Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Size: px
Start display at page:

Download "Nonlinear Macromodeling of Amplifiers and Applications to Filter Design."

Transcription

1 ECEN 622 Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material

2 OP AMP MACROMODELS Systems containing a significant number of Op Amps can take a lot of time of simulation when Op Amps are described at the transistor level. For instance a 5 th order filter might involve 7 Op Amps and if each Op Amps contains say 2 to 5 transistors, the SPICE analysis of a circuit containing 60 to 75 Transistors can be too long and tricky in particular for time domain simulations. Therefore the use of a macromodel representing the Op Amp behavior reduces the simulation time and the complexity of the analysis. The simplicity of the analysis of Op Amps containing macromodels is because macromodels can be implemented using SPICE primitive components. Some examples of macromodels are discussed next ECEN 622(ESS) Analog and Mixed Signal Center TAMU

3 FUNDAMENTAL ON MACROMODELING USING ONLY PRIMITIVE SPICE COMPONENTS. Low Pass First Order Option 2 H LP k s p Option V in A o V o Vin Vo p k RC ECEN 622 (ESS) Analog3 and Mixed Signal Center TAMU 3 A ~ 0 k R p 9 R RC

4 Option 3 V R in V X R g m V X R C k gm R ; p RC 2. Higher Order Low Pass V o Note.- If you need to isolate the output use a final VCVS with a gain of one V in H LP Concept. First Order p K s s p 2 p V X 2 KV X Le us consider a second-order case: First Order p 2 V in R V X C 4 R 2 K V X C 2 V o p p2 K K R R C 2 C 2

5 5 2 o o 2 o LP3 s Q s K H L R Q LC 0 H ; LC K o 2 o LP3 o Resonator (one zero, two complex poles) 2 o o 2 z R s Q s s k H RC Q LC L R LC k o 2 o z in o o o in ECEN 622 (ESS) Analog and Mixed Signal Center TAMU

6 Active RC Filter Design with Nonlinear Opamp Macromodel Design a two stage Miller CMOS Op Amp in 0.35 μm and propose a macromodel containing up to the seventh-harmonic component Compare actual transistor model versus the proposed non-linear macromodel Use both macromodel and transistor level to design a LP filter with H(o) =0dB, f 3dB =5 MHz Result comparison 6

7 st order Active-RC LP filter ECEN 622(ESS) Analog and Mixed Signal Center TAMU 7

8 Filter transfer function with Ideal Opamp H LP, ideal () s R H(o) = 0dB 2 R R R 2 ( sr C) 2 = 0dB = 3.6 () (2) f 3dB =5 MHz R C 2 = 6.28*5M = 3.4Mrad (3) Choose R, R2 and C from equations () ~ (3). To minimize loading effect, R2 should be large enough. Here we choose R2 = 3.6kΩ, R = 0kΩ, and C = pf. 8

9 Filter transfer function with finite Opamp gain and GBW One pole approximation for Opamp Modeling: Av = GB/s.(it holds when GBW >> f 3dB and Av(0) >>) H LP, nonideal () s R2 s s R ( )( sr C) R GB GB 2 2 A two stage Miller Op amp is designed. GBW is chosen ~20 times the f 3dB to minimize the finite GBW effect; GBW = 00MHz is also easy to achieve in 0.35μm CMOS technology. 9

10 Non-Linear Model for a source-degenerated OTA ECEN 622(ESS) Analog and Mixed Signal Center TAMU

11 Linear Transistor Model: High frequency Zero Pole D Input capacitance G C gd D G C gs g m v gs R ds C db S connected to Bulk Linear relation S connected to Bulk Linear OTA model: I O- I O+ V in+ V in- I Bias

12 Non-Linear OTA model: Let: I I 2 V in+ V in- We can easily get: I DC Which can be expanded to: To determine Odd Harmonic effects for an ideal OTA!!

13 How to Extract the Coefficients: Generally if we have: We can extract the coefficients by differentiation, where: By Sweeping the input voltage and integrating the output current, we can these coefficients. a 2 is ideally zero. Getting the first 3 coefficients only is a valid approximation.

14 A source degenerated OTA as an example: OTA Output current of one branch versus input differential voltage. st derivative 2 nd derivative 3 rd derivative

15 Coefficients: a 0 = µa a =.69094mA/v a 2 =9.07µA/v2 a 3 = -.764mA/v3 The accuracy of these numbers depends on the number of points used in the DC sweep. By taking more points, even harmonics reduce to zero.

16 Macromodel used: (3) (2) (4) (). Non-linear transfer function. 2. non-dominant pole. 3. Feed-forward path leads to Right half plane zero. (C gd of the driver trans.) 4. Output Resistance and Load Capacitance.

17 DC sweep of Macromodel: Changes due to measurement accuracy and number of points

18 AC response comparison: Transistor level Macro-model

19 Two stage Miller Amplifier Design 9

20 Opamp Design parameters Power 3V st Stage PMOS(W/L) 30u/0.4u NMOS(W/L) 5u/0.4u 2 nd Stage PMOS(W/L) 20u/0.4u Miller Compensation NMOS(W/L) Cm Rm 60u/0.4u 800fF 400 Ω 20

21 OPAMP Frequency response DC Gain: 53 db, GBW: 86.6 MHz, phase margin: 69.7 deg. Dominant pole:54khz, Second pole: 97MHz 2

22 Output Spectrum of Open loop OPAMP mvpp KHz (THD= -49.2dB) 22

23 V a av a v a v a v a v a v a v out o d 2 d 3 d 4 d 5 d 6 d 7 d a ~a 7 can be extracted from PSS simulation results: HD HD 2 a = DC gain = 450 aa 2a dB a 2 = 2934 aa dB a 3 = 2.6e6 4a Similarly, we can obtain: a 4 = 6e7, a 5 = 5.6e, a 6 = e3, a 7 = 7e6 23

24 Opamp Macro model Modeled: input capacitance, two poles, one RHP zero, nonlinearity, finite output resistance, and capacitance Nonlinearity model should be placed before the poles to avoid poles multiplication 24

25 Nonlinearity Model uses mixer blocks to generate nonlinear terms model up to 7 th order non-linearity set each VCCS Gain as the nonlinear coefficients. set the gain for st VCCS = gm = 52uA/V, gain for 2 nd VCCS = gm2 = 2.85mA/V, and scale all the nonlinear coefficients derived above by a. 25

26 Opamp AC response: Transistor-level vs. Macromodel Macro-model mimic the transistor level very well at frequencies below 0MHz discrepancy at higher frequency due to the higher order poles and zeros not modeled in the Macromodel 26

27 Filter AC response: Transistor-level vs. Macromodel 27

28 Output Spectrum (0dBm KHz) Macromodel(THD=-63dB) Transistor Level (THD = -66.4dB) 28

29 Performance Comparison Table I. Open loop Opamp Performance Comparison Transistor Level Macro-model -3dB BW 54KHz 80KHz GBW 86.6MHz 90MHz DC Gain 53 db 5.3 db Phase Margin 69.7 degree 74.9 degree THD: KHz db db Table II. LPF Performance Comparison Transistor Level Macro-model BW of LPF 4.9MHz 4.86MHz DC Gain of LPF 9.95 db 0.9 db THD: KHz db -63dB 29

30 Observation THD of the LPF at 0dBm input is better than that of the open loop Opamp with a small input at -50dBm. This is because OPAMP gain is ~50 db, when configured as a LPF, OPAMP input is attenuated by the feedback loop better linearity. when keep increasing the input amplitude, the THD of the transistor-level degrades dramatically. This is because large swing activates more nonlinearity and even cause transistors operating out of saturation region; however, the THD of Macro-model doesn t reflect this because we didn t implement the limiter block. 30

31 Gm-C Filter Design with Nonlinear Opamp Macromodel Use a three current mirror Transconductance Amplifier. Compare actual transistor model versus the non-linear macromodel Use both macromodel and transistor level to design a LP filter with H(o) =0dB, f 3dB =5 MHz Result Comparison 3

32 st order Gm-C LP filter ECEN 607(ESS) Analog and Mixed Signal Center TAMU 32

33 Filter transfer function With Ideal OTA: H() s ideal g g m sc / g m2 m2 g H(o) = 0dB m g g f 3dB =5 MHz m 2 C m 2 = 0dB = 3.6 = 6.28*5M = 3.4Mrad Output resistance of gm should be >> /gm2 Choose C = 4pF, gm2 = 0.26mA/V, gm = 0.4mA/V 33

34 Three Current mirrors OTA Design 34

35 OTA Design parameters Power +.5V Input NMOS PMOS current mirror NMOS current mirror 4u/0.6u 2u/0.4u u/0.4u 35

36 AC simulation of Gm: Transistor Level gm = 0.4mA/V, which is our desired value its frequency response is good enough for a LPF with 5MHz cutoff frequency 36

37 OTA Output resistance: Transistor Level output resistance of the OTA >>/gm2 37

38 Gm-C LPF Output spectrum: Transistor level THD = -26dB for 0dBm input@khz 38

39 OTA Macro model Since the internal poles and zeros are at much higher frequency than 5MHz, only the important ones are included in the macro-model Nonlinearity model is the same as the Opamp in Active- RC filter 39

40 AC simulation of Gm: Macro-model 40

41 OTA Output resistance: Macro-model output resistance of the OTA >>/gm2 4

42 Gm-C LPF Frequency response 42

43 Gm-C LPF Output spectrum: Macromodel THD = -33dB for 0dBm input@khz 43

44 Hz Performance Comparison Table I. Gm-C Filter Performance Comparison Transistor Level Macro-model Gm 409uA/V 42uA/V BW of LPF 5.05MHz 5.05MHz DC Gain of LPF 0 db 0 db THD: KHz -26 db -33dB Table II. Comparison between Transistor Level Active-RC and Gm-C LPF Active RC Gm-C DC gain 9.95dB 0dB BW 4.9MHz 5.05MHz THD: KHz db -26 db Noise Level Power 0.83mW 0.72mW 44

45 Discussion With comparable DC gain, BW, Noise level and Power consumption, Gm-C filter has much worse linearity than Active RC because: Active RC: feedback configuration improves linearity; Gm-C filter: open loop operation, the gm stage sees large signal swing, thus linearization technique is needed, which adds power consumption. Active RC is preferable for low frequency applications if linearity is a key issue ECEN 622(ESS) Analog and Mixed Signal Center TAMU 45

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622(ESS) Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

James Lunsford HW2 2/7/2017 ECEN 607

James Lunsford HW2 2/7/2017 ECEN 607 James Lunsford HW2 2/7/2017 ECEN 607 Problem 1 Part A Figure 1: Negative Impedance Converter To find the input impedance of the above NIC, we use the following equations: V + Z N V O Z N = I in, V O kr

More information

ISSN:

ISSN: 468 Modeling and Design of a CMOS Low Drop-out (LDO) Voltage Regulator PRIYADARSHINI JAINAPUR 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore-560064,

More information

EE 501 Lab 4 Design of two stage op amp with miller compensation

EE 501 Lab 4 Design of two stage op amp with miller compensation EE 501 Lab 4 Design of two stage op amp with miller compensation Objectives: 1. Design a two stage op amp 2. Investigate how to miller compensate a two-stage operational amplifier. Tasks: 1. Build a two-stage

More information

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN OPAMP DESIGN AND SIMULATION Vishal Saxena OPAMP DESIGN PROJECT R 2 v out v in /2 R 1 C L v in v out V CM R L V CM C L V CM -v in /2 R 1 C L (a) (b) R 2 ECE415/EO

More information

An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application in Active-RC Filters

An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application in Active-RC Filters Circuits and Systems, 2011, 2, 183-189 doi:10.4236/cs.2011.23026 Published Online July 2011 (http://www.scirp.org/journal/cs) An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

A Novel Continuous-Time Common-Mode Feedback for Low-Voltage Switched-OPAMP

A Novel Continuous-Time Common-Mode Feedback for Low-Voltage Switched-OPAMP 10.4 A Novel Continuous-Time Common-Mode Feedback for Low-oltage Switched-OPAMP M. Ali-Bakhshian Electrical Engineering Dept. Sharif University of Tech. Azadi Ave., Tehran, IRAN alibakhshian@ee.sharif.edu

More information

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA)

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA) Circuits and Systems, 2013, 4, 11-15 http://dx.doi.org/10.4236/cs.2013.41003 Published Online January 2013 (http://www.scirp.org/journal/cs) A New Design Technique of CMOS Current Feed Back Operational

More information

MICROELECTRONIC CIRCUIT DESIGN Third Edition

MICROELECTRONIC CIRCUIT DESIGN Third Edition MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113

More information

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1 Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog

More information

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB Department of Electronic ELEC 5808 (ELG 6388) Signal Processing Electronics Final Examination Dec 14th, 2010 5:30PM - 7:30PM R. Mason answer all questions one 8.5 x 11 crib sheets allowed 1. (5 points)

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

More information

ECEN 474/704 Lab 7: Operational Transconductance Amplifiers

ECEN 474/704 Lab 7: Operational Transconductance Amplifiers ECEN 474/704 Lab 7: Operational Transconductance Amplifiers Objective Design, simulate and layout an operational transconductance amplifier. Introduction The operational transconductance amplifier (OTA)

More information

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Prema Kumar. G Shravan Kudikala Casest, School Of Physics Casest, School Of Physics University Of Hyderabad

More information

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 20, Number 4, 2017, 301 312 A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 Low power OTA 1 Two-Stage, Miller Op Amp Operating in Weak Inversion Low frequency response: gm1 gm6 Av 0 g g g g A v 0 ds2 ds4 ds6 ds7 I D m, ds D nvt g g I n GB and SR: GB 1 1 n 1 2 4 6 6 7 g 2 2 m1

More information

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 93 CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 4.1 INTRODUCTION Ultra Wide Band (UWB) system is capable of transmitting data over a wide spectrum of frequency bands with low power and high data

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

Design of a low voltage,low drop-out (LDO) voltage cmos regulator

Design of a low voltage,low drop-out (LDO) voltage cmos regulator Design of a low,low drop-out (LDO) cmos regulator Chaithra T S Ashwini Abstract- In this paper a low, low drop-out (LDO) regulator design procedure is proposed and implemented using 0.25 micron CMOS process.

More information

Design Of Two Stage CMOS Op-Amp With Low Power And High Slew Rate.

Design Of Two Stage CMOS Op-Amp With Low Power And High Slew Rate. Design Of Two Stage CMOS Op-Amp With Low Power And High Slew Rate. P.K.SINHA, Assistant Professor, Department of ECE, MAIT, Delhi ABHISHEK VIKRAM, Research Intern, Robospecies Technologies Pvt. Ltd.,Noida

More information

G m /I D based Three stage Operational Amplifier Design

G m /I D based Three stage Operational Amplifier Design G m /I D based Three stage Operational Amplifier Design Rishabh Shukla SVNIT, Surat shuklarishabh31081988@gmail.com Abstract A nested Gm-C compensated three stage Operational Amplifier is reviewed using

More information

MICROELECTRONIC CIRCUIT DESIGN Fifth Edition

MICROELECTRONIC CIRCUIT DESIGN Fifth Edition MICROELECTRONIC CIRCUIT DESIGN Fifth Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 07/05/15 Chapter 1 1.5 1.52 years, 5.06 years 1.6 1.95 years, 6.52 years 1.9 402

More information

Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design

Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design RESEARCH ARTICLE OPEN ACCESS Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design Ankush S. Patharkar*, Dr. Shirish M. Deshmukh** *(Department of Electronics and Telecommunication,

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

ETIN25 Analogue IC Design. Laboratory Manual Lab 2

ETIN25 Analogue IC Design. Laboratory Manual Lab 2 Department of Electrical and Information Technology LTH ETIN25 Analogue IC Design Laboratory Manual Lab 2 Jonas Lindstrand Martin Liliebladh Markus Törmänen September 2011 Laboratory 2: Design and Simulation

More information

Solid State Devices & Circuits. 18. Advanced Techniques

Solid State Devices & Circuits. 18. Advanced Techniques ECE 442 Solid State Devices & Circuits 18. Advanced Techniques Jose E. Schutt-Aine Electrical l&c Computer Engineering i University of Illinois jschutt@emlab.uiuc.edu 1 Darlington Configuration - Popular

More information

ECE626 Project Switched Capacitor Filter Design

ECE626 Project Switched Capacitor Filter Design ECE626 Project Switched Capacitor Filter Design Hari Prasath Venkatram Contents I Introduction 2 II Choice of Topology 2 III Poles and Zeros 2 III-ABilinear Transform......................................

More information

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Sadeque Reza Khan Department of Electronic and Communication Engineering, National

More information

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption IEEE Transactions on circuits and systems- Vol 59 No:3 March 2012 Abstract A class AB audio amplifier is used to drive

More information

Class-AB Low-Voltage CMOS Unity-Gain Buffers

Class-AB Low-Voltage CMOS Unity-Gain Buffers Class-AB Low-Voltage CMOS Unity-Gain Buffers Mariano Jimenez, Antonio Torralba, Ramón G. Carvajal and J. Ramírez-Angulo Abstract Class-AB circuits, which are able to deal with currents several orders of

More information

ECEN 325 Lab 5: Operational Amplifiers Part III

ECEN 325 Lab 5: Operational Amplifiers Part III ECEN Lab : Operational Amplifiers Part III Objectives The purpose of the lab is to study some of the opamp configurations commonly found in practical applications and also investigate the non-idealities

More information

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design and Performance analysis of Low power CMOS Op-Amp Anand Kumar Singh *1, Anuradha 2, Dr. Vijay Nath 3 *1,2 Department of

More information

Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26

Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26 Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26 In the following problems, if reference to a semiconductor process is needed, assume processes with the following characteristics:

More information

Combination Notch and Bandpass Filter

Combination Notch and Bandpass Filter Combination Notch and Bandpass Filter Clever filter design for graphic equalizer can perform both notch and bandpass functions Gain or attenuation is controlled by a potentiometer for specific frequency

More information

Atypical op amp consists of a differential input stage,

Atypical op amp consists of a differential input stage, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents

More information

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN 1.Introduction: CMOS Transimpedance Amplifier Avalanche photodiodes (APDs) are highly sensitive,

More information

Topology Selection: Input

Topology Selection: Input Project #2: Design of an Operational Amplifier By: Adrian Ildefonso Nedeljko Karaulac I have neither given nor received any unauthorized assistance on this project. Process: Baker s 50nm CAD Tool: Cadence

More information

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design

More information

Design and Simulation of Low Dropout Regulator

Design and Simulation of Low Dropout Regulator Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

0.85V. 2. vs. I W / L

0.85V. 2. vs. I W / L EE501 Lab3 Exploring Transistor Characteristics and Design Common-Source Amplifiers Lab report due on September 22, 2016 Objectives: 1. Be familiar with characteristics of MOSFET such as gain, speed, power,

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

Multimode 2.4 GHz Front-End with Tunable g m -C Filter. Group 4: Nick Collins Trevor Hunter Joe Parent EECS 522 Winter 2010

Multimode 2.4 GHz Front-End with Tunable g m -C Filter. Group 4: Nick Collins Trevor Hunter Joe Parent EECS 522 Winter 2010 Multimode 2.4 GHz Front-End with Tunable g m -C Filter Group 4: Nick Collins Trevor Hunter Joe Parent EECS 522 Winter 2010 Overview Introduction Complete System LNA Mixer Gm-C filter Conclusion Introduction

More information

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier Objective Design, simulate and test a two-stage operational amplifier Introduction Operational amplifiers (opamp) are essential components of

More information

Basic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair,

Basic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair, Basic Circuits Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair, CCS - Basic Circuits P. Fischer, ZITI, Uni Heidelberg, Seite 1 Reminder: Effect of Transistor Sizes Very crude classification:

More information

d. Can you find intrinsic gain more easily by examining the equation for current? Explain.

d. Can you find intrinsic gain more easily by examining the equation for current? Explain. EECS140 Final Spring 2017 Name SID 1. [8] In a vacuum tube, the plate (or anode) current is a function of the plate voltage (output) and the grid voltage (input). I P = k(v P + µv G ) 3/2 where µ is a

More information

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA Analog Integrated Circuits and Signal Processing, 43, 127 136, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA IVAN

More information

A new class AB folded-cascode operational amplifier

A new class AB folded-cascode operational amplifier A new class AB folded-cascode operational amplifier Mohammad Yavari a) Integrated Circuits Design Laboratory, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran a) myavari@aut.ac.ir

More information

Design of High-Speed Op-Amps for Signal Processing

Design of High-Speed Op-Amps for Signal Processing Design of High-Speed Op-Amps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 83725-2075 jbaker@ieee.org Abstract - As CMOS

More information

Design of Low Voltage Low Power CMOS OP-AMP

Design of Low Voltage Low Power CMOS OP-AMP RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OP-AMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral

More information

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits Microelectronic Circuits II Ch 0 : Operational-Amplifier Circuits 0. The Two-stage CMOS Op Amp 0.2 The Folded-Cascode CMOS Op Amp CNU EE 0.- Operational-Amplifier Introduction - Analog ICs : operational

More information

Design of an Amplifier for Sensor Interfaces

Design of an Amplifier for Sensor Interfaces Design of an Amplifier for Sensor Interfaces Anurag Mangla Electrical and Electronics Engineering anurag.mangla@epfl.ch Supervised by Dr. Marc Pastre Prof. Maher Kayal Outline Introduction Need for high

More information

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating Analogue Integration AISC11 High Voltage and Temperature Auto Zero Op-Amp Cell Rev.1 12-1-5 Features High Voltage Operation: 4.5-3 V Precision, Auto-Zeroed Input Vos High Temperature Operation Low Quiescent

More information

Voltage Feedback Op Amp (VF-OpAmp)

Voltage Feedback Op Amp (VF-OpAmp) Data Sheet Voltage Feedback Op Amp (VF-OpAmp) Features 55 db dc gain 30 ma current drive Less than 1 V head/floor room 300 V/µs slew rate Capacitive load stable 40 kω input impedance 300 MHz unity gain

More information

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers ECE 442 Solid State Devices & Circuits 15. Differential Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 442 Jose Schutt Aine 1 Background

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 216 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

Inter-Ing INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, November 2007.

Inter-Ing INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, November 2007. Inter-Ing 2007 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007. A FULLY BALANCED, CCII-BASED TRANSCONDUCTANCE AMPLIFIER AND ITS APPLICATION

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

IOWA STATE UNIVERSITY. EE501 Project. Fully Differential Multi-Stage Op-Amp Design. Ryan Boesch 11/12/2008

IOWA STATE UNIVERSITY. EE501 Project. Fully Differential Multi-Stage Op-Amp Design. Ryan Boesch 11/12/2008 IOWA STATE UNIVERSITY EE501 Project Fully Differential Multi-Stage Op-Amp Design Ryan Boesch 11/12/2008 This report documents the design, simulation, layout, and post-layout simulation of a fully differential

More information

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei ABSTRACT A novel class-ab architecture for single-stage operational amplifiers is presented. The structure

More information

Sensors & Transducers Published by IFSA Publishing, S. L.,

Sensors & Transducers Published by IFSA Publishing, S. L., Sensors & Transducers Published by IFSA Publishing, S. L., 208 http://www.sensorsportal.com Fully Differential Operation Amplifier Using Self Cascode MOSFET Structure for High Slew Rate Applications Kalpraj

More information

ECEN 607 (ESS) Texas A&M University. Edgar Sánchez-Sinencio TI J. Kilby Chair Professor

ECEN 607 (ESS) Texas A&M University. Edgar Sánchez-Sinencio TI J. Kilby Chair Professor 1 ECEN 607 (ESS) Texas A&M University Edgar Sánchez-Sinencio TI J. Kilby Chair Professor Next we review the conventional Op Amp Design frequency response compensation techniques and also we introduced

More information

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS A Unity Gain Fully-Differential 0bit and 40MSps Sample-And-Hold Amplifier in 0.8μm CMOS Sanaz Haddadian, and Rahele Hedayati Abstract A 0bit, 40 MSps, sample and hold, implemented in 0.8-μm CMOS technology

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Design and Layout of Two Stage High Bandwidth Operational Amplifier

Design and Layout of Two Stage High Bandwidth Operational Amplifier Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard

More information

Homework 2 Solutions. Perform.op analysis, the small-signal parameters of M1 and M2 are shown below.

Homework 2 Solutions. Perform.op analysis, the small-signal parameters of M1 and M2 are shown below. Problem 1 Homework 2 Solutions 1) Circuit schematic Perform.op analysis, the small-signal parameters of M1 and M2 are shown below. Small-signal parameters of M1 gds = 9.723u gm = 234.5u region = 2 vds

More information

AVoltage Controlled Oscillator (VCO) was designed and

AVoltage Controlled Oscillator (VCO) was designed and 1 EECE 457 VCO Design Project Jason Khuu, Erik Wu Abstract This paper details the design and simulation of a Voltage Controlled Oscillator using a 0.13µm process. The final VCO design meets all specifications.

More information

A 100MHz CMOS wideband IF amplifier

A 100MHz CMOS wideband IF amplifier A 100MHz CMOS wideband IF amplifier Sjöland, Henrik; Mattisson, Sven Published in: IEEE Journal of Solid-State Circuits DOI: 10.1109/4.663569 1998 Link to publication Citation for published version (APA):

More information

ECEN474: (Analog) VLSI Circuit Design Fall 2011

ECEN474: (Analog) VLSI Circuit Design Fall 2011 ECEN474: (Analog) VLSI Circuit Design Fall 20 Lecture 22: Output Stages Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M University Agenda Output Stages Source Follower (Class A) Push-Pull (Class

More information

350MHz, Ultra-Low-Noise Op Amps

350MHz, Ultra-Low-Noise Op Amps 9-442; Rev ; /95 EVALUATION KIT AVAILABLE 35MHz, Ultra-Low-Noise Op Amps General Description The / op amps combine high-speed performance with ultra-low-noise performance. The is compensated for closed-loop

More information

Electronics basics for MEMS and Microsensors course

Electronics basics for MEMS and Microsensors course Electronics basics for course, a.a. 2017/2018, M.Sc. in Electronics Engineering Transfer function 2 X(s) T(s) Y(s) T S = Y s X(s) The transfer function of a linear time-invariant (LTI) system is the function

More information

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017 AN-1106 Custom Instrumentation Author: Craig Cary Date: January 16, 2017 Abstract This application note describes some of the fine points of designing an instrumentation amplifier with op-amps. We will

More information

A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20

A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20 A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20 Joseph Adut,Chaitanya Krishna Chava, José Silva-Martínez March 27, 2002 Texas A&M University Analog

More information

Operational Amplifier with Two-Stage Gain-Boost

Operational Amplifier with Two-Stage Gain-Boost Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 482 Operational Amplifier with Two-Stage Gain-Boost FRANZ SCHLÖGL

More information

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1 ISSN 2277-2685 IJESR/June 2014/ Vol-4/Issue-6/319-323 Himanshu Shekhar et al./ International Journal of Engineering & Science Research DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL

More information

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Maryam Borhani, Farhad Razaghian Abstract A design for a rail-to-rail input and output operational amplifier is introduced.

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

Lecture 200 Cascode Op Amps - II (2/18/02) Page 200-1

Lecture 200 Cascode Op Amps - II (2/18/02) Page 200-1 Lecture 200 Cascode Op Amps II (2/18/02) Page 2001 LECTURE 200 CASCODE OP AMPS II (READING: GHLM 443453, AH 293309) Objective The objective of this presentation is: 1.) Develop cascode op amp architectures

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

Lecture 2: Non-Ideal Amps and Op-Amps

Lecture 2: Non-Ideal Amps and Op-Amps Lecture 2: Non-Ideal Amps and Op-Amps Prof. Ali M. Niknejad Department of EECS University of California, Berkeley Practical Op-Amps Linear Imperfections: Finite open-loop gain (A 0 < ) Finite input resistance

More information

Design of Reconfigurable Baseband Filter. Xin Jin

Design of Reconfigurable Baseband Filter. Xin Jin Design of Reconfigurable Baseband Filter by Xin Jin A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn,

More information

A Wide Tuning Range Gm-C Continuous-Time Analog Filter

A Wide Tuning Range Gm-C Continuous-Time Analog Filter A Wide Tuning Range Gm-C Continuous-Time Analog Filter Prashanth Kannepally Dept. of Electronics and Communication Engineering SNIST Hyderabad, India 685project6801@gmail.com Abstract A Wide Tuning Range

More information

Amplifiers Frequency Response Examples

Amplifiers Frequency Response Examples ECE 5/45 Analog IC Design We will use the following MOSFET parameters for hand-calculations and the µm CMOS models for corresponding simulations. Table : Long-channel MOSFET parameters. Parameter NMOS

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

Low Distortion Design 3

Low Distortion Design 3 Low Distortion Design 3 TIPL 1323 TI Precision Labs Op Amps Presented by Collin Wells Prepared by John Caldwell Prerequisites: Noise 1 3 (TIPL1311 TIPL1313) Output Stage Topologies Most op amps use a Class-AB

More information

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2 6 V, MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2 FEATURES Lower power at high voltage: 29 μa per amplifier typical Low input bias current: pa maximum Wide bandwidth:.2 MHz typical

More information

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V power-efficient rail-to-rail Op-Amp from a lower total supply voltage.

More information

EE 501 Lab 11 Common mode feedback (CMFB) circuit

EE 501 Lab 11 Common mode feedback (CMFB) circuit EE 501 Lab 11 Common mode feedback (CMFB) circuit Objectives: Report due: November 17, 2016 1. Understand why CMFB circuits are needed and how they work to ensure robust operation. 2. Understand the advantages

More information

Design and Analysis of Two-Stage Op-Amp in 0.25µm CMOS Technology

Design and Analysis of Two-Stage Op-Amp in 0.25µm CMOS Technology Design and Analysis of Two-Stage Op-Amp in 0.25µm CMOS Technology 1 SagarChetani 1, JagveerVerma 2 Department of Electronics and Tele-communication Engineering, Choukasey Engineering College, Bilaspur

More information

Microelectronics Part 2: Basic analog CMOS circuits

Microelectronics Part 2: Basic analog CMOS circuits GBM830 Dispositifs Médicaux Intelligents Microelectronics Part : Basic analog CMOS circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim!! http://www.cours.polymtl.ca/gbm830/! mohamad.sawan@polymtl.ca!

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

TWO AND ONE STAGES OTA

TWO AND ONE STAGES OTA TWO AND ONE STAGES OTA F. Maloberti Department of Electronics Integrated Microsystem Group University of Pavia, 7100 Pavia, Italy franco@ele.unipv.it tel. +39-38-50505; fax. +39-038-505677 474 EE Department

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information