Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik


 Jasmin Fowler
 6 months ago
 Views:
Transcription
1 1 Chapter 10 Feedback
2 Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: ActiveLoaded Differential Pair 4. Ch 10: Feedback 5. Ch 11: Output Stages
3 Feedback 3 Two Stage Op Amp (MOSFET)
4 Example: Noninverting Amplifier 4 We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits can be used + + V i  V f 
5 How does the feedback work in this circuit? i =instantaneous current=small ac current around DC Stage 1 1) DC bias points are established 2) Small AC signal (V s ) is amplified Stage 2 5 Resistor R ref here i i i V 1 V s V f V 0
6 How does the feedback work in this circuit? i =instantaneous current=small ac current around DC Stage 1 6 Now suppose there is an abrupt positive change in V s, how does FB counter it? Stage 2 Resistor R ref here V s + Δ V i i i V 1 V f V 0
7 i =instantaneous current=small ac current around DC Drain current i 3 increases Stage 1 7 Drain current i will increase a little since gate voltage increased Stage 2 Resistor R ref here V s + Δ V i + Δ i i i V 1 V f V 0
8 i =instantaneous current=small ac current around DC Drain current i 4 increases Stage 1 Q4 will copy the change 1) Drain current i 4 will increase a little 2) FB hasn t happened so no change in drain current i 2 yet Stage 2 8 Resistor R ref here V s + Δ V i + Δ i i + Δ i i V 1 V f V 0
9 i =instantaneous current=small ac current around DC Stage 1 V 1 decreases Q4 will copy the change 9 Assuming all transistors are in saturation Voltage V 1 will decrease since V 1 = V DD  i 4 ro 4 Stage 2 Resistor R ref here V s + Δ V i + Δ i i + Δ i i V 1  ΔV V f V 0
10 i =instantaneous current=small ac current around DC Drain current i 6 decreases Stage 1 Q4 will copy the change Drain current of i 6 will decrease since gate voltage has decreased Stage 2 10 Resistor R ref here V s + Δ V i + Δ i i + Δ i i V 1  ΔV V f i 6  Δ i V 0
11 i =instantaneous current=small ac current around DC Stage 1 V o increases Q4 will copy the change Assuming all transistors are in saturation Voltage V 0 will increase a litle since V 0 = V DD  i 6 ro 6 Stage 2 11 Resistor R ref here V s + Δ V i + Δ i i + Δ i i V 1  ΔV V f V 0  ΔV
12 V f increases 12 V o affects the feedback voltage V f through voltage divider law: V o increases, V f increases + + V i  V f 
13 Drain current i 2 increases and change is countered i =instantaneous current=small ac current around DC Stage 1 Q4 will copy the change 13 Drain current i 2 will increase since gate voltage has increased: This is the required counter action so there is no net change in current or voltage out of stage 1 Stage 2 Resistor R ref here V s + Δ V i + Δ i i + Δ i i + Δ i V 1  ΔV V f V 0  ΔV
14 Can you explain how the FB works in this circuit? 14 Stage 1 Stage 2 Resistor R ref here
15 15 Stability
16 10.10 The Stability Problem In a feedback amplifier, the open loop gain (A) is generally a function of frequency. 16 It is called openloop transfer function A(s). Question: What happens to gain at higher frequencies? Frequency response determines stability of the amplifier.
17 (10.83) loopgain: The Ideal Case (10.81) closedloop gain tfunction: A (10.82) closedloop gain tfunction: A s f f j A 1 A 1 s sβs A j A jβ j L j A j β j A j β j e angle jφ w 17 magnitude of gain It is the manner in which the loop gain varies with frequency that determines the stability or instability of the feedback amplifier
18 Loop gain and Amp Stability at High Frequencies 18
19 Nyquist Plot (Loop Gain with Varying Freq) Figure 10.34: The Nyquist plot of an unstable amplifier 19 1) At ω=ω 180, the feedback becomes positive 2) If the loop gain at ω=ω 180 crosses the xaxis to the left of ( 1,0), the amplifier will be unstable because Aβ < 1: oscillations will grow with nonlinearity 3) If the loop gain at ω=ω 180 crosses the xaxis exactly at (1,0), the amplifier will be unstable because Aβ = 1: sustained oscillations 4) If the loop gain at ω=ω 180 crosses the xaxis to the right of ( 1,0), the amplifier will be stable 5) If the Nyquist plot encircles ( 1,0), then the amplifier will be unstable
20 The Ideal Case 20 (10.84) instantaneous voltage: (10.85) feedbackampflier pole constraint: (10.86) openloop transfer function: (10.87) closedloop transfer function: A (10.88) pole: 1 A Pf (10.89) closedloop transfer function: A P 0 0t nt nt 0t t 2 nt 1 Asβs 0 v e e e e cos A s f f A0 1 s / s s A 0 s P P A0 /1A0 1 s/ 1 A P A s 0
21 Effect of Feedback on the Amplifier Poles 21 STABLE UNSTABLE (railtorail oscillations) UNSTABLE (sustained oscillations)
22 10.12 Stability Study Using Bode Plots 22 Since the loop gain A(s)β = 1 at low frequencies, we define A(s)β= 1e jθ, where 1) β= feedback factor at low frequencies 2) θ=180phase margin (PM) At low frequencies closedloop gain=(1/β) At phase margin=70, closedloop gain=0.87(1/β) At phase margin=45, closedloop gain=1.3(1/β) Tradeoff PM 1 BW The stability of the feedback amplifier reduces as the phase margin reduces
23 STABLE UNSTABLE UNSTABLE Stability Study Using Bode Plots The stability of the feedback amplifier can be determined directly from the plot of A(s) 23 After plotting A(s), we look at the phase at 1/β, since A(s) = (1/β)e jθ, phase margin (PM) = 180phase of A(s) If the phase < 180deg: amplifier will be unstable If the phase is very small: amplifier will be stable but the BW will be small If the phase is about deg: stable with acceptable BW
24 10.13 Miller Compensation and Pole Spitting 24 Problem: openloop response A(s) shows instability Solution: shift the response to the left so that the phase angle is positive and lies between deg While shifting, we end up reducing the BW and desired DC gain. To address this issue, we will compromise. We can shift the pole at the intersection of 1/β and A(s) curve to the right by introducing compensation capacitor C f
25 10.13 Miller Compensation and Pole Spitting 25 C 1 and C 2 include the Miller component due to Cμ R 1 and C 1 = total resistance and capacitance at the input R 2 and C 2 = total resistance and capacitance at the output C f = compensation capacitor C f, the compensation capacitor will 1) shift ω p1 (=1/(R 1 C 1 )) to left and make it dominant (eq ), 2) shift ω p2 (=1/(R 2 C 2 )) to far right and make it insignificant (eq )
26 Compensation Capacitor in Twostage BJT Opamp 26
27 Compensation Capacitor in Twostage CMOS Opamp 27
28 List of Problems Feedback and Stability p10.82: stability of op amp with feedback p10.92: phase margin of op amp p10.99: Miller capacitance compensation 28
29 Summary Negative feedback is employed to make the amplifier gain less sensitive to component variations; to control input and output impedances; to extend bandwidth; to reduce nonlinear distortion; and to enhance signaltointerference ratio 29 The advantages above are obtained at the expense of a reduction in gain and at the risk of the amplifier becoming unstable (that is, oscillating). The latter problem is solved by careful design For each of the four basic types of amplifier, there is an appropriate feedback topology. The four topologies, together with their analysis procedures, are summarized in Table 10.1.
30 Summary The key feedback parameter are the loop gain (A. ), which for negative feedback must be a positive dimensionless number, and the amount of feedback (1+A. ). The latter directly determines gain reduction, gain desensitivity, bandwidth extension, and changes in input and output resistances 30 Since A and are in general frequency dependent, the poles of the feedback amplifier are obtained by solving the characteristic equation 1+A(s)(s) = 0 For the feedback amplifier to be stable, its poles must all be in the lefthand side of the splane.
31 Summary Stability is guaranteed if at the frequency for which the phase angle of A is 180 O, A is less than unity; the amount by which it is less than unity, expressed in decibels, is the gain margin. Alternatively, the amplifier is stable if, at the frequency at which A = 1, the phase angle is less than 180 O, the difference ifs the phase margin 31 The stability of a feedback amplifier can be analyzed by constructing a Bode plot for A and superimposing it on a plot for 1/. Stability is guaranteed if the two plots intersect with a difference in slope no greater than 6dB/decade.
32 Summary 32 To make a given amplifier stable for a given feedback factor, the openloop frequency response is suitably modified by a process known as frequency compensation. A popular method for frequency compensation involves connecting a feedback capacitor across an inverting stage in the amplifier. This causes the pole formed at the input of the amplifier stage to shift to a lower frequency and thus become dominant, while the pole formed at the output of the amplifier stage is moved to a very high frequency and thus becomes unimportant. This process is known as pole splitting.
CHAPTER 9 FEEDBACK. NTUEE Electronics L.H. Lu 91
CHAPTER 9 FEEDBACK Chapter Outline 9.1 The General Feedback Structure 9.2 Some Properties of Negative Feedback 9.3 The Four Basic Feedback Topologies 9.4 The Feedback Voltage Amplifier (SeriesShunt) 9.5
More informationECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers
ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic
More informationPURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.
EE4902 Lab 9 CMOS OPAMP PURPOSE: The purpose of this lab is to measure the closedloop performance of an opamp designed from individual MOSFETs. This opamp, shown in Fig. 91, combines all of the major
More informationECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier
ECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier Objective Design, simulate and test a twostage operational amplifier Introduction Operational amplifiers (opamp) are essential components of
More informationDesign of HighSpeed OpAmps for Signal Processing
Design of HighSpeed OpAmps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 837252075 jbaker@ieee.org Abstract  As CMOS
More informationEECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design
EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design References: Analog Integrated Circuit Design by D. Johns and K. Martin and Design of Analog CMOS Integrated Circuits by B. Razavi All figures
More informationRadivoje Đurić, 2015, Analogna Integrisana Kola 1
OTAoutput buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage
More informationChapter 13: Introduction to Switched Capacitor Circuits
Chapter 13: Introduction to Switched Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 SwitchedCapacitor Amplifiers 13.4 SwitchedCapacitor Integrator 13.5 SwitchedCapacitor
More informationPole, zero and Bode plot
Pole, zero and Bode plot EC04 305 Lecture notes YESAREKEY December 12, 2007 Authored by: Ramesh.K Pole, zero and Bode plot EC04 305 Lecture notes A rational transfer function H (S) can be expressed as
More informationAtypical op amp consists of a differential input stage,
IEEE JOURNAL OF SOLIDSTATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 LowVoltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar SánchezSinencio Abstract This paper presents
More informationAnalysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II)
Analysis and Design of Analog Integrated Circuits Lecture 20 Advanced Opamp Topologies (Part II) Michael H. Perrott April 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Outline of Lecture
More informationChapter 12 Opertational Amplifier Circuits
1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS opamp architectures: the twostage circuit and the singlestage, folded cascode circuit.
More informationCSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University
CSE 577 Spring 2011 Basic Amplifiers and Differential Amplifier, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University Don t let the computer
More informationDESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER
DESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project
More informationHigh bandwidth low power operational amplifier design and compensation techniques
Graduate Theses and Dissertations Graduate College 2009 High bandwidth low power operational amplifier design and compensation techniques Vaibhav Kumar Iowa State University Follow this and additional
More informationUniversity of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier
University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim ElSaadi, Mohammed ElTanani, University of Michigan Abstract This paper
More informationDesign of Low Voltage Low Power CMOS OPAMP
RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OPAMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral
More informationBUCK Converter Control Cookbook
BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output
More informationGATE: Electronics MCQs (Practice Test 1 of 13)
GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase
More informationAn Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs
International Journal of Research in Engineering and Innovation Vol1, Issue6 (2017), 6064 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com
More informationField Effect Transistors
Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a commonsource amplifier stage,
More informationUMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency
UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter
More informationBJT Amplifier. Superposition principle (linear amplifier)
BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited
More informationMOSFET Amplifier Biasing
MOSFET Amplifier Biasing Chris Winstead April 6, 2015 Standard Passive Biasing: Two Supplies V D V S R G I D V SS To analyze the DC behavior of this biasing circuit, it is most convenient to use the following
More informationLow Dropout Voltage Regulator Operation and Performance Review
Low Drop Voltage Regulator peration and Performance Review Eric Chen & Alex Leng ntroduction n today s power management systems, high power efficiency becomes necessary to maximize the lifetime of the
More information2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps
2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps Instructor: Dr. Hong Ma Oct. 3, 2007 Fundamental Circuit: Source and Load Sources Power supply Signal Generator Sensor Amplifier output
More informationUnit 3: Integratedcircuit amplifiers (contd.)
Unit 3: Integratedcircuit amplifiers (contd.) COMMONSOURCE AND COMMONEMITTER AMPLIFIERS The CommonSource Circuit The most basic IC MOS amplifier is shown in fig.(1). The source of MOS transistor is
More informationChapter 11. Differential Amplifier Circuits
Chapter 11 Differential Amplifier Circuits 11.0 ntroduction Differential amplifier or diffamp is a multitransistor amplifier. t is the fundamental building block of analog circuit. t is virtually formed
More informationTest Your Understanding
074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switchedcapacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the
More information6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators
6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband
More informationLinear Regulators: Theory of Operation and Compensation
Linear Regulators: Theory of Operation and Compensation Introduction The explosive proliferation of battery powered equipment in the past decade has created unique requirements for a voltage regulator
More informationDesign of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching
RESEARCH ARTICLE OPEN ACCESS Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching Annu Saini, Prity Yadav (M.Tech. Student, Department
More informationUNIT I BIASING OF DISCRETE BJT AND MOSFET PART A
UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression
More informationAmplifier Frequency Response, Feedback, Oscillations; OpAmp Block Diagram and GainBandwidth Product
Amplifier Frequency Response, Feedback, Oscillations; OpAmp Block Diagram and GainBandwidth Product Physics116A,12/4/06 Draft Rev. 1, 12/12/06 D. Pellett 2 Negative Feedback and Voltage Amplifier AB
More information4.5 Biasing in MOS Amplifier Circuits
4.5 Biasing in MOS Amplifier Circuits Biasing: establishing an appropriate DC operating point for the MOSFET  A fundamental step in the design of a MOSFET amplifier circuit An appropriate DC operating
More informationELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE
77 ELECTRICAL CIRCUITS 6. PERATAL AMPLIIERS PART III DYNAMIC RESPNSE Introduction In the first 2 handouts on opamps the focus was on DC for the ideal and nonideal opamp. The perfect opamp assumptions
More informationA Unity Gain FullyDifferential 10bit and 40MSps SampleAndHold Amplifier in 0.18μm CMOS
A Unity Gain FullyDifferential 0bit and 40MSps SampleAndHold Amplifier in 0.8μm CMOS Sanaz Haddadian, and Rahele Hedayati Abstract A 0bit, 40 MSps, sample and hold, implemented in 0.8μm CMOS technology
More informationElectronic Troubleshooting. Chapter 5 Multistage Amplifiers
Electronic Troubleshooting Chapter 5 Multistage Amplifiers Overview When more amplification is required than can be supplied by a single stage amp A second stage is added Or more stages are added Aspects
More informationElectronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi
Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi Module No. # 04 Feedback in Amplifiers, Feedback Configurations and Multi Stage Amplifiers Lecture No. # 03 Input
More informationChapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier
Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in doubleended
More informationOperational Amplifier Bandwidth Extension Using Negative Capacitance Generation
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 20060706 Operational Amplifier Bandwidth Extension Using Negative Capacitance Generation Adrian P. Genz Brigham Young University
More informationModule 4 Unit 4 Feedback in Amplifiers
Module 4 Unit 4 Feedback in mplifiers eview Questions:. What are the drawbacks in a electronic circuit not using proper feedback? 2. What is positive feedback? Positive feedback is avoided in amplifier
More informationECEN 5008: Analog IC Design. Final Exam
ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Timelimited, 150minute exam. When the time is called, all work must stop. Put your initials on
More informationDesign and Layout of Two Stage High Bandwidth Operational Amplifier
Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard
More informationCurrent Supply Topology. CMOS Cascode Transconductance Amplifier. Basic topology. pchannel cascode current supply is an obvious solution
CMOS Cascode Transconductance Amplifier Basic topology. Current Supply Topology pchannel cascode current supply is an obvious solution Current supply must have a very high source resistance r oc since
More informationINF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation
INF3410 Fall 2013 Compensation content Introduction Two Stage Opamps Compensation Slew Rate Systematic Offset Advanced Current Mirrors Operational Transconductance Amplifiers Current Mirror Opamps Folded
More informationDesign of Twostage High Gain Operational Amplifier Using Current Buffer Compensation for Low Power Applications
Design of Twostage High Gain Operational Amplifier Using Current Buffer Compensation for Low Power Applications Thesis submitted in partial fulfillment of the requirement for the award of degree of Master
More informationSAR (successiveapproximationregister) ADCs
By Miro Oljaca and Bonnie C Baker Texas Instruments Start with the right op amp when driving SAR ADCs Using the right operational amplifier in front of your data converter will give you good performance.
More information2. Single Stage OpAmps
/74 2. Single Stage OpAmps Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imbcnm.csic.es Integrated
More informationCourse Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)
Course Outline 1. Chapter 1: Signals and Amplifiers 1 2. Chapter 3: Semiconductors 3. Chapter 4: Diodes 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)
More informationLDO Regulator Stability Using Ceramic Output Capacitors
LDO Regulator Stability Using Ceramic Output Capacitors Introduction Ultralow ESR capacitors such as ceramics are highly desirable because they can support fastchanging load transients and also bypass
More informationSystem on a Chip. Prof. Dr. Michael Kraft
System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune
More informationFederal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS  II BASIC ELECTRICAL & ELECTRONICS LAB
THIRD SEMESTER ELECTRONICS  II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer
More informationRailToRail Output OpAmp Design with Negative Miller Capacitance Compensation
RailToRail OpAmp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a twostage opamp design is considered using both Miller
More information11. Chapter: Amplitude stabilization of the harmonic oscillator
Punčochář, Mohylová: TELO, Chapter 10 1 11. Chapter: Amplitude stabilization of the harmonic oscillator Time of study: 3 hours Goals: the student should be able to define basic principles of oscillator
More informationChapter 6. BJT Amplifiers
Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 6 BJT Amplifiers 1 Introduction The things you learned about biasing a transistor
More informationChapter 8. Field Effect Transistor
Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There
More informationEE 230 Lecture 23. Nonlinear Op Amp Applications. Waveform Generators
EE 230 Lecture 23 Nonlinear Op Amp Applications Waveform Generators Quiz 7 An oscillator based upon a comparator with hysteresis is shown. If STAH =2 and SATL =2, determine the peak value of And the number
More informationDesign and Simulation of Low Dropout Regulator
Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,
More informationA Compact 2.4V Powerefficient Railtorail Operational Amplifier. Strong inversion operation stops a proposed compact 3V powerefficient
A Compact 2.4V Powerefficient Railtorail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V powerefficient railtorail OpAmp from a lower total supply voltage.
More informationBasic OpAmp Design and Compensation. Chapter 6
Basic OpAmp Design and Compensation Chapter 6 6.1 OpAmp applications Typical applications of OpAmps in analog integrated circuits: (a) Amplification and filtering (b) Biasing and regulation (c) Switchedcapacitor
More informationSelfBiased PLL/DLL. ECG minute Final Project Presentation. Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas
SelfBiased PLL/DLL ECG721 60minute Final Project Presentation Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas Outline Motivation SelfBiasing Technique Differential Buffer
More informationMetalOxideSilicon (MOS) devices PMOS. ntype
MetalOxideSilicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.
More informationEFFICIENT DRIVER DESIGN FOR AMOLED DISPLAYS
EFFICIENT DRIVER DESIGN FOR AMOLED DISPLAYS CH. Ganesh and S. Satheesh Kumar Department of SENSE (VLSI Design), VIT University, Vellore India EMail: chokkakulaganesh@gmail.com ABSTRACT The conventional
More informationLM675 Power Operational Amplifier
Power Operational Amplifier General Description The LM675 is a monolithic power operational amplifier featuring wide bandwidth and low input offset voltage, making it equally suitable for AC and DC applications.
More informationAnalog Integrated Circuits Fundamental Building Blocks
Analog Integrated Circuits Fundamental Building Blocks Basic OTA/Opamp architectures Faculty of Electronics Telecommunications and Information Technology Gabor Csipkes Bases of Electronics Department Outline
More informationDESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCKBOOST CONVERTER
DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCKBOOST CONVERTER Murdoch University: The Murdoch School of Engineering & Information Technology Author: Jason Chan Supervisors: Martina Calais &
More information856 Feedback Networks: Theory and Circuit Applications. Butterworth MFM response, 767 Butterworth response, 767
Index I/O transfer admittance, 448 N stage cascade, 732, 734 Sparameter characterization, 226 ω max, 204 πtype, 148 πtype network model, 137 cparameter, 151, 153 cparameter matrix, 154 gparameter
More informationFREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY
FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage
More informationBasic OpAmp Design and Compensation. Chapter 6
Basic OpAmp Design and Compensation Chapter 6 6.1 OpAmp applications Typical applications of OpAmps in analog integrated circuits: (a) Amplification and filtering (b) Biasing and regulation (c) Switchedcapacitor
More informationLecture 3 SwitchedCapacitor Circuits Trevor Caldwell
Advanced Analog Circuits Lecture 3 SwitchedCapacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 24pm) Reference Homework 20170111 1 MOD1 & MOD2 ST 2, 3,
More informationISSN:
468 Modeling and Design of a CMOS Low Dropout (LDO) Voltage Regulator PRIYADARSHINI JAINAPUR 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore560064,
More informationEE105 Fall 2015 Microelectronic Devices and Circuits
EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 111 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of
More informationLecture 030 ECE4430 Review III (1/9/04) Page 0301
Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material
More informationThe Common Source JFET Amplifier
The Common Source JFET Amplifier Small signal amplifiers can also be made using Field Effect Transistors or FET's for short. These devices have the advantage over bipolar transistors of having an extremely
More informationA PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER
A PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER M. TaherzadehSani, R. Lotfi, and O. Shoaei ABSTRACT A novel classab architecture for singlestage operational amplifiers is presented. The structure
More informationChapter 8: Field Effect Transistors
Chapter 8: Field Effect Transistors Transistors are different from the basic electronic elements in that they have three terminals. Consequently, we need more parameters to describe their behavior than
More informationLSJ689. Linear Systems. Application Note. By Bob Cordell. Three Decades of Quality Through Innovation
Three Decades of Quality Through Innovation PChannel Dual JFETs Make HighPerformance Complementary Input Stages Possible Linear Systems Lower Current Noise Lower Bias Current Required LSJ689 Application
More informationCommonSource Amplifiers
Lab 2: CommonSource Amplifiers Introduction The commonsource stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderatetohigh gain,
More informationAPPLICATION NOTE AN009. GaN Essentials. AN009: Bias Sequencing and Temperature Compensation for GaN HEMTs
GaN Essentials AN009: Bias Sequencing and Temperature Compensation for GaN HEMTs NITRONEX CORPORATION 1 OCTOBER 2008 GaN Essentials: Bias Sequencing and Temperature Compensation of GaN HEMTs 1. Table
More informationHigh Gain Low Power Operational Amplifier Design and Compensation Techniques
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 20070214 High Gain Low Power Operational Amplifier Design and Compensation Techniques Lisha Li Brigham Young University  Provo
More informationA Compact Foldedcascode Operational Amplifier with ClassAB Output Stage
A Compact Foldedcascode Operational Amplifier with ClassAB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design
More informationSingleStage Integrated Circuit Amplifiers
SingleStage Integrated Circuit Amplifiers Outline Comparison between the MOS and the BJT From discrete circuit to integrated circuit  Philosophy, Biasing, etc. Frequency response The CommonSource and
More informationTechnologyIndependent CMOS Op Amp in Minimum Channel Length
TechnologyIndependent CMOS Op Amp in Minimum Channel Length A Thesis Presented to The Academic Faculty by Susanta Sengupta In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
More informationPHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp
PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and
More informationDue to the absence of internal nodes, inverterbased GmC filters [1,2] allow achieving bandwidths beyond what is possible
A ForwardBodyBias Tuned 450MHz GmC 3 rd Order LowPass Filter in 28nm UTBB FDSOI with >1dBVp IIP3 over a 0.7to1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin
More informationExperiment 8 Frequency Response
Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will
More informationT.J.Moir AUT University Auckland. The Ph ase Lock ed Loop.
T.J.Moir AUT University Auckland The Ph ase Lock ed Loop. 1.Introduction The PhaseLocked Loop (PLL) is one of the most commonly used integrated circuits (ICs) in use in modern communications systems.
More informationChapter 9: Operational Amplifiers
Chapter 9: Operational Amplifiers The Operational Amplifier (or opamp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,
More informationAnalysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications
Analysis and Design of Analog Integrated Circuits Lecture 8 Key Opamp Specifications Michael H. Perrott April 8, 0 Copyright 0 by Michael H. Perrott All rights reserved. Recall: Key Specifications of Opamps
More informationANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS
ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,
More informationSingle Supply, Rail to Rail Low Power FETInput Op Amp AD820
a FEATURES True Single Supply Operation Output Swings RailtoRail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load
More informationOBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0
a FEATURES Four High Performance VCAs in a Single Package.2% THD No External Trimming 12 db Gain Range.7 db Gain Matching (Unity Gain) Class A or AB Operation APPLICATIONS Remote, Automatic, or Computer
More informationLow Cost, General Purpose High Speed JFET Amplifier AD825
a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:
More informationThe Common Emitter Amplifier Circuit
The Common Emitter Amplifier Circuit In the Bipolar Transistor tutorial, we saw that the most common circuit configuration for an NPN transistor is that of the Common Emitter Amplifier circuit and that
More informationIsolated Industrial Current Loop Using the IL300 Linear
VISHAY SEMICONDUCTORS www.vishay.com Optocouplers and SolidState Relays Application Note Isolated Industrial Current Loop Using the IL Linear INTRODUCTION Programmable logic controllers (PLC) were once
More informationLesson number one. Operational Amplifier Basics
What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Opamps as they are more commonly called, are one of the basic building blocks
More informationLecture #4 Basic OpAmp Circuits
Summer 2015 Ahmad ElBanna Faculty of Engineering Department of Electronics and Communications GEE336 Electronic Circuits II Lecture #4 Basic OpAmp Circuits Instructor: Dr. Ahmad ElBanna Agenda Some
More information(a) BJTOPERATING MODES & CONFIGURATIONS
(a) BJTOPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base
More informationTuesday, February 1st, 9:15 12:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo
Bandgap references, sampling switches Tuesday, February 1st, 9:15 12:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Outline Tuesday, February 1st 11.11
More information