ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier
|
|
- Rosa Young
- 11 months ago
- Views:
Transcription
1 ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier Objective Design, simulate and test a two-stage operational amplifier Introduction Operational amplifiers (opamp) are essential components of analog system design. Integrated circuit design, as well as board level design, often uses operational amplifiers. This component is basically a high gain voltage amplifier used in many analog systems such as filters, regulators and function generators. This rudimentary device is also used to create buffers, logarithmic amplifiers and instrumentation amplifiers. Opamps can also function as simple comparators. Knowledge of operational amplifier functionality and design is important in analog design. The symbol for an operational amplifier is shown in Figure 8-1. The basic device has two inputs and a single output. A fully differential version of the opamp has two outputs and is often used in high performance integrated circuit designs. Figure 8-1: Operational Amplifier Symbol The operational amplifier functions as a voltage amplifier. The relationship between the input and output voltage is given by: The amplifier has a high voltage gain (A v0 > 1000 for CMOS opamps). Due to the high gain, the linear region of an opamp is very narrow, so the opamp is commonly used in a negative feedback loop. Figure 8-2 illustrates the typical input-output characteristic tor an operational amplifier used with and without feedback. The open loop (without feedback) plot shows the linear region is only a few millivolts wide. From Figure 8-2, the open loop input-output characteristic is clearly nonlinear. Notice the closed loop linear region consists of almost the entire input voltage range. The application of feedback reduces the nonlinearity, but also reduces the voltage gain. Figure 8-2: Input-Output Characteristic for an Opamp The simplest operational amplifier is the simple differential amplifier studied earlier. This amplifier can be improved by adding a second stage as an inverting amplifier with a current source load. The two stage amplifier shown in Figure 8-3 is referred to as a Miller Opamp.
2 V DD M 3 M 4 I bias M 8 C c V i- M 1 M 2 V i+ V o M 5 M 6 I tail M 7 C L R L The Miller Opamp has a low frequency gain of: The transconductance is given by: The output resistance is given by: V SS Figure 8-3: Two-Stage Miller Opamp, Design Description The two-stage amplifier can be modeled as a cascade of two amplifiers, as illustrated in Figure 8-4. The first stage is a differential amplifier, which produces an amplified version of the difference in input signals. This stage determines the CMRR, slew rate and other performance specifications determined by the differential amplifier. Av > 1 Av >> 1 V i- V i+ - + V o Input Gain Stage Stage Figure 8-4: The Two Stage Operational Amplifier Model The second stage is an inverting amplifier. The purpose of this stage is to provide a large voltage gain. The gain stage and the input stage create two poles, which affect the stability of the feedback system. Usually some form of compensation is required to assure the amplifier is stable at unity gain. Additional gain stages can be employed to increase the gain, but this degrades stability and requires complex compensation techniques.
3 The frequency response of an operational amplifier will be analyzed using the macro-model of the opamp shown in Figure 8-5. The capacitor C in models the input capacitance of the opamp, which is mostly gate to source capacitance. The sub-circuit consisting of G ma, R A and C A model the gain and frequency response of the input stage. The capacitance C A includes the input capacitance of the second stage and the output capacitance of the first stage. The components G mb, R B and C B model the second stage. The load capacitor and resistor are also included in R B and C B. Figure 8-5: Operational Amplifier Macro-Model The transfer function of the macro-model is given by: 1 1 This transfer function assumes zero source resistance. Notice the two poles are approximately equal. The capacitors C A and C B are dominated by gate to source capacitances, and R A and R B are the parallel connected small-signal drain to source resistances. The pole-zero plot of this transfer function is illustrated in Figure 8-6. Figure 8-6: Pole-Zero Diagram for Uncompensated Opamp Due to the poles being located close together and the large DC gain, the system in unlikely to be stable in unity-gain feedback configuration, therefore some form of compensation is required. The modified macromodel shown in Figure 8-7 uses capacitor C C to compensate the frequency response of the opamp by splitting the two poles. Figure 8-7: Operational Amplifier Macro-Model with Compensation Capacitor C C
4 Assuming R A is large ( and 1/ ) and C A is small (, ), and using the results obtained from the inverting amplifier lab, the transfer function for the operational amplifier with the compensation capacitor is: 1 These simplifying assumptions hold because capacitance C B will include the capacitance of the load, and the compensation capacitance C C can be chosen to be the size of the load capacitor. Also, for the two stage opamp, capacitance C B will include the load capacitance C L. With the transfer function in factored form, we can find the open loop DC gain, poles and zero of the compensated opamp. They are given by: 1 1 Note that the addition of the compensation capacitor C C caused the poles to split. One pole moved closer to the origin by a factor of A v2 = G mb R B, while the other pole moved away from the origin by a factor of A v2. This compensation technique is called "pole splitting". The pole-zero plot of this transfer function is illustrated in Figure 8-8. Also, notice the creation of a zero as a result of the transition path created by the capacitor. Figure 8-8: Pole-Zero Plot for a Compensated Opamp Using the compensated opamp in a feedback loop produces the following transfer function: 1
5 where: 1 1 The closed loop transfer function using the compensated amplifier can be approximated by: The effect of the above simplification of the system is to assume the dominant pole is at the origin. Notice that when the system is in open loop (β = 0), the transfer function reduces to: The factor β varies the position of the dominant pole from the origin to approximately the position of the non-dominant pole. Figure 8-9 illustrates the effect of feedback on the frequency response. H(s) f Figure 8-9: Open and Closed Loop Frequency Response To assure the feedback system is stable at unity gain (β = 1), the phase margin must be examined. The phase margin is the amount of phase before phase inversion (180 ) at the unity gain frequency. The expression for the phase margin is given by: 180 tan 180 tan tan tan tan tan 180 tan tan 90 tan tan tan
6 The phase margin is improved by moving the non-dominant pole and zero to higher frequencies away from the unity gain frequency. The phase margin can also be improved by using compensation techniques which place the zero in the left half plane. The slew rate is determined by the compensation capacitance and the tail current: The performance characteristics of the two-stage amplifier are summarized below:, 1, 90 tan tan Monte Carlo Analysis Monte Carlo analysis provides an accurate and powerful method for parametric yield estimation. The principle of Monte Carlo analysis can be defined as the generation of circuit figure of merit distributions as a function of statistically varying device model parameters that accurately reflect manufacturing process variations. With Monte Carlo analysis, you can generate and save statistical information about a circuit's temperature and geometry dependent performance characteristics. The mathematics supporting Monte Carlo method proves that the probability distribution of the simulated results will be statistically the same as the actual measurements of a real circuit that has been fabricated. Follow the steps below to run Monte Carlo simulations for A v0, dominant pole, gain-bandwidth product and phase margin: Schematic: Launch ADE L ADE L: Setup AC Analysis ADE L: Tools Calculator Calculator: Click on vf Schematic: Click on the output net Calculator: Select the expression, then click on function panel for each parameter: o A v0 : Click on db20, then click on value with interpolate at =0 o Dominant Pole: Click on bandwidth with Db =3 and Type =low o Gain-Bandwidth Product: Click on gainbwprod o Phase Margin: Click on phasemargin Calculator: Tools Send Buffer to ADE Outputs (or click on ) ADE L: Outputs - Click on Save
7 ADE L: Simulation Netlist and Run (or click on ) ADE L: Launch ADE XL Create New View OK OK ADE XL: Run Monte Carlo Sampling Set options as shown in the figure below OK ADE XL: Wait until the analysis is complete (200 Passed/200 pts) ADE XL: Click on Histogram Click on the expression plot (see below)
8 Plotting Power Supply Rejection Ratio (PSRR) PSRR is a measure of the effect of power supply variation on the output voltage. To plot PSRR +, first determine A dm in V/V. Next, set the AC inputs of the amplifier to zero, and insert an AC source (with magnitude 1) between V DD and the amplifier. After running AC simulation, plot the following using the calculator: 20 A plot of PSRR + is shown in Figure 8-10, mark the lowest point for the worst case scenario. Repeat this process with the negative rail to obtain PSRR -. Figure 8-10: Plot of PSRR + Prelab The prelab exercises are due at the beginning of the lab period. No late work is accepted. Design an operational amplifier of Figure 8-3 to obtain the following specifications: A v0 > 50 db CMRR > 60 db GBW > 2 MHz PM > 45 Output Swing > 1 V Load Capacitance 30 pf Power Dissipated < 500 µw
9 Lab Report 1. Simulate the design from the prelab. Adjust the transistor sizes until all specifications are met. Provide plots of: Frequency response CMRR PSRR + PSRR - Transient response On the appropriate plot above, mark the following measurements (remember the "m":hotkey for marker and the "a" and "b" hotkeys for measuring slope): Slew rate Phase margin Gain-bandwidth product Power Dissipation 2. Layout your final design using good layout techniques. Include the LVS report (with your NetID and time stamp). Plot and mark the simulations from part 1. Be sure to include parasitic capacitances in your extraction. 3. Run a Monte Carlo simulation on the opamp design. Be sure to run this simulation with process variation and mismatch. Generate histograms of the following parameters: a) Gain-bandwidth product b) Dominant pole c) Phase margin d) A v0 Comment on the impact of process variations and mismatch on each parameter.
ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers
ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic
Chapter 12 Opertational Amplifier Circuits
1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.
Design of High-Speed Op-Amps for Signal Processing
Design of High-Speed Op-Amps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 83725-2075 jbaker@ieee.org Abstract - As CMOS
Analog Integrated Circuits Fundamental Building Blocks
Analog Integrated Circuits Fundamental Building Blocks Basic OTA/Opamp architectures Faculty of Electronics Telecommunications and Information Technology Gabor Csipkes Bases of Electronics Department Outline
Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation
Rail-To-Rail Op-Amp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a two-stage op-amp design is considered using both Miller
An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs
International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com
ISSN:
468 Modeling and Design of a CMOS Low Drop-out (LDO) Voltage Regulator PRIYADARSHINI JAINAPUR 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore-560064,
A low voltage rail-to-rail operational amplifier with constant operation and improved process robustness
Graduate Theses and Dissertations Graduate College 2009 A low voltage rail-to-rail operational amplifier with constant operation and improved process robustness Rien Lerone Beal Iowa State University Follow
Design and Layout of Two Stage High Bandwidth Operational Amplifier
Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard
Design of Low Voltage Low Power CMOS OP-AMP
RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OP-AMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral
CMOS Operational Amplifier
The George Washington University Department of Electrical and Computer Engineering Course: ECE218 Instructor: Mona E. Zaghloul Students: Shunping Wang Yiping (Neil) Tsai Data: 05/14/07 Introduction In
Analysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications
Analysis and Design of Analog Integrated Circuits Lecture 8 Key Opamp Specifications Michael H. Perrott April 8, 0 Copyright 0 by Michael H. Perrott All rights reserved. Recall: Key Specifications of Opamps
Op-Amp Simulation Part II
Op-Amp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate
Low Cost, General Purpose High Speed JFET Amplifier AD825
a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:
A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER
A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei ABSTRACT A novel class-ab architecture for single-stage operational amplifiers is presented. The structure
Opamp stability using non-invasive methods
Opamp stability using non-invasive methods Opamps are frequently use in instrumentation systems as unity gain analog buffers, voltage reference buffers and ADC input buffers as well as low gain preamplifiers.
AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017
AN-1106 Custom Instrumentation Author: Craig Cary Date: January 16, 2017 Abstract This application note describes some of the fine points of designing an instrumentation amplifier with op-amps. We will
CHAPTER 9 FEEDBACK. NTUEE Electronics L.H. Lu 9-1
CHAPTER 9 FEEDBACK Chapter Outline 9.1 The General Feedback Structure 9.2 Some Properties of Negative Feedback 9.3 The Four Basic Feedback Topologies 9.4 The Feedback Voltage Amplifier (Series-Shunt) 9.5
ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS
ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,
Design and Simulation of Low Dropout Regulator
Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,
Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier
Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended
EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering
EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of
Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820
a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load
Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier
RESEARCH ARTICLE OPEN ACCESS Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier Akshay Kumar Kansal 1, Asst Prof. Gayatri Sakya 2 Electronics and Communication Department, 1,2
Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching
RESEARCH ARTICLE OPEN ACCESS Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching Annu Saini, Prity Yadav (M.Tech. Student, Department
INF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation
INF3410 Fall 2013 Compensation content Introduction Two Stage Opamps Compensation Slew Rate Systematic Offset Advanced Current Mirrors Operational Transconductance Amplifiers Current Mirror Opamps Folded
Basic OpAmp Design and Compensation. Chapter 6
Basic OpAmp Design and Compensation Chapter 6 6.1 OpAmp applications Typical applications of OpAmps in analog integrated circuits: (a) Amplification and filtering (b) Biasing and regulation (c) Switched-capacitor
Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation
Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Maryam Borhani, Farhad Razaghian Abstract A design for a rail-to-rail input and output operational amplifier is introduced.
A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS
A Unity Gain Fully-Differential 0bit and 40MSps Sample-And-Hold Amplifier in 0.8μm CMOS Sanaz Haddadian, and Rahele Hedayati Abstract A 0bit, 40 MSps, sample and hold, implemented in 0.8-μm CMOS technology
CSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University
CSE 577 Spring 2011 Basic Amplifiers and Differential Amplifier, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University Don t let the computer
Basic OpAmp Design and Compensation. Chapter 6
Basic OpAmp Design and Compensation Chapter 6 6.1 OpAmp applications Typical applications of OpAmps in analog integrated circuits: (a) Amplification and filtering (b) Biasing and regulation (c) Switched-capacitor
DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1
ISSN 2277-2685 IJESR/June 2014/ Vol-4/Issue-6/319-323 Himanshu Shekhar et al./ International Journal of Engineering & Science Research DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL
E84 Lab 6: Design of a transimpedance photodiode amplifier
E84 Lab 6: Design of a transimpedance photodiode amplifier E84 Fall 2017 Due: 11/14/17 Overview: In this lab you will study the design of a transimpedance amplifier based on an opamp. Then you will design
A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient
A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V power-efficient rail-to-rail Op-Amp from a lower total supply voltage.
High bandwidth low power operational amplifier design and compensation techniques
Graduate Theses and Dissertations Graduate College 2009 High bandwidth low power operational amplifier design and compensation techniques Vaibhav Kumar Iowa State University Follow this and additional
2. Single Stage OpAmps
/74 2. Single Stage OpAmps Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es Integrated
Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process
University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron
ECEN 5008: Analog IC Design. Final Exam
ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Time-limited, 150-minute exam. When the time is called, all work must stop. Put your initials on
A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage
A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design
Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida
An Ultra Low-Voltage CMOS Self-Biased OTA Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida simransinghh386@gmail.com Priyanka Goyal Faculty Associate, School Of ICT Gautam Buddha
2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps
2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps Instructor: Dr. Hong Ma Oct. 3, 2007 Fundamental Circuit: Source and Load Sources Power supply Signal Generator Sensor Amplifier output
BUCK Converter Control Cookbook
BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output
Atypical op amp consists of a differential input stage,
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents
LOW SUPPLY VOLTAGE, LOW NOISE FULLY DIFFERENTIAL PROGRAMMABLE GAIN AMPLIFIERS
LOW SUPPLY VOLTAGE, LOW NOISE FULLY DIFFERENTIAL PROGRAMMABLE GAIN AMPLIFIERS A. Pleteršek, D. Strle, J. Trontelj Microelectronic Laboratory University of Ljubljana, Tržaška 25, 61000 Ljubljana, Slovenia
250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048
5 MHz, General Purpose Voltage Feedback Op Amps AD8/AD88 FEATURES Wide Bandwidth AD8, G = + AD88, G = + Small Signal 5 MHz 6 MHz Large Signal ( V p-p) MHz 6 MHz 5.8 ma Typical Supply Current Low Distortion,
Experiment 8 Frequency Response
Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will
ELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE
77 ELECTRICAL CIRCUITS 6. PERATAL AMPLIIERS PART III DYNAMIC RESPNSE Introduction In the first 2 handouts on op-amps the focus was on DC for the ideal and non-ideal opamp. The perfect op-amp assumptions
PART. Maxim Integrated Products 1
- + 9-; Rev ; / Low-Cost, High-Slew-Rate, Rail-to-Rail I/O Op Amps in SC7 General Description The MAX9/MAX9/MAX9 single/dual/quad, low-cost CMOS op amps feature Rail-to-Rail input and output capability
LDO Regulator Stability Using Ceramic Output Capacitors
LDO Regulator Stability Using Ceramic Output Capacitors Introduction Ultra-low ESR capacitors such as ceramics are highly desirable because they can support fast-changing load transients and also bypass
MOSFET Amplifier Biasing
MOSFET Amplifier Biasing Chris Winstead April 6, 2015 Standard Passive Biasing: Two Supplies V D V S R G I D V SS To analyze the DC behavior of this biasing circuit, it is most convenient to use the following
MIC7122. General Description. Features. Applications. Ordering Information. Pin Configuration. Pin Description. Rail-to-Rail Dual Op Amp
MIC722 Rail-to-Rail Dual Op Amp General Description The MIC722 is a dual high-performance CMOS operational amplifier featuring rail-to-rail inputs and outputs. The input common-mode range extends beyond
Specify Gain and Phase Margins on All Your Loops
Keywords Venable, frequency response analyzer, power supply, gain and phase margins, feedback loop, open-loop gain, output capacitance, stability margins, oscillator, power electronics circuits, voltmeter,
Circuits Final Project: Adaptive-Biasing Differential Amplifiers
Circuits Final Project: Adaptive-Biasing Differential Amplifiers Franton Lin, Anisha Nakagawa, and Jen Wei May 4 07 Introduction In Lab 9, we learned about current-mirror differential amplifiers, where
Radivoje Đurić, 2015, Analogna Integrisana Kola 1
OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage
UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering
UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 GAIN-BANDWIDTH PRODUCT AND SLEW RATE OBJECTIVES In this experiment the student will explore two
System on a Chip. Prof. Dr. Michael Kraft
System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune
Design of Pipeline Analog to Digital Converter
Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analog-to-digital converter (ADC) architecture is the most popular topology
University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier
University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim El-Saadi, Mohammed El-Tanani, University of Michigan Abstract This paper
LMV321, LMV358, LMV324 General Purpose, Low Voltage, Rail-to-Rail Output Amplifiers
www.fairchildsemi.com LMV31, LMV358, LMV34 General Purpose, Low Voltage, RailtoRail Output Amplifiers Features at.7v 80µA supply current per channel 1.MHz gain bandwidth product Output voltage range: 0.01V
A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20
A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20 Joseph Adut,Chaitanya Krishna Chava, José Silva-Martínez March 27, 2002 Texas A&M University Analog
LM675 Power Operational Amplifier
Power Operational Amplifier General Description The LM675 is a monolithic power operational amplifier featuring wide bandwidth and low input offset voltage, making it equally suitable for AC and DC applications.
Operational Amplifier Bandwidth Extension Using Negative Capacitance Generation
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2006-07-06 Operational Amplifier Bandwidth Extension Using Negative Capacitance Generation Adrian P. Genz Brigham Young University
Field Effect Transistors
Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,
DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT
DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT PRADEEP G CHAGASHETTI Mr. H.V. RAVISH ARADHYA Department of E&C Department of E&C R.V.COLLEGE of ENGINEERING R.V.COLLEGE of ENGINEERING Bangalore
High PSRR Low Drop-out Voltage Regulator (LDO)
High PSRR Low Drop-out Voltage Regulator (LDO) Pedro Fernandes Instituto Superior Técnico Electrical Engineering Department Technical University of Lisbon Lisbon, Portugal Email: pf@b52.ist.utl.pt Julio
Chapter 11. Differential Amplifier Circuits
Chapter 11 Differential Amplifier Circuits 11.0 ntroduction Differential amplifier or diff-amp is a multi-transistor amplifier. t is the fundamental building block of analog circuit. t is virtually formed
A High-Gain, Low-Power CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold Region
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-03-15 A High-Gain, Low-Power CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold Region Rishi Pratap
LT MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp. Description. Features. Applications. Typical Application
Features n Stable in Gain A (A = ) n MHz Gain Bandwidth Product n /μs Slew Rate n Settling Time: 8ns ( Step, ) n Specified at and Supplies n Low Distortion, 9.dB for khz, P-P n Maximum Input Offset oltage:
DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER
DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project
Lecture 240 Cascode Op Amps (3/28/10) Page 240-1
Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog
Rail to rail CMOS complementary input stage with only one active differential pair at a time
LETTER IEICE Electronics Express, Vol.11, No.12, 1 5 Rail to rail CMOS complementary input stage with only one active differential pair at a time Maria Rodanas Valero 1a), Alejandro Roman-Loera 2, Jaime
Understanding Op-amp Specifications
by Kenneth A. Kuhn Dec. 27, 2007, rev. Jan. 1, 2009 Introduction This article explains the various parameters of an operational amplifier and how to interpret the data sheet. Be aware that different manufacturers
The Difference Amplifier Sept. 17, 1997
Physics 63 The Difference Amplifier Sept. 17, 1997 1 Purpose To construct a difference amplifier, to measure the DC quiescent point and to compare to calculated values. To measure the difference mode gain,
Precision, Low-Power and Low-Noise Op Amp with RRIO
MAX41 General Description The MAX41 is a low-power, zero-drift operational amplifier available in a space-saving, 6-bump, wafer-level package (WLP). Designed for use in portable consumer, medical, and
High Accuracy 8-Pin Instrumentation Amplifier AMP02
a FEATURES Low Offset Voltage: 100 V max Low Drift: 2 V/ C max Wide Gain Range 1 to 10,000 High Common-Mode Rejection: 115 db min High Bandwidth (G = 1000): 200 khz typ Gain Equation Accuracy: 0.5% max
A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier
A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier Kehul A. Shah 1, N.M.Devashrayee 2 1(Associative Prof., Department of Electronics and Communication,
ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!
ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors
Lecture 3 Switched-Capacitor Circuits Trevor Caldwell
Advanced Analog Circuits Lecture 3 Switched-Capacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 2-4pm) Reference Homework 2017-01-11 1 MOD1 & MOD2 ST 2, 3,
DAT175: Topics in Electronic System Design
DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable
ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8
ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 10.8 10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering
V CC OUT MAX9945 IN+ V EE
19-4398; Rev 1; 12/ 38V, Low-Noise, MOS-Input, General Description The operational amplifier features an excellent combination of low operating power and low input voltage noise. In addition, MOS inputs
High Gain Low Power Operational Amplifier Design and Compensation Techniques
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2007-02-14 High Gain Low Power Operational Amplifier Design and Compensation Techniques Lisha Li Brigham Young University - Provo
Micropower, Rail-to-Rail, 300kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP
EVALUATION KIT AVAILABLE MAX46 General Description The MAX46 op amp features a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for batterypowered applications such as handsets, tablets,
OBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0
a FEATURES Four High Performance VCAs in a Single Package.2% THD No External Trimming 12 db Gain Range.7 db Gain Matching (Unity Gain) Class A or AB Operation APPLICATIONS Remote, Automatic, or Computer
EFFICIENT DRIVER DESIGN FOR AMOLED DISPLAYS
EFFICIENT DRIVER DESIGN FOR AMOLED DISPLAYS CH. Ganesh and S. Satheesh Kumar Department of SENSE (VLSI Design), VIT University, Vellore India E-Mail: chokkakulaganesh@gmail.com ABSTRACT The conventional
Precision, High-Bandwidth Op Amp
EVALUATION KIT AVAILABLE MAX9622 General Description The MAX9622 op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device autocalibrates its input offset voltage
Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER
www.burr-brown.com/databook/.html Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER FEATURES LOW DISTORTION:.3% at khz LOW NOISE: nv/ Hz HIGH SLEW RATE: 25V/µs WIDE GAIN-BANDWIDTH: MHz UNITY-GAIN STABLE
THE TREND toward implementing systems with low
724 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 7, JULY 1995 Design of a 100-MHz 10-mW 3-V Sample-and-Hold Amplifier in Digital Bipolar Technology Behzad Razavi, Member, IEEE Abstract This paper
LM6164 LM6264 LM6364 High Speed Operational Amplifier
LM6164 LM6264 LM6364 High Speed Operational Amplifier General Description The LM6164 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300V per ms and 175 MHz GBW
6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers
6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication
High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection
a FEATURES High Common-Mode Rejection DC: 100 db typ 60 Hz: 100 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.001% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements
IN RECENT years, low-dropout linear regulators (LDOs) are
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 563 Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators
Instrumentation Amplifiers
ECE 480 Application Note Instrumentation Amplifiers A guide to instrumentation amplifiers and how to proper use the INA326 Zane Crawford 3-21-2014 Abstract This document aims to introduce the reader to
!"" Ratul Kr. Baruah Department of Electronics and Communication Engineering, Tezpur University, India
Ratul Kr. Baruah Department of Electronics and Communication Engineering, Tezpur University, ndia ratulkr@tezu.ernet.in ABSTRACT n this paper a CMOS operational amplifier is presented which operates at
EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp
19-227; Rev ; 9/1 EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp General Description The op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device
Low-Power Pipelined ADC Design for Wireless LANs
Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,
A high-speed CMOS current op amp for very low supply voltage operation
Downloaded from orbit.dtu.dk on: Mar 31, 2018 A high-speed CMOS current op amp for very low supply voltage operation Bruun, Erik Published in: Proceedings of the IEEE International Symposium on Circuits
Lecture 030 ECE4430 Review III (1/9/04) Page 030-1
Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material
A LOW DROPOUT VOLTAGE REGULATOR WITH ENHANCED TRANSCONDUCTANCE ERROR AMPLIFIER AND SMALL OUTPUT VOLTAGE VARIATIONS
ISSN 1313-7069 (print) ISSN 1313-3551 (online) Trakia Journal of Sciences, No 4, pp 441-448, 2014 Copyright 2014 Trakia University Available online at: http://www.uni-sz.bg doi:10.15547/tjs.2014.04.015
Low-output-impedance BiCMOS voltage buffer
Low-output-impedance BiCMOS voltage buffer Johan Bauwelinck, a) Wei Chen, Dieter Verhulst, Yves Martens, Peter Ossieur, Xing-Zhi Qiu, and Jan Vandewege Ghent University, INTEC/IMEC, Gent, 9000, Belgium