LowDropout Regulator with Full Spectrum Power Supply Rejection Muthya la. Manas a 1, G.Laxmi 2, G. Ah med Zees han 3
More informationSelfBiased PLL/DLL. ECG minute Final Project Presentation. Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas
SelfBiased PLL/DLL ECG721 60minute Final Project Presentation Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas Outline Motivation SelfBiasing Technique Differential Buffer
More informationDue to the absence of internal nodes, inverterbased GmC filters [1,2] allow achieving bandwidths beyond what is possible
A ForwardBodyBias Tuned 450MHz GmC 3 rd Order LowPass Filter in 28nm UTBB FDSOI with >1dBVp IIP3 over a 0.7to1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin
More informationCMOS Operational Amplifier
The George Washington University Department of Electrical and Computer Engineering Course: ECE218 Instructor: Mona E. Zaghloul Students: Shunping Wang Yiping (Neil) Tsai Data: 05/14/07 Introduction In
More informationLinear Regulators: Theory of Operation and Compensation
Linear Regulators: Theory of Operation and Compensation Introduction The explosive proliferation of battery powered equipment in the past decade has created unique requirements for a voltage regulator
More informationLOW SUPPLY VOLTAGE, LOW NOISE FULLY DIFFERENTIAL PROGRAMMABLE GAIN AMPLIFIERS
LOW SUPPLY VOLTAGE, LOW NOISE FULLY DIFFERENTIAL PROGRAMMABLE GAIN AMPLIFIERS A. Pleteršek, D. Strle, J. Trontelj Microelectronic Laboratory University of Ljubljana, Tržaška 25, 61000 Ljubljana, Slovenia
More information