DESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER


 Barbara Lamb
 1 years ago
 Views:
Transcription
1 DESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER Mayank Gupta N. V. Girish Design I. Design II. University of California, Los Angeles EE215A Term Project Report Professor B. Razavi, Fall 2001 Abstract: We have designed a fully differential highspeed highprecision amplifier with a fixed gain of 8. Our two design criterion were that of (a) using a power budget of 20mW minimizing the settling time and (b) to target a 0.5% largesignal settling time of 20ns, with the aim to minimize the power consumption. Our Circuit achieves a differential output swing of 2Volts, with a power supply of 3V. Internally the amplifier is a foldedcascode stage and uses common mode feedback, to stabilize the output. Simulation with Cadence Spectre have been included in the term report.
2 I. Design Description and Overview The design required that two versions of a fully differential highprecision amplifier be made with the aim of minimizing the power consumption and minimizing the settling time. The specifications that both versions had to satisfy are given below: Supply (V dd ) 3V Gain 8 Differential Output Swing 2V Load Capacitance 1pF Gain Error 1% Settling Accuracy 0.5% Power Dissipation 20mW Settling time Minimum Table 1: Design Specifications 1 Supply (V dd ) 3V Gain 8 Differential Output Swing 2V Load Capacitance 1pF Gain Error 1% Settling Accuracy 0.5% Power Dissipation Minimum Settling time 20ns Table 2: Design Specification 2 In order to get a gain of 8, a capacitive feedback network has been used. This configuration is shown below: Figure 1: Amplifier with feedback network II. Topology Selection The first step in designing the amplifier is to choose a stage that could provide the appropriate gain. Since the gain error was specified as 1%, we calculate the open loop gain of the amplifier as follows: Vout Gain + 1 = Gain 1 + =8 Vin Openloop _ Gain This implies that the open loop gain should be roughly 900, which is of the order of (g m r o ) 2. Keeping this in mind we can get this level of gain from a single Cascode or Telescopic stage. The voltage swing in a Telescopic stage is limited to 2[V DD  (2*PMOS Overdrives + 3*NMOS Overdrives)] and as the design constraints specify a output differential swing of 2 Volts, we chose a Folded Cascode topology. In order to make the output common mode level more stable to voltage fluctuations, common mode feedback was used to fix the input and output common mode voltage to V DD /2. The circuit topology used in the design is shown in the next page and the various design tradeoffs will be discussed in the succeeding sections.
3 III. Design TradeOffs In both the design approaches the following tradeoffs were observed: (a) The CM feedback transistors M12 and M13 always introduced some parasitic capacitances, reducing the gain and bandwidth of the opamp. (b) Since the CM voltage was set to 1.5Volts, the overdrive of the transistors M5, M6, M1, M2, M11, M12 and M13 was constrained. This precondition forced these transistors to have relatively higher widths than the rest of the transistors in the circuit. This problem was very exaggerated for the case of M12 and M13 since they had to be operated in deep triode region, with low over drives and their widths could not be increased beyond a certain limit since it lowered the output impedance of the OpAmp. Figure 2: Amplifier Topology with common mode feedback
4 Figure 3. Biasing Circuit with parasitics Both the design approaches used the above circuitbiasing network. This circuit also includes the various parasitics associated with the feedback, load and input capacitors. IV. Realization of Design Target 1: Maximum Power Usage (20mw) with aim to Minimize the Settling Time. With a total allowed current of 6.6mAmp, the circuit was designed to have the least settling time possible. The circuit had an Open Loop gain of 1.385K and a Bandwidth of 2.893Mhz. The device sizes and the other related values for our final design are as given below. Differential Amplifier Description: Device Description Type W/L(µm/µm) Current(µA) g m (ms) r o Ω M0 Reference for Common Mode Feedback N 10.88/ M1,M2 Input Differential pair N 449/ M3,M4 PMOS Cascode Devices P 415.2/ M5,M6 Current Sources for the folded cascode P 452/ M7,M8 NMOS Upper Cascode Loads N / M9,M10 NMOS Lower Cascode Loads N 88.43/ M11 Tail Current Source for Input Differential Pair N / M12,M13 Common Mode Feedback Pair N 163/ Mb1 Bias reference & mirror for M11 N 8.96/ Mb2 Bias reference & mirror for M5, M6 P 40.6/ Mb3 Bias reference & mirror for M9, M10 N 5.1/
5 The values of the various capacitances and resistors used for this configuration where as follows Feedback Circuit: Device Description Values C1, C2 Input Capacitance 7.2pF C3, C4 Feedback Capacitance 0.9pF C par1, C par2 Parasitic Capacitance 1.44pF C par3, C par4 Parasitic Capacitance 180f F C load Load Capacitance 1pF R1, R2 Feedback resistors 1GΩ Under these device values the circuit had the following specifications for DC bias V reference =1.5V V out1 =V out2 =1.501V Vb1=1.8V Vb2=1.15V Differential Output Swing =2V Gain Error= 0.97% Settling time =7.26nS Power consumed = 19mW V. Realization of Design Target 2: 0.5% Settling time (20ns) with Minimum Power Dissipation The folded cascode differential amplifier topology (Figure 2) was used to achieve this design to minimize the power dissipation and limit the settling time to 20ns. The device dimensions, currents and bias voltages were chosen to give a high open loop ac gain so as to achieve the gain error specification (Gain Error<1%). The differential amplifier was then embedded in a closed loop feedback circuit as shown in Figure 3 and the differential output was simulated to achieve the settling time specification for maximum output swing (2V). Differential Amplifier Description: Device Description Type W/L(µm/µm) Current(µA) g m (ms) r o Ω M0 N 5.86/ K Reference for Common Mode Feedback M1,M2 Input Differential pair N / each K M3,M4 PMOS Cascode Devices P / each K M5,M6 Current Sources for the folded cascode P 111.6/ each K M7,M8 NMOS Upper Cascode Loads N 10/ each K M9,M10 NMOS Lower Cascode Loads N 81.6/1 332 each K M11 Tail Current Source for Input Differential Pair N 65.3/ K M12,M13 Common Mode Feedback Pair N 17.77/ each K Mb1 Bias reference & mirror for M11 N 9.32/ K Mb2 Bias reference & mirror for M5, M6 P 16.34/ K Mb3 Bias reference & mirror for M9, M10 N 23.3/ K
6 Additional Design Tradeoffs: In the process of the design to achieve the required specifications, the following tradeoffs were observed in addition to the ones discussed above: Power Dissipation vs. Device Dimensions: As the power dissipation was increased, the settling time correspondingly decreased, but at the expense of introduction of device capacitances which arose because of the need to increase the gain in order to decrease the gain error. Settling Time vs. Device Dimensions vs. Gain: To increase the gain, device dimensions of input differential pair (M1, M2), cascode current sources (M5, M6) and the loads (M7, M8, M9, M10) were increased. This increased the gain but also increased the settling time due to introduction of device capacitances at the output. Gain vs. Input Impedance: Increase in the device dimensions of the input differential pair devices increased the gain and also the input capacitance, thus reducing the input impedance. Figure 6 shows the open loop ac gain magnitude and phase response of the differential amplifier. Figure 7 shows the 0.5% settling time of 20ns with minimum power dissipation. Feedback Circuit: Figure 3 shows the feedback topology used for the design. The component values are given in the following table. Device Description Values C1, C2 Input Capacitance 2.4pF C3, C4 Feedback Capacitance 0.3pF C par1, C par2 Parasitic Capacitance 0.48pF C par3, C par4 Parasitic Capacitance 60fF C load Load Capacitance 1pF R1, R2 Feedback resistors 1GΩ For the differential amplifier and the feedback circuit, the DC bias conditions are as follows: V reference =1.5V V out1 =V out2 =1.5V Vb1=1.8V Vb2=1.15V Differential Output Swing =2V Gain Error= 0.995% Settling time =20.1nS Minimum Power Dissipation achieved = 4.71mW VI. Simulation Procedure used for both designs: Open Loop AC response: The input to the differential pair was given as a combination of a DC source with a CM level of 1.5V in addition to a sinusoid of amplitude 1V. The sinusoids applied to the 2 inputs were 180 degrees out of phase. Settling time: Two pulses of amplitude and volts (with rise time=fall time=0.1ns, pulse width=1µs, period=2µs) were applied to the noninverting and inverting terminal of the feedback circuit respectively with the initial condition at Vout1=2V and Vout2=1V. The difference Vout2Vout1 was then plotted versus time to observe the settling time. References [1] B.Razavi, Design of Analog CMOS Integrated Circuits, McGrawHill 2001 [2] S.Rabii and B.A. Wooley, A 1.8V DigitalAudio SigmaDelta Modulator in 0.8µm CMOS, IEEE J. of SolidState Circuits,vol.32,pp ,June 1997.
7 Figure 4. Magnitude and Phase response for Design I. Power =19.5mW Settling Time=7.2nS
8 Figure 5. Transient response for Design I. Power =19.5mW Settling Time=7.2nS
9 Figure 6. Magnitude and Phase response for Design II. Power =4.71mW Settling Time=20.1nS
10 Figure 7. Magnitude and Phase response for Design II. Power =4.71mW Settling Time=20.1nS
A PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER
A PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER M. TaherzadehSani, R. Lotfi, and O. Shoaei ABSTRACT A novel classab architecture for singlestage operational amplifiers is presented. The structure
More informationUniversity of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier
University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim ElSaadi, Mohammed ElTanani, University of Michigan Abstract This paper
More informationDesign of HighSpeed OpAmps for Signal Processing
Design of HighSpeed OpAmps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 837252075 jbaker@ieee.org Abstract  As CMOS
More informationChapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier
Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in doubleended
More informationA Unity Gain FullyDifferential 10bit and 40MSps SampleAndHold Amplifier in 0.18μm CMOS
A Unity Gain FullyDifferential 0bit and 40MSps SampleAndHold Amplifier in 0.8μm CMOS Sanaz Haddadian, and Rahele Hedayati Abstract A 0bit, 40 MSps, sample and hold, implemented in 0.8μm CMOS technology
More informationCSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University
CSE 577 Spring 2011 Basic Amplifiers and Differential Amplifier, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University Don t let the computer
More informationDesign and Simulation of an Operational Amplifier with High Gain and Bandwidth for Switched Capacitor Filters
IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) eissn: 22781676,pISSN: 23203331, Volume 11, Issue 1 Ver. II (Jan. Feb. 2016), PP 4753 www.iosrjournals.org Design and Simulation
More informationAdvanced Operational Amplifiers
IsLab Analog Integrated Circuit Design OPA247 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA21 Advanced Current Mirrors and Opamps Twostage
More informationDesign of a Folded Cascode Operational Amplifier in a 1.2 Micron SiliconCarbide CMOS Process
University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 52017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron
More informationEECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design
EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design References: Analog Integrated Circuit Design by D. Johns and K. Martin and Design of Analog CMOS Integrated Circuits by B. Razavi All figures
More informationTopology Selection: Input
Project #2: Design of an Operational Amplifier By: Adrian Ildefonso Nedeljko Karaulac I have neither given nor received any unauthorized assistance on this project. Process: Baker s 50nm CAD Tool: Cadence
More informationA 2.6GHz/5.2GHz CMOS VoltageControlled Oscillator*
WP 23.6 A 2.6GHz/5.2GHz CMOS VoltageControlled Oscillator* Christopher Lam, Behzad Razavi University of California, Los Angeles, CA New wireless local area network (WLAN) standards have recently emerged
More informationLecture 240 Cascode Op Amps (3/28/10) Page 2401
Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog
More informationAnalysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II)
Analysis and Design of Analog Integrated Circuits Lecture 20 Advanced Opamp Topologies (Part II) Michael H. Perrott April 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Outline of Lecture
More informationCommonSource Amplifiers
Lab 2: CommonSource Amplifiers Introduction The commonsource stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderatetohigh gain,
More informationA Low Power Low Voltage High Performance CMOS Current Mirror
RESEARCH ARTICLE OPEN ACCESS A Low Power Low Voltage High Performance CMOS Current Mirror Sirish Rao, Sampath Kumar V Department of Electronics & Communication JSS Academy of Technical Education Noida,
More informationA Compact Foldedcascode Operational Amplifier with ClassAB Output Stage
A Compact Foldedcascode Operational Amplifier with ClassAB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design
More informationAnalog Integrated Circuits Fundamental Building Blocks
Analog Integrated Circuits Fundamental Building Blocks Basic OTA/Opamp architectures Faculty of Electronics Telecommunications and Information Technology Gabor Csipkes Bases of Electronics Department Outline
More informationChapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik
1 Chapter 10 Feedback Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: ActiveLoaded Differential Pair 4. Ch 10: Feedback 5. Ch 11: Output
More informationCMOS Operational Amplifier
The George Washington University Department of Electrical and Computer Engineering Course: ECE218 Instructor: Mona E. Zaghloul Students: Shunping Wang Yiping (Neil) Tsai Data: 05/14/07 Introduction In
More informationLow Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier
RESEARCH ARTICLE OPEN ACCESS Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier Akshay Kumar Kansal 1, Asst Prof. Gayatri Sakya 2 Electronics and Communication Department, 1,2
More informationDesign of RailtoRail OpAmp in 90nm Technology
IJSTE  International Journal of Science Technology & Engineering Volume 1 Issue 2 August 2014 ISSN(online) : 2349784X Design of RailtoRail OpAmp in 90nm Technology P R Pournima M.Tech Electronics
More informationPURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.
EE4902 Lab 9 CMOS OPAMP PURPOSE: The purpose of this lab is to measure the closedloop performance of an opamp designed from individual MOSFETs. This opamp, shown in Fig. 91, combines all of the major
More informationLinear electronic. Lecture No. 1
1 Lecture No. 1 2 3 4 5 Lecture No. 2 6 7 8 9 10 11 Lecture No. 3 12 13 14 Lecture No. 4 Example: find Frequency response analysis for the circuit shown in figure below. Where R S =4kR B1 =8kR B2 =4k R
More informationOperational Amplifier with TwoStage GainBoost
Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 2224, 2006 482 Operational Amplifier with TwoStage GainBoost FRANZ SCHLÖGL
More informationChapter 13: Introduction to Switched Capacitor Circuits
Chapter 13: Introduction to Switched Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 SwitchedCapacitor Amplifiers 13.4 SwitchedCapacitor Integrator 13.5 SwitchedCapacitor
More informationIJSRD  International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online):
IJSRD  International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): 23210613 Design & Analysis of CMOS Telescopic Operational Transconductance Amplifier (OTA) with
More informationDesign of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching
RESEARCH ARTICLE OPEN ACCESS Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching Annu Saini, Prity Yadav (M.Tech. Student, Department
More informationBasic OpAmp Design and Compensation. Chapter 6
Basic OpAmp Design and Compensation Chapter 6 6.1 OpAmp applications Typical applications of OpAmps in analog integrated circuits: (a) Amplification and filtering (b) Biasing and regulation (c) Switchedcapacitor
More informationLowVoltage RailtoRail CMOS Operational Amplifier Design
Electronics and Communications in Japan, Part 2, Vol. 89, No. 12, 2006 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J89C, No. 6, June 2006, pp. 402 408 LowVoltage RailtoRail CMOS Operational
More informationDesign and Layout of Two Stage High Bandwidth Operational Amplifier
Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard
More informationEE 501 Lab 4 Design of two stage op amp with miller compensation
EE 501 Lab 4 Design of two stage op amp with miller compensation Objectives: 1. Design a two stage op amp 2. Investigate how to miller compensate a twostage operational amplifier. Tasks: 1. Build a twostage
More informationVoltage Feedback Op Amp (VFOpAmp)
Data Sheet Voltage Feedback Op Amp (VFOpAmp) Features 55 db dc gain 30 ma current drive Less than 1 V head/floor room 300 V/µs slew rate Capacitive load stable 40 kω input impedance 300 MHz unity gain
More informationA LowVoltage, LowPower, TwoStage Amplifier for SwitchedCapacitor Applications in 90 nm CMOS Process
A LowVoltage, LowPower, TwoStage Amplifier for SwitchedCapacitor Applications in 90 nm CMOS Process S. H. Mirhosseini* and A. Ayatollahi* Downloaded from ijeee.iust.ac.ir at 16:45 IRDT on Tuesday April
More informationDesign of Low Voltage Low Power CMOS OPAMP
RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OPAMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral
More informationA Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier
A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier Kehul A. Shah 1, N.M.Devashrayee 2 1(Associative Prof., Department of Electronics and Communication,
More informationDESIGN AND ANALYSIS OF A TWO STAGE MILLER COMPENSATED OPAMP SUITABLE FOR ADC APPLICATIONS
DESIGN AND ANALYSIS OF A TWO STAGE MILLER COMPENSATED OPAMP SUITABLE FOR ADC APPLICATIONS D.S. Shylu 1, D. Jackuline Moni 2, Benazir Kooran 3 1 Assistant Professor (SG), Electronics and Communication
More informationAn Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs
International Journal of Research in Engineering and Innovation Vol1, Issue6 (2017), 6064 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com
More informationCHAPTER 3 DESIGN OF PIPELINED ADC USING SCSCDS AND OPAMP SHARING TECHNIQUE
CHAPTER 3 DESIGN OF PIPELINED ADC USING SCSCDS AND OPAMP SHARING TECHNIQUE 3.1 INTRODUCTION An ADC is a device which converts a continuous quantity into discrete digital signal. Among its types, pipelined
More informationUMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency
UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter
More informationA low voltage railtorail operational amplifier with constant operation and improved process robustness
Graduate Theses and Dissertations Graduate College 2009 A low voltage railtorail operational amplifier with constant operation and improved process robustness Rien Lerone Beal Iowa State University Follow
More informationDesign and Simulation of Low Dropout Regulator
Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,
More informationDesign and Implementation of High Gain, High Bandwidth CMOS Folded cascode Operational Transconductance Amplifier
Design and Implementation of High Gain, High Bandwidth CMOS Folded cascode Operational Transconductance Amplifier Jalpa solanki, P.G Student, Electronics and communication, SPCE Visnagar, India jalpa5737@gmail.com
More informationCHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN
93 CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 4.1 INTRODUCTION Ultra Wide Band (UWB) system is capable of transmitting data over a wide spectrum of frequency bands with low power and high data
More informationA Compact 2.4V Powerefficient Railtorail Operational Amplifier. Strong inversion operation stops a proposed compact 3V powerefficient
A Compact 2.4V Powerefficient Railtorail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V powerefficient railtorail OpAmp from a lower total supply voltage.
More informationLow Cost, General Purpose High Speed JFET Amplifier AD825
a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:
More informationDimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.
LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low InputOutput Capacitance Low Power Consumption, < mw Isolation Test Voltage,
More informationA Clock Generating System for USB 2.0 with a HighPSR Bandgap Reference Generator
ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 14, Number 4, 2011, 380 391 A Clock Generating System for USB 2.0 with a HighPSR Bandgap Reference Generator Seok KIM 1, SeungTaek YOO 1,2,
More informationSecondOrder SigmaDelta Modulator in Standard CMOS Technology
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 1, No. 3, November 2004, 3744 SecondOrder SigmaDelta Modulator in Standard CMOS Technology Dragiša Milovanović 1, Milan Savić 1, Miljan Nikolić 1 Abstract:
More informationChapter 12 Opertational Amplifier Circuits
1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS opamp architectures: the twostage circuit and the singlestage, folded cascode circuit.
More informationRadivoje Đurić, 2015, Analogna Integrisana Kola 1
OTAoutput buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage
More informationA Linear CMOS Low DropOut Voltage Regulator in a 0.6µm CMOS Technology
International Journal of Electronics and Electrical Engineering Vol. 3, No. 3, June 2015 A Linear CMOS Low DropOut Voltage Regulator in a 0.6µm CMOS Technology Mohammad Maadi Middle East Technical University,
More informationFully differential RF ADC Driver XT06
Fully differential RF ADC Driver XT06 DATA SHEET FEATURES FUNCTIONAL BLOCK DIAGRAM 3 db bandwidth of up to 350 MHz Adjustable output commonmode voltage Externally adjustable gain Slew rate 880 V/us at
More informationDesign of Pipeline Analog to Digital Converter
Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analogtodigital converter (ADC) architecture is the most popular topology
More informationRail to rail CMOS complementary input stage with only one active differential pair at a time
LETTER IEICE Electronics Express, Vol.11, No.12, 1 5 Rail to rail CMOS complementary input stage with only one active differential pair at a time Maria Rodanas Valero 1a), Alejandro RomanLoera 2, Jaime
More informationDAT175: Topics in Electronic System Design
DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable
More informationLecture 300 Low Voltage Op Amps (3/28/10) Page 3001
Lecture 300 Low Voltage Op Amps (3/28/10) Page 3001 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits
More informationRailToRail Output OpAmp Design with Negative Miller Capacitance Compensation
RailToRail OpAmp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a twostage opamp design is considered using both Miller
More informationA 6 th Order Ladder SwitchedCapacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20
A 6 th Order Ladder SwitchedCapacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20 Joseph Adut,Chaitanya Krishna Chava, José SilvaMartínez March 27, 2002 Texas A&M University Analog
More informationDesign and implementation of two stage operational amplifier
Design and implementation of two stage operational amplifier Priyanka T 1, Dr. H S Aravind 2, Yatheesh Hg 3 1M.Tech student, Dept, of ECE JSSATE Bengaluru 2Professor and HOD, Dept, of ECE JSSATE Bengaluru
More informationDesign of Low Power High Speed Fully Dynamic CMOS Latched Comparator
International Journal of Engineering Research and Development eissn: 2278067X, pissn: 2278800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.0106 Design of Low Power High Speed Fully Dynamic
More informationExperiments #7. Operational Amplifier part 1
Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic opamp
More informationSingle Supply, Rail to Rail Low Power FETInput Op Amp AD820
a FEATURES True Single Supply Operation Output Swings RailtoRail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load
More informationLM6118/LM6218 Fast Settling Dual Operational Amplifiers
Fast Settling Dual Operational Amplifiers General Description The LM6118/LM6218 are monolithic fastsettling unitygaincompensated dual operational amplifiers with ±20 ma output drive capability. The
More informationDESIGNING OF CURRENT MODE INSTRUMENTATION AMPLIFIER FOR BIOSIGNAL USING 180NM CMOS TECHNOLOGY
DESIGNING OF CURRENT MODE INSTRUMENTATION AMPLIFIER FOR BIOSIGNAL USING 180NM CMOS TECHNOLOGY GAYTRI GUPTA AMITY University Email: Gaytri.er@gmail.com Abstract In this paper we have describes the design
More information6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers
6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication
More informationECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier
ECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier Objective Design, simulate and test a twostage operational amplifier Introduction Operational amplifiers (opamp) are essential components of
More informationLowoutputimpedance BiCMOS voltage buffer
Lowoutputimpedance BiCMOS voltage buffer Johan Bauwelinck, a) Wei Chen, Dieter Verhulst, Yves Martens, Peter Ossieur, XingZhi Qiu, and Jan Vandewege Ghent University, INTEC/IMEC, Gent, 9000, Belgium
More informationECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers
ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT EE247 Term Project Eddie Ng Mounir Bohsali Professor
More informationDesign of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh
Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh Abstract A 5GHz low power consumption LNA has been designed here for the receiver front end using 90nm CMOS technology.
More informationLecture 20: Passive Mixers
EECS 142 Lecture 20: Passive Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture 20 p.
More informationDue to the absence of internal nodes, inverterbased GmC filters [1,2] allow achieving bandwidths beyond what is possible
A ForwardBodyBias Tuned 450MHz GmC 3 rd Order LowPass Filter in 28nm UTBB FDSOI with >1dBVp IIP3 over a 0.7to1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin
More information6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators
6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband
More informationSingle Supply, Rail to Rail Low Power FETInput Op Amp AD820
a FEATURES True Single Supply Operation Output Swings RailtoRail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive
More informationA Fully Integrated CMOS PhaseLocked Loop With 30MHz to 2GHz Locking Range and ±35 ps Jitter
University of Pennsylvania ScholarlyCommons epartmental Papers (ESE) epartment of Electrical & Systems Engineering 712003 A Fully Integrated CMOS PhaseLocked Loop With 30MHz to 2GHz Locking Range and
More informationDesign of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications
RESEARCH ARTICLE OPEN ACCESS Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications Sharon Theresa George*, J. Mangaiyarkarasi** *(Department of Information and Communication
More informationELM824xA 3.0μA Very low power CMOS dual operational amplifier
ELM824xA 3.μA Very low power CMOS dual operational amplifier General description ELM824xA is a very low current consumptiontyp.3.μa CMOS dual OPAMP provided with a wide common mode input voltage range.
More informationHigh Speed CMOS Comparator Design with 5mV Resolution
High Speed CMOS Comparator Design with 5mV Resolution Raghava Garipelly Assistant Professor, Dept. of ECE, Sree Chaitanya College of Engineering, Karimnagar, A.P, INDIA. Abstract: A high speed CMOS comparator
More informationANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS
ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,
More informationLowPower Pipelined ADC Design for Wireless LANs
LowPower Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,
More informationLecture 3 SwitchedCapacitor Circuits Trevor Caldwell
Advanced Analog Circuits Lecture 3 SwitchedCapacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 24pm) Reference Homework 20170111 1 MOD1 & MOD2 ST 2, 3,
More informationIN RECENT years, lowdropout linear regulators (LDOs) are
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 563 Design of LowPower Analog Drivers Based on SlewRate Enhancement Circuits for CMOS LowDropout Regulators
More information10Bit 5MHz Pipeline A/D Converter. Kannan Sockalingam and Rick Thibodeau
10Bit 5MHz Pipeline A/D Converter Kannan Sockalingam and Rick Thibodeau July 30, 2002 Contents 1 Introduction 8 1.1 Project Overview........................... 8 1.2 Objective...............................
More informationLow Voltage Standard CMOS Opamp Design Techniques
Low Voltage Standard CMOS Opamp Design Techniques Student name: Eliyahu Zamir Student number: 961339780 Course: ECE1352F Proffessor: Khoman Phang Page 1 of 18 1.Abstract In a neverending effort to reduce
More informationDESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY
DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of
More informationMicroelectronic Circuits  Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.
Feedback 1 Figure 8.1 General structure of the feedback amplifier. This is a signalflow diagram, and the quantities x represent either voltage or current signals. 2 Figure E8.1 3 Figure 8.2 Illustrating
More informationAnalysis and Design of High Speed Low Power Comparator in ADC
Analysis and Design of High Speed Low Power Comparator in ADC 1 Abhishek Rai, 2 B Ananda Venkatesan 1 M.Tech Scholar, 2 Assistant professor Dept. of ECE, SRM University, Chennai 1 Abhishekfan1791@gmail.com,
More informationField Effect Transistors
Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a commonsource amplifier stage,
More informationOPERATIONAL AMPLIFIERS and FEEDBACK
Lab Notes A. La Rosa OPERATIONAL AMPLIFIERS and FEEDBACK 1. THE ROLE OF OPERATIONAL AMPLIFIERS A typical digital data acquisition system uses a transducer (sensor) to convert a physical property measurement
More informationFigure 1. Main window (Common Interface Window), CIW opens and from the pull down menus you can start your design. Figure 2.
Running Cadence Once the Cadence environment has been setup you can start working with Cadence. You can run cadence from your directory by typing Figure 1. Main window (Common Interface Window), CIW opens
More information20129th International MultiConference on Systems, Signals and Devices An Enhanced Fully Differential Recyclic Folded Cascade OTA
2012 9th International MultiConference on Systems, Signals and Devices An Enhanced Fully Differential Recyclic Folded Cascade OTA Pravanjan Patra, S.Kumaravel Research scholar, ECE Tiruchirappalli, INDIA
More informationA 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Builtin Digital Error Correction Logic
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Builtin Digital Error Correction Logic Abstract P.Prasad Rao 1 and Prof.K.Lal Kishore 2, 1 Research Scholar, JNTUHyderabad prasadrao_hod@yahoo.co.in
More informationHomework Assignment 07
Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A singlepole opamp has an openloop lowfrequency gain of A = 10 5 and an open loop, 3dB frequency of 4 Hz.
More information55:041 Electronic Circuits
55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 106 m or less Thickness = 50 109 m or less ` MOS MetalOxideSemiconductor
More informationLowNoise Amplifiers
007/Oct 4, 31 1 General Considerations Noise Figure LowNoise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input
More information6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain Bandwidth Issue for Broadband Amplifiers
6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain Bandwidth Issue for Broadband Amplifiers Massachusetts Institute of Technology February 17, 2005 Copyright 2005
More informationISSN:
468 Modeling and Design of a CMOS Low Dropout (LDO) Voltage Regulator PRIYADARSHINI JAINAPUR 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore560064,
More informationDESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1
ISSN 22772685 IJESR/June 2014/ Vol4/Issue6/319323 Himanshu Shekhar et al./ International Journal of Engineering & Science Research DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL
More informationA 2.4 GHZ RECEIVER IN SILICONONSAPPHIRE MICHAEL PETERS. B.S., Kansas State University, 2009 A REPORT
A 2.4 GHZ RECEIVER IN SILICONONSAPPHIRE by MICHAEL PETERS B.S., Kansas State University, 2009 A REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department
More information