Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik


 Jasmin Fowler
 1 years ago
 Views:
Transcription
1 1 Chapter 10 Feedback
2 Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: ActiveLoaded Differential Pair 4. Ch 10: Feedback 5. Ch 11: Output Stages
3 Feedback 3 Two Stage Op Amp (MOSFET)
4 Example: Noninverting Amplifier 4 We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits can be used + + V i  V f 
5 How does the feedback work in this circuit? i =instantaneous current=small ac current around DC Stage 1 1) DC bias points are established 2) Small AC signal (V s ) is amplified Stage 2 5 Resistor R ref here i i i V 1 V s V f V 0
6 How does the feedback work in this circuit? i =instantaneous current=small ac current around DC Stage 1 6 Now suppose there is an abrupt positive change in V s, how does FB counter it? Stage 2 Resistor R ref here V s + Δ V i i i V 1 V f V 0
7 i =instantaneous current=small ac current around DC Drain current i 3 increases Stage 1 7 Drain current i will increase a little since gate voltage increased Stage 2 Resistor R ref here V s + Δ V i + Δ i i i V 1 V f V 0
8 i =instantaneous current=small ac current around DC Drain current i 4 increases Stage 1 Q4 will copy the change 1) Drain current i 4 will increase a little 2) FB hasn t happened so no change in drain current i 2 yet Stage 2 8 Resistor R ref here V s + Δ V i + Δ i i + Δ i i V 1 V f V 0
9 i =instantaneous current=small ac current around DC Stage 1 V 1 decreases Q4 will copy the change 9 Assuming all transistors are in saturation Voltage V 1 will decrease since V 1 = V DD  i 4 ro 4 Stage 2 Resistor R ref here V s + Δ V i + Δ i i + Δ i i V 1  ΔV V f V 0
10 i =instantaneous current=small ac current around DC Drain current i 6 decreases Stage 1 Q4 will copy the change Drain current of i 6 will decrease since gate voltage has decreased Stage 2 10 Resistor R ref here V s + Δ V i + Δ i i + Δ i i V 1  ΔV V f i 6  Δ i V 0
11 i =instantaneous current=small ac current around DC Stage 1 V o increases Q4 will copy the change Assuming all transistors are in saturation Voltage V 0 will increase a litle since V 0 = V DD  i 6 ro 6 Stage 2 11 Resistor R ref here V s + Δ V i + Δ i i + Δ i i V 1  ΔV V f V 0  ΔV
12 V f increases 12 V o affects the feedback voltage V f through voltage divider law: V o increases, V f increases + + V i  V f 
13 Drain current i 2 increases and change is countered i =instantaneous current=small ac current around DC Stage 1 Q4 will copy the change 13 Drain current i 2 will increase since gate voltage has increased: This is the required counter action so there is no net change in current or voltage out of stage 1 Stage 2 Resistor R ref here V s + Δ V i + Δ i i + Δ i i + Δ i V 1  ΔV V f V 0  ΔV
14 Can you explain how the FB works in this circuit? 14 Stage 1 Stage 2 Resistor R ref here
15 15 Stability
16 10.10 The Stability Problem In a feedback amplifier, the open loop gain (A) is generally a function of frequency. 16 It is called openloop transfer function A(s). Question: What happens to gain at higher frequencies? Frequency response determines stability of the amplifier.
17 (10.83) loopgain: The Ideal Case (10.81) closedloop gain tfunction: A (10.82) closedloop gain tfunction: A s f f j A 1 A 1 s sβs A j A jβ j L j A j β j A j β j e angle jφ w 17 magnitude of gain It is the manner in which the loop gain varies with frequency that determines the stability or instability of the feedback amplifier
18 Loop gain and Amp Stability at High Frequencies 18
19 Nyquist Plot (Loop Gain with Varying Freq) Figure 10.34: The Nyquist plot of an unstable amplifier 19 1) At ω=ω 180, the feedback becomes positive 2) If the loop gain at ω=ω 180 crosses the xaxis to the left of ( 1,0), the amplifier will be unstable because Aβ < 1: oscillations will grow with nonlinearity 3) If the loop gain at ω=ω 180 crosses the xaxis exactly at (1,0), the amplifier will be unstable because Aβ = 1: sustained oscillations 4) If the loop gain at ω=ω 180 crosses the xaxis to the right of ( 1,0), the amplifier will be stable 5) If the Nyquist plot encircles ( 1,0), then the amplifier will be unstable
20 The Ideal Case 20 (10.84) instantaneous voltage: (10.85) feedbackampflier pole constraint: (10.86) openloop transfer function: (10.87) closedloop transfer function: A (10.88) pole: 1 A Pf (10.89) closedloop transfer function: A P 0 0t nt nt 0t t 2 nt 1 Asβs 0 v e e e e cos A s f f A0 1 s / s s A 0 s P P A0 /1A0 1 s/ 1 A P A s 0
21 Effect of Feedback on the Amplifier Poles 21 STABLE UNSTABLE (railtorail oscillations) UNSTABLE (sustained oscillations)
22 10.12 Stability Study Using Bode Plots 22 Since the loop gain A(s)β = 1 at low frequencies, we define A(s)β= 1e jθ, where 1) β= feedback factor at low frequencies 2) θ=180phase margin (PM) At low frequencies closedloop gain=(1/β) At phase margin=70, closedloop gain=0.87(1/β) At phase margin=45, closedloop gain=1.3(1/β) Tradeoff PM 1 BW The stability of the feedback amplifier reduces as the phase margin reduces
23 STABLE UNSTABLE UNSTABLE Stability Study Using Bode Plots The stability of the feedback amplifier can be determined directly from the plot of A(s) 23 After plotting A(s), we look at the phase at 1/β, since A(s) = (1/β)e jθ, phase margin (PM) = 180phase of A(s) If the phase < 180deg: amplifier will be unstable If the phase is very small: amplifier will be stable but the BW will be small If the phase is about deg: stable with acceptable BW
24 10.13 Miller Compensation and Pole Spitting 24 Problem: openloop response A(s) shows instability Solution: shift the response to the left so that the phase angle is positive and lies between deg While shifting, we end up reducing the BW and desired DC gain. To address this issue, we will compromise. We can shift the pole at the intersection of 1/β and A(s) curve to the right by introducing compensation capacitor C f
25 10.13 Miller Compensation and Pole Spitting 25 C 1 and C 2 include the Miller component due to Cμ R 1 and C 1 = total resistance and capacitance at the input R 2 and C 2 = total resistance and capacitance at the output C f = compensation capacitor C f, the compensation capacitor will 1) shift ω p1 (=1/(R 1 C 1 )) to left and make it dominant (eq ), 2) shift ω p2 (=1/(R 2 C 2 )) to far right and make it insignificant (eq )
26 Compensation Capacitor in Twostage BJT Opamp 26
27 Compensation Capacitor in Twostage CMOS Opamp 27
28 List of Problems Feedback and Stability p10.82: stability of op amp with feedback p10.92: phase margin of op amp p10.99: Miller capacitance compensation 28
29 Summary Negative feedback is employed to make the amplifier gain less sensitive to component variations; to control input and output impedances; to extend bandwidth; to reduce nonlinear distortion; and to enhance signaltointerference ratio 29 The advantages above are obtained at the expense of a reduction in gain and at the risk of the amplifier becoming unstable (that is, oscillating). The latter problem is solved by careful design For each of the four basic types of amplifier, there is an appropriate feedback topology. The four topologies, together with their analysis procedures, are summarized in Table 10.1.
30 Summary The key feedback parameter are the loop gain (A. ), which for negative feedback must be a positive dimensionless number, and the amount of feedback (1+A. ). The latter directly determines gain reduction, gain desensitivity, bandwidth extension, and changes in input and output resistances 30 Since A and are in general frequency dependent, the poles of the feedback amplifier are obtained by solving the characteristic equation 1+A(s)(s) = 0 For the feedback amplifier to be stable, its poles must all be in the lefthand side of the splane.
31 Summary Stability is guaranteed if at the frequency for which the phase angle of A is 180 O, A is less than unity; the amount by which it is less than unity, expressed in decibels, is the gain margin. Alternatively, the amplifier is stable if, at the frequency at which A = 1, the phase angle is less than 180 O, the difference ifs the phase margin 31 The stability of a feedback amplifier can be analyzed by constructing a Bode plot for A and superimposing it on a plot for 1/. Stability is guaranteed if the two plots intersect with a difference in slope no greater than 6dB/decade.
32 Summary 32 To make a given amplifier stable for a given feedback factor, the openloop frequency response is suitably modified by a process known as frequency compensation. A popular method for frequency compensation involves connecting a feedback capacitor across an inverting stage in the amplifier. This causes the pole formed at the input of the amplifier stage to shift to a lower frequency and thus become dominant, while the pole formed at the output of the amplifier stage is moved to a very high frequency and thus becomes unimportant. This process is known as pole splitting.
Microelectronic Circuits  Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.
Feedback 1 Figure 8.1 General structure of the feedback amplifier. This is a signalflow diagram, and the quantities x represent either voltage or current signals. 2 Figure E8.1 3 Figure 8.2 Illustrating
More informationMicroelectronic Circuits II. Ch 9 : Feedback
Microelectronic Circuits II Ch 9 : Feedback 9.9 Determining the Loop Gain 9.0 The Stability problem 9. Effect on Feedback on the Amplifier Poles 9.2 Stability study using Bode plots 9.3 Frequency Compensation
More informationCHAPTER 9 FEEDBACK. NTUEE Electronics L.H. Lu 91
CHAPTER 9 FEEDBACK Chapter Outline 9.1 The General Feedback Structure 9.2 Some Properties of Negative Feedback 9.3 The Four Basic Feedback Topologies 9.4 The Feedback Voltage Amplifier (SeriesShunt) 9.5
More informationCHAPTER 11. Feedback. Microelectronic Circuits, Seventh Edition. Copyright 2015 by Oxford University Press
CHAPTER 11 Feedback Figure 11.1 General structure of the feedback amplifier. This is a signalflow diagram, and the quantities x represent either voltage or current signals. Figure 11.2 Determining the
More information55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.
Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a classab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring
More informationECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers
ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic
More informationIndex. SmallSignal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10
Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 baseemitter voltage, 16, 50 baseemitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar
More informationd. Can you find intrinsic gain more easily by examining the equation for current? Explain.
EECS140 Final Spring 2017 Name SID 1. [8] In a vacuum tube, the plate (or anode) current is a function of the plate voltage (output) and the grid voltage (input). I P = k(v P + µv G ) 3/2 where µ is a
More informationPURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.
EE4902 Lab 9 CMOS OPAMP PURPOSE: The purpose of this lab is to measure the closedloop performance of an opamp designed from individual MOSFETs. This opamp, shown in Fig. 91, combines all of the major
More informationCMOS OperationalAmplifier
CMOS OperationalAmplifier 1 What will we learn in this course How to design a good OP Amp. Basic building blocks Biasing and Loading Swings and Bandwidth CH2(8) Operational Amplifier as A Black Box Copyright
More informationCMOS OperationalAmplifier
CMOS OperationalAmplifier 1 What will we learn in this course How to design a good OP Amp. Basic building blocks Biasing and Loading Swings and Bandwidth CH2(8) Operational Amplifier as A Black Box Copyright
More informationECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier
ECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier Objective Design, simulate and test a twostage operational amplifier Introduction Operational amplifiers (opamp) are essential components of
More informationEECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design
EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design References: Analog Integrated Circuit Design by D. Johns and K. Martin and Design of Analog CMOS Integrated Circuits by B. Razavi All figures
More informationDesign of HighSpeed OpAmps for Signal Processing
Design of HighSpeed OpAmps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 837252075 jbaker@ieee.org Abstract  As CMOS
More informationELC224 Final Review (12/10/2009) Name:
ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A commonemitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency
More informationYou will be asked to make the following statement and provide your signature on the top of your solutions.
1 EE 435 Name Exam 1 Spring 216 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those
More informationGechstudentszone.wordpress.com
UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits
More informationEE 501 Lab 4 Design of two stage op amp with miller compensation
EE 501 Lab 4 Design of two stage op amp with miller compensation Objectives: 1. Design a two stage op amp 2. Investigate how to miller compensate a twostage operational amplifier. Tasks: 1. Build a twostage
More informationEE 435. Lecture 16. Compensation Systematic TwoStage Op Amp Design
EE 435 Lecture 16 Compensation Systematic TwoStage Op Amp Design Review from last lecture Review of Basic Concepts Pole Locations and Stability Theorem: A system is stable iff all closedloop poles lie
More informationMicroelectronic Circuits II. Ch 10 : OperationalAmplifier Circuits
Microelectronic Circuits II Ch 0 : OperationalAmplifier Circuits 0. The Twostage CMOS Op Amp 0.2 The FoldedCascode CMOS Op Amp CNU EE 0. OperationalAmplifier Introduction  Analog ICs : operational
More informationYou will be asked to make the following statement and provide your signature on the top of your solutions.
1 EE 435 Name Exam 1 Spring 2018 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those
More informationECEN 474/704 Lab 6: Differential Pairs
ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers
More informationAdvanced Operational Amplifiers
IsLab Analog Integrated Circuit Design OPA247 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA21 Advanced Current Mirrors and Opamps Twostage
More informationECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load
ECE4902 C2012  Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the
More informationHomework Assignment 13
Question 1 Short Takes 2 points each. Homework Assignment 13 1. Classify the type of feedback uses in the circuit below (i.e., shuntshunt, seriesshunt, ) 2. True or false: an engineer uses seriesshunt
More informationECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts)
ECE 363 FINAL (F16) NAME: 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) You are asked to design a highside switch for a remotely operated fuel pump. You decide to use the IRF9520 power
More informationHomework Assignment 10
Homework Assignment 10 Question The amplifier below has infinite input resistance, zero output resistance and an openloop gain. If, find the value of the feedback factor as well as so that the closedloop
More informationd. Why do circuit designers like to use feedback when they make amplifiers? Give at least two reasons.
EECS105 Final 5/12/10 Name SID 1 /20 2 /30 3 /20 4 /20 5 /30 6 /40 7 /20 8 /20 Total 1. Give a short answer to each question a. Your friend from Stanford says that he has designed a threestage high gain
More informationHomework Assignment 07
Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A singlepole opamp has an openloop lowfrequency gain of A = 10 5 and an open loop, 3dB frequency of 4 Hz.
More informationExperiment 1: Amplifier Characterization Spring 2019
Experiment 1: Amplifier Characterization Spring 2019 Objective: The objective of this experiment is to develop methods for characterizing key properties of operational amplifiers Note: We will be using
More informationRadivoje Đurić, 2015, Analogna Integrisana Kola 1
OTAoutput buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage
More informationLecture 2: NonIdeal Amps and OpAmps
Lecture 2: NonIdeal Amps and OpAmps Prof. Ali M. Niknejad Department of EECS University of California, Berkeley Practical OpAmps Linear Imperfections: Finite openloop gain (A 0 < ) Finite input resistance
More informationDesign and Analysis of Low Power Two Stage CMOS Op Amp with 50nm Technology
Design and Analysis of Low Power Two Stage CMOS Op Amp with 50nm Technology Swetha Velicheti, Y. Sandhyarani, P.Praveen kumar, B.Umamaheshrao Assistant Professor, Dept. of ECE, SSCE, Srikakulam, A.P.,
More informationChapter 13 Oscillators and Data Converters
Chapter 3 Oscillators and Data Converters 3. General Considerations 3.2 Ring Oscillators 3.3 LC Oscillators 3.4 Phase Shift Oscillator 3.5 WienBridge Oscillator 3.6 Crystal Oscillators 3.7 Chapter Summary
More informationHomework Assignment 06
Homework Assignment 06 Question 1 (Short Takes) One point each unless otherwise indicated. 1. Consider the current mirror below, and neglect base currents. What is? Answer: 2. In the current mirrors below,
More informationChapter 13 Oscillators and Data Converters
Chapter 13 Oscillators and Data Converters 13.1 General Considerations 13.2 Ring Oscillators 13.3 LC Oscillators 13.4 Phase Shift Oscillator 13.5 WienBridge Oscillator 13.6 Crystal Oscillators 13.7 Chapter
More informationFinal Exam. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth of the amplifier.
Final Exam Name: Score /100 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth
More informationCurrent Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.
Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect
More informationChapter 2 CMOS at Millimeter Wave Frequencies
Chapter 2 CMOS at Millimeter Wave Frequencies In the past, mmwave integrated circuits were always designed in highperformance RF technologies due to the limited performance of the standard CMOS transistors
More informationLab 2: Discrete BJT OpAmps (Part I)
Lab 2: Discrete BJT OpAmps (Part I) This is a threeweek laboratory. You are required to write only one lab report for all parts of this experiment. 1.0. INTRODUCTION In this lab, we will introduce and
More informationEE LINEAR INTEGRATED CIRCUITS & APPLICATIONS
UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of
More informationPole, zero and Bode plot
Pole, zero and Bode plot EC04 305 Lecture notes YESAREKEY December 12, 2007 Authored by: Ramesh.K Pole, zero and Bode plot EC04 305 Lecture notes A rational transfer function H (S) can be expressed as
More informationETIN25 Analogue IC Design. Laboratory Manual Lab 2
Department of Electrical and Information Technology LTH ETIN25 Analogue IC Design Laboratory Manual Lab 2 Jonas Lindstrand Martin Liliebladh Markus Törmänen September 2011 Laboratory 2: Design and Simulation
More informationAtypical op amp consists of a differential input stage,
IEEE JOURNAL OF SOLIDSTATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 LowVoltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar SánchezSinencio Abstract This paper presents
More informationChapter 13: Introduction to Switched Capacitor Circuits
Chapter 13: Introduction to Switched Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 SwitchedCapacitor Amplifiers 13.4 SwitchedCapacitor Integrator 13.5 SwitchedCapacitor
More informationRevision History. Contents
Revision History Ver. # Rev. Date Rev. By Comment 0.0 9/15/2012 Initial draft 1.0 9/16/2012 Remove class A part 2.0 9/17/2012 Comments and problem 2 added 3.0 10/3/2012 cmdmprobe resimulation, add supplement
More informationEE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load
EE4902 C200  Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the
More informationHomework Assignment 13
Question 1 Short Takes 2 points each. Homework Assignment 13 1. Classify the type of feedback uses in the circuit below (i.e., shuntshunt, seriesshunt, ) Answer: Seriesshunt. 2. True or false: an engineer
More informationDesign and Simulation of Low Voltage Operational Amplifier
Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America
More informationBasic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair,
Basic Circuits Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair, CCS  Basic Circuits P. Fischer, ZITI, Uni Heidelberg, Seite 1 Reminder: Effect of Transistor Sizes Very crude classification:
More informationAnalysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II)
Analysis and Design of Analog Integrated Circuits Lecture 20 Advanced Opamp Topologies (Part II) Michael H. Perrott April 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Outline of Lecture
More information(b) 25% (b) increases
Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By opamp action the voltage across is and the current through
More informationCommon mode rejection ratio
Common mode rejection ratio Definition: Common mode rejection ratio represents the ratio of the differential voltage gaina d tothecommonmodevoltagegain,a cm : Common mode rejection ratio Definition: Common
More informationHomework Assignment 07
Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A singlepole opamp has an openloop lowfrequency gain of A = 10 5 and an open loop, 3dB frequency of 4 Hz.
More informationFriday, 1/27/17 Constraints on A(jω)
Friday, 1/27/17 Constraints on A(jω) The simplest electronic oscillators are op amp based, and A(jω) is typically a simple op amp fixed gain amplifier, such as the negative gain and positive gain amplifiers
More informationUNIT 4 BIASING AND STABILIZATION
UNIT 4 BIASING AND STABILIZATION TRANSISTOR BIASING: To operate the transistor in the desired region, we have to apply external dec voltages of correct polarity and magnitude to the two junctions of the
More informationINF4420 Switched capacitor circuits Outline
INF4420 Switched capacitor circuits Spring 2012 1 / 54 Outline Switched capacitor introduction MOSFET as an analog switch ztransform Switched capacitor integrators 2 / 54 Introduction Discrete time analog
More informationPerformance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design
RESEARCH ARTICLE OPEN ACCESS Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design Ankush S. Patharkar*, Dr. Shirish M. Deshmukh** *(Department of Electronics and Telecommunication,
More informationLecture 8: More on Operational Amplifiers (Op Amps)
Lecture 8: More on Operational mplifiers (Op mps) Input Impedance of Op mps and Op mps Using Negative Feedback: Consider a general feedback circuit as shown. ssume that the amplifier has input impedance
More informationECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN
ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN OPAMP DESIGN AND SIMULATION Vishal Saxena OPAMP DESIGN PROJECT R 2 v out v in /2 R 1 C L v in v out V CM R L V CM C L V CM v in /2 R 1 C L (a) (b) R 2 ECE415/EO
More informationChapter 12 Opertational Amplifier Circuits
1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS opamp architectures: the twostage circuit and the singlestage, folded cascode circuit.
More informationHomework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26
Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26 In the following problems, if reference to a semiconductor process is needed, assume processes with the following characteristics:
More informationCSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University
CSE 577 Spring 2011 Basic Amplifiers and Differential Amplifier, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University Don t let the computer
More informationDESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER
DESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project
More informationOSCILLATORS AND WAVEFORMSHAPING CIRCUITS
OSILLATORS AND WAVEFORMSHAPING IRUITS Signals having prescribed standard waveforms (e.g., sinusoidal, square, triangle, pulse, etc). To generate sinusoidal waveforms: o Positive feedback loop with nonlinear
More informationINF4420. Switched capacitor circuits. Spring Jørgen Andreas Michaelsen
INF4420 Switched capacitor circuits Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no) Outline Switched capacitor introduction MOSFET as an analog switch ztransform Switched capacitor integrators
More information(b) 25% (b) increases
Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By opamp action the voltage across is and the current through
More informationPhysics 116A Notes Fall 2004
Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 beta Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second
More informationInput Stage Concerns. APPLICATION NOTE 656 Design TradeOffs for SingleSupply Op Amps
Maxim/Dallas > App Notes > AMPLIFIER AND COMPARATOR CIRCUITS Keywords: singlesupply, op amps, amplifiers, design, tradeoffs, operational amplifiers Apr 03, 2000 APPLICATION NOTE 656 Design TradeOffs
More informationUniversity of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier
University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim ElSaadi, Mohammed ElTanani, University of Michigan Abstract This paper
More informationDesign of Low Voltage Low Power CMOS OPAMP
RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OPAMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral
More informationComparative Analysis of Compensation Techniques for improving PSRR of an OPAMP
Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP 1 Pathak Jay, 2 Sanjay Kumar M.Tech VLSI and Embedded System Design, Department of School of Electronics, KIIT University,
More informationWhile the Riso circuit is both simple to implement and design it has a big disadvantage in precision circuits. The voltage drop from Riso is
Hello, and welcome to part six of the TI Precision Labs on op amp stability. This lecture will describe the Riso with dual feedback stability compensation method. From 5: The previous videos discussed
More informationCurrent Mirrors. Prof. TaiHaur Kuo, EE, NCKU, Tainan City, Taiwan 41
Current Mirrors Prof. TaiHaur Kuo, EE, NCKU, Tainan City, Taiwan 4 郭泰豪, Analog C Design, 08 { Prof. TaiHaur Kuo, EE, NCKU, Tainan City, Taiwan 4 郭泰豪, Analog C Design, 08 { Current Source and Sink Symbol
More informationHOME ASSIGNMENT. Figure.Q3
HOME ASSIGNMENT 1. For the differential amplifier circuit shown below in figure.q1, let I=1 ma, V CC =5V, v CM = 2V, R C =3kΩ and β=100. Assume that the BJTs have v BE =0.7 V at i C =1 ma. Find the voltage
More informationIOWA STATE UNIVERSITY. EE501 Project. Fully Differential MultiStage OpAmp Design. Ryan Boesch 11/12/2008
IOWA STATE UNIVERSITY EE501 Project Fully Differential MultiStage OpAmp Design Ryan Boesch 11/12/2008 This report documents the design, simulation, layout, and postlayout simulation of a fully differential
More informationGATE: Electronics MCQs (Practice Test 1 of 13)
GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase
More informationDifference between BJTs and FETs. Junction Field Effect Transistors (JFET)
Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs
More informationLinear electronic. Lecture No. 1
1 Lecture No. 1 2 3 4 5 Lecture No. 2 6 7 8 9 10 11 Lecture No. 3 12 13 14 Lecture No. 4 Example: find Frequency response analysis for the circuit shown in figure below. Where R S =4kR B1 =8kR B2 =4k R
More informationECEN 474/704 Lab 7: Operational Transconductance Amplifiers
ECEN 474/704 Lab 7: Operational Transconductance Amplifiers Objective Design, simulate and layout an operational transconductance amplifier. Introduction The operational transconductance amplifier (OTA)
More informationAn Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs
International Journal of Research in Engineering and Innovation Vol1, Issue6 (2017), 6064 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com
More informationA 100MHz CMOS wideband IF amplifier
A 100MHz CMOS wideband IF amplifier Sjöland, Henrik; Mattisson, Sven Published in: IEEE Journal of SolidState Circuits DOI: 10.1109/4.663569 1998 Link to publication Citation for published version (APA):
More informationEE301 Electronics I , Fall
EE301 Electronics I 20182019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials
More informationECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers
ECE 442 Solid State Devices & Circuits 15. Differential Amplifiers Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 442 Jose Schutt Aine 1 Background
More informationBUCK Converter Control Cookbook
BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output
More informationLow Voltage CMOS opamp with RailtoRail Input/Output Swing.
ow oltage CMOS opamp with RailtoRail Input/Output Swing. S Gopalaiah and A P Shivaprasad Electrical Communication Engineering Department Indian Institute of Science Bangalore56. svg@ece.iisc.ernet.in
More informationSolid State Devices & Circuits. 18. Advanced Techniques
ECE 442 Solid State Devices & Circuits 18. Advanced Techniques Jose E. SchuttAine Electrical l&c Computer Engineering i University of Illinois jschutt@emlab.uiuc.edu 1 Darlington Configuration  Popular
More informationField Effect Transistors
Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a commonsource amplifier stage,
More informationHomework Assignment 11
Homework Assignment 11 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =
More informationTransistor Digital Circuits
Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET
More informationBJT Amplifier. Superposition principle (linear amplifier)
BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited
More informationDesign of Low Voltage Low Power CMOS OPAMPS with RailtoRail Input/Output Swing.
Design of ow oltage ow Power CMOS OPAMPS with RailtoRail Input/Output Swing. Mr.S..Gopalaiah Bangalore56. svg@ece.iisc.ernet.in Prof. A. P. Shivaprasad Bangalore56. aps@ece.iisc.ernet.in Mr. Sukanta
More informationUMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency
UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter
More informationHigh bandwidth low power operational amplifier design and compensation techniques
Graduate Theses and Dissertations Graduate College 2009 High bandwidth low power operational amplifier design and compensation techniques Vaibhav Kumar Iowa State University Follow this and additional
More informationAnalog Integrated Circuit Design Exercise 1
Analog Integrated Circuit Design Exercise 1 Integrated Electronic Systems Lab Prof. Dr.Ing. Klaus Hofmann M.Sc. Katrin Hirmer, M.Sc. Sreekesh Lakshminarayanan Status: 21.10.2015 PreAssignments The lecture
More informationOperational Amplifiers
Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The NonInverting
More informationSchool of Sciences. ELECTRONICS II ECE212A 2 nd Assignment
School of Sciences SPRING SEMESTER 2010 INSTRUCTOR: Dr Konstantinos Katzis COURSE / SECTION: ECE212N COURSE TITLE: Electronics II OFFICE RM#: 124 (1 st floor) OFFICE TEL#: 22713296 OFFICE HOURS: Monday
More informationCDS 101/110a: Lecture 81 Frequency Domain Design
CDS 11/11a: Lecture 81 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
More informationLow Dropout Voltage Regulator Operation and Performance Review
Low Drop Voltage Regulator peration and Performance Review Eric Chen & Alex Leng ntroduction n today s power management systems, high power efficiency becomes necessary to maximize the lifetime of the
More information2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps
2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps Instructor: Dr. Hong Ma Oct. 3, 2007 Fundamental Circuit: Source and Load Sources Power supply Signal Generator Sensor Amplifier output
More information