Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)"

Transcription

1 Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs and FETs is given below. Junction Field Effect Transistors (JFET) The junction field effect transistor or JFET is one of the simplest transistors from the structural point of view. It is a voltage controlled semiconductor device. In this, the current is carried by only one type of carriers. So, it is a unipolar device. 1

2 JFET consists of a doped Si or GaAs bar. There are ohmic contacts, the two ends of the bar and semiconductor junction on its two sides. If the semiconductor bar is n-type, the two sides of the bar is heavily doped with p - type impurities and this is known as n - channel JFET. On the other hand if the semiconductor bar is p- type, the two sides of the bar is heavily doped with n - type impurities and this is known as p- channel JFET. When a voltage is applied between the two ends, a current which is carried by the majority carriers of the bar flows along the length of the bar. There are several terminals in JFET. The terminal through which the majority carrier enter the bar and the terminal through which they leave are known as source (s) and drain (D) respectively. The heavily doped region on the two sides is known as the gate (G). In junction field effect transistor, the junction is a reverse biased. As a result, depletion regions form, which extend to the bar. By changing gate to source voltage, the depletion width can be controlled. So, the effective cross section area decreased with increasing reverse bias. So, the drain current is a function of the gate to the source voltage. The circuit symbol for the JFETs are shown below for both N-channel and P- channel JFET. Operation of N-channel JFET: The circuit connection for understanding the operation of JFET is shown below. 2

3 If an n-channel JFET is biased as explained above and the gate to source voltage is kept zero, due to the positive drain to source voltage few electrons which are available for conduction in the n-type material will start flowing from the narrow passage (channel) from source to drain. This current is called as drain current. As the channel has some finite resistance it will cause some voltage drop across the channel. Hence the depletion region of the p-n junction starts increasing and penetrates more into the n-type material as it is lightly doped. Due to this the width of the channel available for conduction is reduced. The penetration of the depletion region into the n-type region depends on the reverse bias voltage. Maximum drain current I DSS will flow through the device when the channel is widest i.e. when V GS is zero. The corresponding characteristic curve is shown below. Operation with negative gate to source voltage: As a negative voltage is applied to the gate to source p-n junction the depletion region increases and penetration of the depletion region into the n-type channel further increases. If the negative gate to source voltage is further increased the depletion region spreads more and more inside the n-type bar. Due to this less and less number of charge carries (electrons) can pass through the channel and the drain current reduces. Hence, with increase in negative gate to source voltage drain current reduces. At a certain value of this voltage the depletion region from both the ends will increase and touch each other and the drain current will become zero. This gate to source voltage at which drain current is cutoff is called as V GS(OFF). As seen the V GS controls I D. Hence, JFET is a voltage controlled device. The relationship between I D and V GS is given by Shockley s equation. Where, V P is the pinch off voltage which is the value of drain to source V DS at which drain current reaches its constant saturation value. Any further increase in V DS does not affect I D. 3

4 The overall output characteristic curves for different values of V GS are shown below. It has three regions of operation: ohmic region, saturation region and avalanche region as shown. Ohmic region: Here the drain to source voltage is small and drain current in nearly proportional to the drain to source voltage. When a positive drain to source voltage is applied, this voltage increases from zero to a small value, the depletion region width remain very small and under this condition the semi conductor bar behaves just like a resistor. So, drain current increases almost linearly with drain to source voltage. The value of resistance is given by where r 0 is the resistance at V GS =0V. Saturation region: Here the drain current is almost constant and it is not dependent on the drain to source voltage actually. When the drain to source voltage continuous to increase the channel resistance increases and at some point, the depletion regions meet near the drain to pinch off the channel. Beyond that pinch off voltage, the drain, current attains saturation. Breakdown region: Here the drain current increases rapidly with a small increase of the drain to source voltage. Actually for large value of drain to source voltage, a breakdown of the gate junction takes place which results a sharp increase of the drain current. Transfer characteristics: The graphical characteristics plot of the saturation drain current against the gate to source voltage is known as the transfer characteristics of JFET. It can be obtained from output characteristics very easily. The transfer characteristics of an n- channel JFET are shown below. 4

5 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) MOSFET is a four terminal device. The drain and source terminals are connected to the heavily doped regions. The gate terminal is connected top on the oxide layer and the substrate or body terminal is connected to the intrinsic semiconductor. MOSFETs are enhancement type or depletion type MOSFETs. In enhancement mode, these are normally off and turned on by applying gate voltage. The opposite phenomenon happens in depletion type MOSFETs. Two basic types of MOSFETs are N-channel and P-channel MOSFETs. In n channel MOSFET is current is due to the flow of electrons in inversion layer and in p channel current is due to the flow of holes. The construction and symbols of enhancement type MOSFETs are shown below. 5

6 Principle of operation: The metal of the gate terminal and the substrate contact act like parallel plates and the oxide layer acts as insulator, thus forming a MOS capacitor. The semiconductor surface at below the oxide layer and between the drain and source terminal can be inverted from p-type to n-type by applying a positive or negative gate voltages respectively. When we apply positive gate voltage the holes present beneath the oxide layer experience repulsive force and the holes are pushed downward with the substrate. The depletion region is populated by the bound negative charges, which are associated with the acceptor atoms. The positive voltage also attracts electrons from the n+ source and drain regions in to the channel. The electron reach channel is formed. Now, if a voltage is applied between the source and the drain, current flows freely between the source and drain gate voltage controls the electrons concentration the channel. Instead of positive if apply negative voltage a hole channel will be formed beneath the oxide layer. Now, the controlling of source to gate voltage is responsible for the conduction of current between source and the drain. If the gate voltage exceeds a given value, called the threshold voltage, only then the conduction begins. The output characteristic curves and the transfer characteristics of a n-channel enhancement MOSFET are shown below. Depletion MOSFET: The construction and symbol of Depletion type MOSFETs are shown below. These devices are are normally on and turned off by applying gate voltage. 6

7 The corresponding output characteristic curves and transfer curves are also shown below. The only difference from enhancement type is that, this device can work in both depletion mode (V GS < 0V) as well as in enhancement mode (V GS > 0V). Differences between JFETs and MOSFETs Both JFETs and MOSFETs are unipolar devices which work on the principle of controlling output current through input voltage. The table below compares the two types of FETs. JFETs Depletion mode only MOSFETs D-MOSFETs both Depletion and Enhancement mode High input resistance (10 9 Ω) Very High input resistance (10 13 Ω) High drain resistance Low drain resistance (100 kω - 1MΩ) (1 Ω - 50 kω ) High Gate leakage current (100 μa - 10 Negligible Gate leakage current (100 na - na) 10 pa) Slightly more complex than MOSFET to Easier to construct and used more widely construct 7

8 Biasing MOSFETs One of the most widely used configurations of MOSFETs is as amplifiers. In order to function as a linear amplifier, the device has to be biased by an external DC voltage which ensures that it operates in the saturation region for the entire input signal swing (AC). There are two methods of biasing depletion MOSFETs: Self Bias and Voltage Divider bias. The latter one is more suited since it is more stable and experiences little drift in Q-point with variations in temperature and process. The examples below detail the design and usage of both biasing techniques for Depletion MOSFETs. 8

9 9

10 Biasing Enhancement MOSFETs: There are two methods of biasing Enhancement MOSFETs: feedback Bias and Voltage Divider bias. The latter one is more suited since it is more stable and experiences little drift in Q-point with variations in temperature and process. The examples below detail the design and usage of both biasing techniques. 10

11 11

12 12

13 13

14 14

15 FET Applications The JFETs are used in a variety of applications in electronics; some of them are listed below. Amplifier: Noise is an undesirable disturbance which interferes with the signals information - greater the noise less the information. Energy electronics device cause some amount of noise. If FET s is used at the front end, we get less amount of amplified noise at the output. Now, it has very high input impedance. So, it can be used in high input impedance amplifier. Buffer amplifier should have very high input impedance and low output impedance. Because of high i / p impedance and low output impedance, FET acts as great buffer amplifier, the common drain mode can be used in this purpose. Analog Switch: JFET may be used as an on / off switch controlling electrical power to load. JFET s are normally ON devices. They are normally saturated devices. When a reverse bias is applied between gate and source, the depletion regions of that junction expand and pinching off the channel through which current flowing takes place. If the channel is pinched the current does not flow the device will be in switched off condition. By this process junction field effect transistor can be used as switches. 15

16 Multiplexers: An analog multiplexer, a circuit that steers one of the input signals to the output line, is shown in figure below. In this circuit each JFET acts as a single-pole single-throw switch. When the control signals (input 1, input 2,... input n) are more negative than V GS(0FF) all input signals are blocked. By making any control voltage equal to zero, one of the inputs can be transmitted to the output. For instance, when input 1 is zero, the signal obtained at the output will be V in1. Similarly when input 2 is zero, the signal obtained at the output will be V in2 and so on. Normally, only one of the control signals is zero. Current Limiters: JFET current limiting circuit is shown in figure below. Almost all the supply voltage therefore appears across the load. When the load current tries to increase to an excessive level (may be due to short-circuit or any other reason), the excessive load current forces the JFET into saturation region, where it limits the current to I DSS. The JFET now acts as a current source and prevents excessive load current. Voltage-Variable Resistors (VVRs): FET is a device that is usually operated in the constant-current portion of its output characteristics. But if it is operated on the region prior to pinch-off (that is where V DS is small, say below 100 mv), it will behave as a voltage-variable resistor (VVR). It is due to the fact that in this region drain-to-source resistance R DS can be controlled by varying the bias voltage V GS. As seen in the figure below, The slope of the curve for V GS =0V is the highest, while it is lowest for V GS =-3V. Since slope (ΔI/ΔV) is the inverse of resistance (r 0 =ΔV/ΔI) the resistance is lowest at V GS =0V and highest at V GS =-3V. 16

17 Phase Shift Oscillator: The circuit below shows the amplifier and feedback network configuration for a RC phase shift oscillator. The circuit consists of a common source FET amplifier followed by a three section R-C phase shift network. The amplifier stage is self-biased with a capacitor bypassed source resistor R S and a drain bias resistance R D. The output of the last section is supplied back to the gate. If the loading of the phase-shift network on the amplifier can be assumed to be negligible, a phase shift of 180 between the amplified output voltage V o and the input voltage V in at the gate is produced by the amplifier itself. The three-section R-C phase shift network produces an additional phase shift, which is a function of frequency and equals 180 at some frequency of operation. At this frequency the total phase shift from the gate around the circuit and back to gate will be exactly zero. This particular frequency will be the one at which the circuit will oscillate provided that the magnitude of the amplification is sufficiently large. CMOS Devices Complementary MOS, or CMOS, circuits contain both n-channel and p-channel MOSFETs. The figure below shows a simplified cross section of a CMOS inverter. In this process, a separate p-well region is formed within the starting n-substrate. The n- 17

18 channel device is fabricated in the p-well region and the p-channel device is fabricated in n-substrate. Although other approaches, such as an n-well in a p-substrate, are also used to fabricate CMOS circuits, the important point is that the processing is more complicated for CMOS circuits than for NMOS circuits. However, the advantages of CMOS digital logic circuits over NMOS circuits justify their use. The circuit configuration is also shown below. When the input is LOW, only PMOS is ON, and output is HIGH. Next, when input is HIGH, only NMOS is ON, and the output is LOW. Thus we have a inverting logic, which we call as NOT gate in digital circuits. Integrated Circuit(IC) Multivibrators. Astable Multivibrator: The 555 timer IC can be used in astable mode to produce a very stable Oscillator circuit for generating highly accurate free running waveforms whose output frequency can be adjusted by means of an externally connected RC tank circuit consisting of just two resistors and a capacitor. The circuit diagram is shown below along with the relevant waveforms. In the 555 Oscillator circuit, pin 2 and pin 6 are connected together allowing the circuit to re-trigger itself on each and every cycle allowing it to operate as a free running oscillator. During each cycle capacitor, C charges up through both timing resistors, R 1 and R 2 but discharges itself only through resistor, R 2 as the other side of R 2 is connected to the discharge terminal, pin 7. Then the capacitor charges up to 2/3V cc (the upper comparator limit) which is determined by the 0.69(R 1 +R 2 )C combination and discharges itself down to 1/3V cc (the lower comparator limit) determined by the 0.69(R 2 C) 18

19 combination. This results in an output waveform whose voltage level is approximately equal to V cc V and whose output ON and OFF time periods are determined by the capacitor and resistors combinations. The individual times required to complete one charge and discharge cycle of the output is therefore given as: t ON =0.69(R 1 +R 2 )C and t OFF =0.69(R 2 C) The duration of one full timing cycle is therefore equal to the sum of the two individual times that the capacitor charges and discharges added together and is given as: T = t ON + t OFF = 0.69(R 1 +2R 2 )C Monostable Multivibrator: These have only ONE stable state and produce a single output pulse when it is triggered externally. Monostable multivibrators only return back to their first original and stable state after a period of time determined by the time constant of the RC coupled circuit. The circuit configuration is shown below with relevant waveforms. When a negative pulse is applied to the trigger input (pin 2) of the Monostable configured 555 Timer oscillator, the lower comparator, detects this input and sets the state of the flip-flop, changing the output from a LOW state to a HIGH state. This 19

20 action in turn turns OFF the discharge transistor connected to pin 7, thereby removing the short circuit across the external timing capacitor (C). This action allows the timing capacitor to start to charge up through resistor(r) until the voltage across the capacitor reaches the threshold (pin 6) voltage of 2/3Vcc set up by the internal voltage divider network. At this point the comparators output goes HIGH and resets the flip-flop back to its original state which in turn turns ON the transistor and discharges the capacitor to ground through pin 7. This causes the output to change its state back to the original stable LOW value awaiting another trigger pulse to start the timing process over again. Then as before, the Monostable Multivibrator has only ONE stable state. The Monostable 555 Timer circuit triggers on a negative-going pulse applied to pin 2 and this trigger pulse must be much shorter than the output pulse width allowing time for the timing capacitor to charge and then discharge fully. Once triggered, the 555 Monostable will remain in this HIGH unstable output state until the time period set up by the RC network has elapsed. The amount of time that the output voltage remains HIGH or at a logic 1 level, is given by the equation T = 1.1 RC. Introduction to Operational Amplifier Operational amplifiers are linear devices that have all the properties required for nearly ideal DC amplification and are therefore used extensively in signal conditioning, filtering or to perform mathematical operations such as add, subtract, integration and differentiation. An Operational Amplifier, or op-amp for short, is fundamentally a voltage amplifying device designed to be used with external feedback components such as resistors and capacitors between its output and input terminals. These feedback components determine the resulting function or operation of the amplifier and by virtue of the different feedback configurations whether resistive, capacitive or both, the amplifier can perform a variety of different operations, giving rise to its name of Operational Amplifier. Equivalent Circuit of a practical Operational Amplifier: The figure below shows the equivalent circuit of practical opamp. Equivalent Circuit of an Ideal Operational Amplifier: The figure below shows the equivalent circuit of an ideal opamp. 20

21 Comparison between ideal and practical opamp: The table below summarizes the important comparisons between ideal and practical opamp. Parameter Ideal Practical (IC741) Bandwidth 1 MHz Slew Rate 0.5 V/μs Open-loop gain 200 V/mV CMRR 90 db PSRR 96 db Input Impedance 2 MΩ Output Impedance Ω Settling time μs Input Offset Voltage 0 2 mv 21

22 22

23 Opamp Applications Peak Detector: The peak detector is a circuit that "remembers" the peak value of a signal. The circuit diagram is shown below. When a positive voltage is fed to the non-inverting input after the capacitor has been momentarily shorted (reset), the output voltage of the op-amp forward biases the diode and charges up the capacitor. This charging last until the inverting and noninverting inputs are at the same voltage, which is equal to the input voltage. When the non-inverting input voltage exceeds the voltage at the inverting input, which is also the voltage across the capacitor, the capacitor will charge up to the new peak value. Consequently, the capacitor voltage will always be equal to the greatest positive voltage applied to the non-inverting input. Once charged, the time that the peak detector "remembers" this peak value is typically several minutes and depends on the impedance of the load that is connected to the circuit. Consequently, the capacitor will slowly discharge towards zero. To minimize this rate of discharge, a voltage follower can be used to buffer the detector's output from any external load, as shown in figure. Comparator as Zero Crossing Detector: In opamp zero crossing detectors the output responds almost discontinuously every time the input passes through zero. It consists of a comparator circuit with diode arrangement. The circuit diagram is shown below. A signal is applied to non-inverting input of opamp. Since the opamp is in open loop configuration, Vo will be at positive saturation voltage +V SAT whenever Vi > 0 V and is at negative saturation voltage -V SAT when Vi < 0 V. The diode is kept to bypass any large 23

24 signal which may damage the opamp. These diodes conduct whenever V i > +/- 0.7V, thus preventing any signal from reaching the opamp. Active Filters: Active Filters contain active components such as operational amplifiers within their circuit design. They draw their power from an external power source and use it to boost or amplify the output signal. The first-order low pass and high pass active filter, consists simply of a passive RC filter stage providing a low frequency path or a high frequency path respectively, to the input of a non-inverting operational amplifier, as shown below. The amplifier is configured as a voltage-follower (Buffer) giving it a DC gain of unity. The cut-off frequency is governed by the equation f c = 1/(2πRC). Active Low Pass Filter with Amplification: The frequency response of the circuit will be the same as that for the passive RC filter, except that the amplitude of the output is increased by the pass band gain, A v of the amplifier. The circuit configurations are shown below. For a non-inverting amplifier circuit, the magnitude of the voltage gain for the filter is given as a function of the feedback resistor (R 3 ) divided by its corresponding input resistor (R 2 ) value and is given as: A v =(1+R 3 /R 2 ). The cut-off frequency is then given by the equation f c = 1/(2πR 1 C 1 ). 24

25 25

26 Relaxation Oscillator: The circuit diagram for the oscillator is shown below along with relevant waveforms. Firstly assume that the capacitor is fully discharged and the output of the op-amp is saturated at the positive supply rail. The capacitor, C starts to charge up from the output voltage, V o through resistor, R at a rate determined by their RC time constant. However, as soon as the capacitors charging voltage at the op-amps inverting terminal is equal to or greater than the voltage at the non-inverting terminal (the op-amps output voltage fraction divided between resistors R 1 and R 2 ), the output will change state and be driven to the opposing negative supply rail. But the capacitor, which has been happily charging towards the positive supply rail (+V SAT ), now sees a negative voltage, (-V SAT ) across its plates. This sudden reversal of the output voltage causes the capacitor to discharge toward the new value of V o at a rate dictated again by their RC time constant. Thus we get continuous waveform of square type at the output. The time period of the resulting waveform is given by: T=2RC ln((1+b)/(1-b)), where B=R 1 /(R 1 +R 2 ) 26

27 27

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

Field Effect Transistors (npn)

Field Effect Transistors (npn) Field Effect Transistors (npn) gate drain source FET 3 terminal device channel e - current from source to drain controlled by the electric field generated by the gate base collector emitter BJT 3 terminal

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com 8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

An introduction to Depletion-mode MOSFETs By Linden Harrison

An introduction to Depletion-mode MOSFETs By Linden Harrison An introduction to Depletion-mode MOSFETs By Linden Harrison Since the mid-nineteen seventies the enhancement-mode MOSFET has been the subject of almost continuous global research, development, and refinement

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs)

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs) CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs) INTRODUCTION - FETs are voltage controlled devices as opposed to BJT which are current controlled. - There are two types of FETs. o Junction FET (JFET) o Metal

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

6. Field-Effect Transistor

6. Field-Effect Transistor 6. Outline: Introduction to three types of FET: JFET MOSFET & CMOS MESFET Constructions, Characteristics & Transfer curves of: JFET & MOSFET Introduction The field-effect transistor (FET) is a threeterminal

More information

Chapter 6: Field-Effect Transistors

Chapter 6: Field-Effect Transistors Chapter 6: Field-Effect Transistors FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.

More information

ASTABLE MULTIVIBRATOR

ASTABLE MULTIVIBRATOR 555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

More information

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- ", Raj Kamal, 1

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- , Raj Kamal, 1 EDC UNIT IV- Transistor and FET Characteristics Lesson-9: JFET and Construction of JFET 2008 EDC Lesson 9- ", Raj Kamal, 1 1. Transistor 2008 EDC Lesson 9- ", Raj Kamal, 2 Transistor Definition The transferred-resistance

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits, both analog and digital. The versatility of a TTL Schmitt is

More information

Analog Circuits Part 3 Operational Amplifiers

Analog Circuits Part 3 Operational Amplifiers Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

Metal-Oxide-Silicon (MOS) devices PMOS. n-type

Metal-Oxide-Silicon (MOS) devices PMOS. n-type Metal-Oxide-Silicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

UNIT II JFET, MOSFET, SCR & UJT

UNIT II JFET, MOSFET, SCR & UJT UNIT II JFET, MOSFET, SCR & UJT JFET JFET as an Amplifier and its Output Characteristics JFET Applications MOSFET Working Principles, SCR Equivalent Circuit and V-I Characteristics. SCR as a Half wave

More information

Field Effect Transistors

Field Effect Transistors Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

MODULE-2: Field Effect Transistors (FET)

MODULE-2: Field Effect Transistors (FET) FORMAT-1B Definition: MODULE-2: Field Effect Transistors (FET) FET is a three terminal electronic device used for variety of applications that match with BJT. In FET, an electric field is established by

More information

Lecture 14. Field Effect Transistor (FET) Sunday 26/11/2017 FET 1-1

Lecture 14. Field Effect Transistor (FET) Sunday 26/11/2017 FET 1-1 Lecture 14 Field Effect Transistor (FET) Sunday 26/11/2017 FET 1-1 Outline Introduction to FET transistors Types of FET Transistors Junction Field Effect Transistor (JFET) Characteristics Construction

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

Electronics - PHYS 2371/2 TODAY

Electronics - PHYS 2371/2 TODAY TODAY 4-terminal linear amplifier Op-Amp Basics, Ch-28, 31 Op-Amp Golden Rules for operation Op-amp gain, impedance, frequency response Videos Lab-6 Overview 1 Review Semiconductors Semiconductors Resistivity

More information

Chapter 13: Introduction to Switched- Capacitor Circuits

Chapter 13: Introduction to Switched- Capacitor Circuits Chapter 13: Introduction to Switched- Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4 Switched-Capacitor Integrator 13.5 Switched-Capacitor

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam Georgia Institute of Technology School of Electrical and Computer Engineering Midterm Exam ECE-3400 Fall 2013 Tue, September 24, 2013 Duration: 80min First name Solutions Last name Solutions ID number

More information

Physics 303 Fall Module 4: The Operational Amplifier

Physics 303 Fall Module 4: The Operational Amplifier Module 4: The Operational Amplifier Operational Amplifiers: General Introduction In the laboratory, analog signals (that is to say continuously variable, not discrete signals) often require amplification.

More information

Subject Code: Model Answer Page No: / N

Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Intro to Electricity. Introduction to Transistors. Example Circuit Diagrams. Water Analogy

Intro to Electricity. Introduction to Transistors. Example Circuit Diagrams. Water Analogy Introduction to Transistors Transistors form the basic building blocks of all computer hardware. Invented by William Shockley, John Bardeen and Walter Brattain in 1947, replacing previous vaccuumtube technology

More information

Field - Effect Transistor

Field - Effect Transistor Page 1 of 6 Field - Effect Transistor Aim :- To draw and study the out put and transfer characteristics of the given FET and to determine its parameters. Apparatus :- FET, two variable power supplies,

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Questions on JFET: 1) Which of the following component is a unipolar device?

Questions on JFET: 1) Which of the following component is a unipolar device? Questions on JFET: 1) Which of the following component is a unipolar device? a) BJT b) FET c) DJT d) EFT 2) Current Conduction in FET takes place due e) Majority charge carriers only f) Minority charge

More information

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: Metal-Semiconductor Junctions MOSFET Basic Operation MOS Capacitor Things you should know when you leave Key Questions What is the

More information

Analog Electronic Circuits

Analog Electronic Circuits Analog Electronic Circuits Chapter 1: Semiconductor Diodes Objectives: To become familiar with the working principles of semiconductor diode To become familiar with the design and analysis of diode circuits

More information

Chapter 8: Field Effect Transistors

Chapter 8: Field Effect Transistors Chapter 8: Field Effect Transistors Transistors are different from the basic electronic elements in that they have three terminals. Consequently, we need more parameters to describe their behavior than

More information

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 9 The Common-Source Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has

More information

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS AV18-AFC ANALOG FUNDAMENTALS C Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS 1 ANALOG FUNDAMENTALS C AV18-AFC Overview This topic identifies the basic FET amplifier configurations and their principles of

More information

Practical Manual. Deptt.of Electronics &Communication Engg. (ECE)

Practical Manual. Deptt.of Electronics &Communication Engg. (ECE) Practical Manual LAB: BASICS OF ELECTRONICS 1 ST SEM.(CSE/CV) Deptt.of Electronics &Communication Engg. (ECE) RAO PAHALD SINGH GROUP OF INSTITUTIONS BALANA(MOHINDER GARH)12302 Prepared By. Mr.SANDEEP KUMAR

More information

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered LESSON PLAN SUBJECT: LINEAR IC S AND APPLICATION SUB CODE: 15EC46 NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE Class# Chapter title/reference literature Portions to be covered MODULE I

More information

ME 4447 / 6405 Student Lecture. Transistors. Abiodun Otolorin Michael Abraham Waqas Majeed

ME 4447 / 6405 Student Lecture. Transistors. Abiodun Otolorin Michael Abraham Waqas Majeed ME 4447 / 6405 Student Lecture Transistors Abiodun Otolorin Michael Abraham Waqas Majeed Lecture Overview Transistor? History Underlying Science Properties Types of transistors Bipolar Junction Transistors

More information

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce Capacitive Touch Sensing Tone Generator Corey Cleveland and Eric Ponce Table of Contents Introduction Capacitive Sensing Overview Reference Oscillator Capacitive Grid Phase Detector Signal Transformer

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

Chapter 10: Operational Amplifiers

Chapter 10: Operational Amplifiers Chapter 10: Operational Amplifiers Differential Amplifier Differential amplifier has two identical transistors with two inputs and two outputs. 2 Differential Amplifier Differential amplifier has two identical

More information

LF13741 Monolithic JFET Input Operational Amplifier

LF13741 Monolithic JFET Input Operational Amplifier LF13741 Monolithic JFET Input Operational Amplifier General Description The LF13741 is a 741 with BI-FETTM input followers on the same die Familiar operating characteristics those of a 741 with the added

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) 1. Objective: Junction FETs - the operation of a junction field-effect transistor (J-FET)

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

(a) Current-controlled and (b) voltage-controlled amplifiers.

(a) Current-controlled and (b) voltage-controlled amplifiers. Fig. 6.1 (a) Current-controlled and (b) voltage-controlled amplifiers. Fig. 6.2 Drs. Ian Munro Ross (front) and G. C. Dacey jointly developed an experimental procedure for measuring the characteristics

More information

THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING

THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

Power Semiconductor Devices

Power Semiconductor Devices TRADEMARK OF INNOVATION Power Semiconductor Devices Introduction This technical article is dedicated to the review of the following power electronics devices which act as solid-state switches in the circuits.

More information

Basic Operational Amplifier Circuits

Basic Operational Amplifier Circuits Basic Operational Amplifier Circuits Comparators A comparator is a specialized nonlinear op-amp circuit that compares two input voltages and produces an output state that indicates which one is greater.

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

MOSFET Amplifier Biasing

MOSFET Amplifier Biasing MOSFET Amplifier Biasing Chris Winstead April 6, 2015 Standard Passive Biasing: Two Supplies V D V S R G I D V SS To analyze the DC behavior of this biasing circuit, it is most convenient to use the following

More information

Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product

Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product Physics116A,12/4/06 Draft Rev. 1, 12/12/06 D. Pellett 2 Negative Feedback and Voltage Amplifier AB

More information

OBJECTIVE The purpose of this exercise is to design and build a pulse generator.

OBJECTIVE The purpose of this exercise is to design and build a pulse generator. ELEC 4 Experiment 8 Pulse Generators OBJECTIVE The purpose of this exercise is to design and build a pulse generator. EQUIPMENT AND PARTS REQUIRED Protoboard LM555 Timer, AR resistors, rated 5%, /4 W,

More information

Field-Effect Transistors

Field-Effect Transistors R L 2 Field-Effect Transistors 2.1 BAIC PRINCIPLE OF JFET The eld-effect transistor (FET) is an electric- eld (voltage) operated transistor, developed as a semiconductor equivalent of the vacuum-tube device,

More information

LF155/LF156/LF355/LF356/LF357 JFET Input Operational Amplifiers

LF155/LF156/LF355/LF356/LF357 JFET Input Operational Amplifiers LF155/LF156/LF355/LF356/LF357 JFET Input Operational Amplifiers General Description These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the

More information

Massachusetts Institute of Technology MIT

Massachusetts Institute of Technology MIT Massachusetts Institute of Technology MIT Real Time Wireless Electrocardiogram (ECG) Monitoring System Introductory Analog Electronics Laboratory Guilherme K. Kolotelo, Rogers G. Reichert Cambridge, MA

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

Test Your Understanding

Test Your Understanding 074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switched-capacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the

More information

Chapter 10: The Operational Amplifiers

Chapter 10: The Operational Amplifiers Chapter 10: The Operational Amplifiers Electronic Devices Operational Amplifiers (op-amp) Op-amp is an electronic device that amplify the difference of voltage at its two inputs. It has two input terminals,

More information

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter

More information

Introduction to IC-555. Compiled By: Chanakya Bhatt EE, IT-NU

Introduction to IC-555. Compiled By: Chanakya Bhatt EE, IT-NU Introduction to IC-555 Compiled By: Chanakya Bhatt EE, IT-NU Introduction SE/NE 555 is a Timer IC introduced by Signetics Corporation in 1970 s. It is basically a monolithic timing circuit that produces

More information

Op Amp Technology Overview. Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps

Op Amp Technology Overview. Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps Op Amp Technology Overview Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps 1 Bipolar vs. CMOS / JFET Transistor technologies Bipolar, CMOS and JFET

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

ES250: Electrical Science. HW6: The Operational Amplifier

ES250: Electrical Science. HW6: The Operational Amplifier ES250: Electrical Science HW6: The Operational Amplifier Introduction This chapter introduces the operational amplifier or op amp We will learn how to analyze and design circuits that contain op amps,

More information

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

More information

Introduction to Op Amps

Introduction to Op Amps Introduction to Op Amps ENGI 242 ELEC 222 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain 25k AVOL 500k (much higher for FET inputs) high input impedance 500kΩ ZIN 10MΩ

More information

Transistor Design & Analysis (Inverter)

Transistor Design & Analysis (Inverter) Experiment No. 1: DIGITAL ELECTRONIC CIRCUIT Transistor Design & Analysis (Inverter) APPARATUS: Transistor Resistors Connecting Wires Bread Board Dc Power Supply THEORY: Digital electronics circuits operate

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

Op-Amp Simulation Part II

Op-Amp Simulation Part II Op-Amp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate

More information

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations.

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations. 6.012 ELECTRONIC DEVICES AND CIRCUITS Schedule -- Fall 1995 (8/31/95 version) Recitation 1 -- Wednesday, Sept. 6: Review of 6.002 models for BJT. Discussion of models and modeling; motivate need to go

More information

CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits both analog and digital The versatility of a TTL Schmitt is

More information

LIC & COMMUNICATION LAB MANUAL

LIC & COMMUNICATION LAB MANUAL LIC & Communication Lab Manual LIC & COMMUNICATION LAB MANUAL FOR V SEMESTER B.E (E& ( E&C) (For private circulation only) NAME: DEPARTMENT OF ELECTRONICS & COMMUNICATION SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY

More information

High Current MOSFET Toggle Switch with Debounced Push Button

High Current MOSFET Toggle Switch with Debounced Push Button Set/Reset Flip Flop This is an example of a set/reset flip flop using discrete components. When power is applied, only one of the transistors will conduct causing the other to remain off. The conducting

More information

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-1 Transistor

More information

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS 2.16 EXPERIMENT 2.2 NONLINEAR OPAMP CIRCUITS 2.2.1 OBJECTIVE a. To study the operation of 741 opamp as comparator. b. To study the operation of active diode circuits (precisions circuits) using opamps,

More information

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester WK 5 Reg. No. : Question Paper Code : 27184 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Electronics and Communication Engineering EC 6201 ELECTRONIC DEVICES

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 16 EXAMINATION Model Answer Subject Code: 17213 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

EDC UNIT IV- Transistor and FET JFET Characteristics EDC Lesson 4- ", Raj Kamal, 1

EDC UNIT IV- Transistor and FET JFET Characteristics EDC Lesson 4- , Raj Kamal, 1 EDC UNIT IV- Transistor and FET Characteristics Lesson-10: JFET Characteristics Qualitative Discussion 2008 EDC Lesson 4- ", Raj Kamal, 1 n-junction FET and p-jfet Symbols D D + D G + V DS V DS V GS S

More information

For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec

For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec Inverting amplifier: [Closed Loop Configuration] Design: A CL = V o /V in = - R f / R in ; Assume R in = ; Gain = ; Circuit Diagram: RF +10V F.G ~ + Rin 2 3 7 IC741 + 4 6 v0-10v CRO Model Graph Inverting

More information

ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved UNIT 1

ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved UNIT 1 ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved UNIT 1 1. What is an ideal diode? An ideal diode is one which offers zero resistance when forward biased and infinite resistance when reverse biased.

More information