CSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University


 Gyles Skinner
 1 years ago
 Views:
Transcription
1 CSE 577 Spring 2011 Basic Amplifiers and Differential Amplifier, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University
2 Don t let the computer think for you In today s analog design, simulation of circuits is essential because the behavior of shortchannel MOSFETs cannot be predicted accurately by hand calculations. Nonetheless, if the designer avoids a simple and intuitive analysis of the circuits and hence skips the task of gaining insight, then he/she cannot interpret the simulation results intelligently. For this reason, we say, Don t let the computer think for you.  Behzad Razavi
3 Contents Fundamentals Basic Amplifiers: Low Frequency Analysis Basic Amplifiers: High Frequency Analysis Differential Amplifier Feedback
4 Fundamentals Definitions DC Operating Point & Load line Large Signal Analysis vs. Small Signal Analysis MOSFET intrinsic Capacitances
5 Definitions mb
6 DC Operating Point & Load Line
7 Large Signal Analysis vs. Small Signal Analysis Large Signal Analysis
8 Large Signal Analysis vs. Small Signal Analysis Small Signal Analysis How convenient!!
9 MOSFET Intrinsic Capacitances
10 (cont d) MOSFET Intrinsic Capacitances
11 Basic Amplifiers: Low Frequency Analysis Single Stage Amplifiers Multi Stage Amplifiers
12 Single Stage Amplifiers: CS, CD, and CG Stage
13 Common Source Stage : Voltage Gain
14 Common Drain Stage: Output Resistance
15 Common Gate Stage : Input Resistance
16 Summary
17 Quiz CD stage amplifier is suitable for output stage of OPAmp due to its low output impedance and large bandwidth. However, in CMOS analog IC, CS stage is more widely used for output stage OPAmp than CD stage. Why?
18 Loads for basic amplifiers
19 (cont d) Loads for basic amplifiers Diode Connected Load V I X X = 1 gm+ gmb+ r o g m 1 + g 1 mb 1 g m = g m 1 + g mb r o R X A v = g m1 1 g m 2 ( W / L) ( W / L) 1 2
20 (cont d) Loads for basic amplifiers Source degeneration G m g 1+ g m m R S R out = R r o S [( g [ R S m2 ( g + g m2 mb2 + g ) r o mb2 + 1] + r ) + 1] o
21 Cascode Stage Small Signal Analysis V A out v = ( Rout RD ) gm 1Vin = g ( R R ) m 1 out D Rout R out = r o1 r o2 [( g [ r o1 m2 ( g + g m2 mb2 + ) r g o2 mb2 + 1] + r ) + 1] o2
22 Folded Cascode Stage A= g R m1 o R = R R ω D t o = = o2c ω = Aω [ gm2cro2c( ro2 ro7) ] [ gm4cro4cro3] 1/ ( C R ) D L SR= 2I/C L o = g o4c m1 /C L
23 (cont d) Folded Cascode Stage What are the advantages of folded cascode amplifier? Disadvantages: Limited Output swing Large Voltage Headroom Large Power Consumption
24 Basic Amplifiers: High Frequency Analysis Frequency Analysis Dominant Pole Approach
25 Frequency Analysis
26 (cont d) Frequency Analysis Bode Plot
27 Dominant Pole Approach
28 BW Estimation by Dominant Pole Approach
29 Bandwidth Comparison
30 Quiz Design an amplifier which satisfy following features using basic singlestage amplifiers. High gain Large Bandwidth High input impedance Low output impedance
31 Differential Amplifier Single Stage Amplifiers Multi Stage Amplifiers
32 Why differential Amplifier? Single Ended Signal can be easily contaminated A Differential Signal can be cleaned up Power Supply noise can be reduced
33 Differential Amplifier Analysis Classic Diff Amp
34 (cont d) Differential Amplifier Analysis
35 Diff Amp with Current Mirror Load G R A m out v = = g r g m2,4 o2 m2,4 r o4 ( r o2 r o4 ) CMRR= (2g r m1 o5 = CMRR( R ) g m3 ( r o1 r load) g o3 m3 ) ( r Common Mode Input Voltage Range V SS +V TN1 +V DSAT5 +V DSAT1 < V IC < V DD V DSAT3 V TP3 + V TN1 o1 r o3 ) 1. What is CM Input Voltage? 2. How do we prove this equation?
36 (Std. Library) Design Exercise Design Flow Determine Specifications Power Consumption (ex. 1mW) Voltage Gain (ex. >30) Active Common Mode Input range (as large as possible) Others: slew rate, CMRR, PSRR, etc. Determine minimum channel length Determine channel width Determine W 1,2 from voltage gain spec. Determine W 5 & Bias Voltage from power consumption & CM min. Determine W 3,4 from CM max. Determine Bias Level of current source tr. Check other specifications
37 Feedback Feedback & Stability Voltage Amplifier Model Common Mode Feedback
38 Feedback & Stability
39 Voltage Amplifier Model Models
40 (cont d) Voltage Amplifier Model 1 st Order Model
41 (cont d) Voltage Amplifier Model 2 nd Order Model
42 (cont d) Voltage Amplifier Model Time Response of the 2 nd Order Model
43 (cont d) Voltage Amplifier Model
44 Feedback Characteristics Gain desensitization A f da da A f x x f f o s A = 1+ βa da = (1+ βa) 2 1 da = 1+ βa A Band width extension AM A(s) = 1+ s/ ω A f H A(s) (s) = 1+ βa(s) AM /(1+ βam ) = 1+ s / ω (1+ βa H M ) Noise Reduction S = N V o S N V V s n A1A2 = Vs 1+ βa A Vs = V n A V n A1 1+ βa A Nonlinearity Reduction (a) (b) w/o feedback w feedback 1 2
45 Common Mode Feedback Why is CMFB circuit needed? Due to TR mismatch, TRs may not be in saturation region at operating point. DM Gain decreases and CM gain increases Since output CM level is sensitive to device properties and mismatches, it cannot be stabilized by means of differential feedback. General Topology of CMFB Circuit
46 (cont d) Common Mode Feedback Examples of CMFB Folded cascode amplifier with CMFB Useful for low gain applications A v = g ( ro 1,2 ro 3, 4 R m1,2 F )
47 References Joongho Choi, CMOS analog IC Design, IDEC Lecture Note, Mar B. Razavi, Design of Analog CMOS Integrated Circuits, McGrawHill, Hongjun Park, CMOS Analog Integrated Circuits Design, Sigma Press, 1999.
Analysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II)
Analysis and Design of Analog Integrated Circuits Lecture 20 Advanced Opamp Topologies (Part II) Michael H. Perrott April 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Outline of Lecture
More informationChapter 12 Opertational Amplifier Circuits
1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS opamp architectures: the twostage circuit and the singlestage, folded cascode circuit.
More informationECEN 474/704 Lab 6: Differential Pairs
ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers
More informationLecture 2, Amplifiers 1. Analog building blocks
Lecture 2, Amplifiers 1 Analog building blocks Outline of today's lecture Further work on the analog building blocks Commonsource, commondrain, commongate Active vs passive load Other "simple" analog
More informationAnalog Integrated Circuits. Lecture 7: OpampDesign
Analog Integrated Circuits Lecture 7: OpampDesign ELC 601 Fall 2013 Dr. Ahmed Nader Dr. Mohamed M. Aboudina anader@ieee.org maboudina@gmail.com Department of Electronics and Communications Engineering
More informationAdvanced Operational Amplifiers
IsLab Analog Integrated Circuit Design OPA247 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA21 Advanced Current Mirrors and Opamps Twostage
More informationOperational Amplifiers
CHAPTER 9 Operational Amplifiers Analog IC Analysis and Design 9 ChihCheng Hsieh Outline. General Consideration. OneStage Op Amps / TwoStage Op Amps 3. Gain Boosting 4. CommonMode Feedback 5. Input
More informationHigh Voltage Operational Amplifiers in SOI Technology
High Voltage Operational Amplifiers in SOI Technology Kishore Penmetsa, Kenneth V. Noren, Herbert L. Hess and Kevin M. Buck Department of Electrical Engineering, University of Idaho Abstract This paper
More informationSolid State Devices & Circuits. 18. Advanced Techniques
ECE 442 Solid State Devices & Circuits 18. Advanced Techniques Jose E. SchuttAine Electrical l&c Computer Engineering i University of Illinois jschutt@emlab.uiuc.edu 1 Darlington Configuration  Popular
More informationAn Improved Recycling Folded Cascode OTA with positive feedback
An Improved Recycling Folded Cascode OTA with positive feedback S.KUMARAVEL, B.VENKATARAMANI Department of Electronics and Communication Engineering National Institute of Technology Trichy Tiruchirappalli
More informationEECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design
EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design References: Analog Integrated Circuit Design by D. Johns and K. Martin and Design of Analog CMOS Integrated Circuits by B. Razavi All figures
More informationRadivoje Đurić, 2015, Analogna Integrisana Kola 1
OTAoutput buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage
More informationECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN
ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN OPAMP DESIGN AND SIMULATION Vishal Saxena OPAMP DESIGN PROJECT R 2 v out v in /2 R 1 C L v in v out V CM R L V CM C L V CM v in /2 R 1 C L (a) (b) R 2 ECE415/EO
More informationDESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER
DESIGN OF A FULLY DIFFERENTIAL HIGHSPEED HIGHPRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project
More informationLECTURE 19 DIFFERENTIAL AMPLIFIER
Lecture 19 Differential Amplifier (6/4/14) Page 191 LECTURE 19 DIFFERENTIAL AMPLIFIER LECTURE ORGANIZATION Outline Characterization of a differential amplifier Differential amplifier with a current mirror
More informationECEN 474/704 Lab 7: Operational Transconductance Amplifiers
ECEN 474/704 Lab 7: Operational Transconductance Amplifiers Objective Design, simulate and layout an operational transconductance amplifier. Introduction The operational transconductance amplifier (OTA)
More informationReading. Lecture 33: Context. Lecture Outline. Chapter 9, multistage amplifiers. Prof. J. S. Smith
eading Lecture 33: Chapter 9, multistage amplifiers Prof J. S. Smith Context Lecture Outline We are continuing to review some of the building blocks for multistage amplifiers, including current sources
More informationAnalysis and Design of Analog Integrated Circuits Lecture 8. Cascode Techniques
Analysis and Design of Analog Integrated Circuits Lecture 8 Cascode Techniques Michael H. Perrott February 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Review of Large Signal Analysis
More informationECEN474: (Analog) VLSI Circuit Design Fall 2011
ECEN474: (Analog) VLSI Circuit Design Fall 20 Lecture 22: Output Stages Sebastian Hoyos Analog & MixedSignal Center Texas A&M University Agenda Output Stages Source Follower (Class A) PushPull (Class
More informationUniversity of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier
University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim ElSaadi, Mohammed ElTanani, University of Michigan Abstract This paper
More informationLecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits  III
Lecture 3 Biasing and Loading Single Stage FET Amplifiers The Building Blocks of Analog Circuits III In this lecture you will learn: Current biasing of circuits Current sources and sinks for CS, CG, and
More informationDesign Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage
Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Sadeque Reza Khan Department of Electronic and Communication Engineering, National
More informationPerformance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design
RESEARCH ARTICLE OPEN ACCESS Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design Ankush S. Patharkar*, Dr. Shirish M. Deshmukh** *(Department of Electronics and Telecommunication,
More informationINF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation
INF3410 Fall 2015 Book Chapter 6: Basic Opamp Design and Compensation content Introduction Two Stage Opamps Compensation Slew Rate Systematic Offset Advanced Current Mirrors Operational Transconductance
More informationINF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation
INF3410 Fall 2013 Compensation content Introduction Two Stage Opamps Compensation Slew Rate Systematic Offset Advanced Current Mirrors Operational Transconductance Amplifiers Current Mirror Opamps Folded
More informationMicroelectronic Circuits II. Ch 10 : OperationalAmplifier Circuits
Microelectronic Circuits II Ch 0 : OperationalAmplifier Circuits 0. The Twostage CMOS Op Amp 0.2 The FoldedCascode CMOS Op Amp CNU EE 0. OperationalAmplifier Introduction  Analog ICs : operational
More informationLecture 34: Designing amplifiers, biasing, frequency response. Context
Lecture 34: Designing amplifiers, biasing, frequency response Prof J. S. Smith Context We will figure out more of the design parameters for the amplifier we looked at in the last lecture, and then we will
More informationDesign of HighSpeed OpAmps for Signal Processing
Design of HighSpeed OpAmps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 837252075 jbaker@ieee.org Abstract  As CMOS
More informationPAD: Procedural Analog Design Tool D. Stefanovic, M. Kayal, M. Pastre
PAD: Procedural Analog Design Tool D. Stefanovic, M. Kayal, M. Pastre Swiss Federal Institute of Technology, Electronic Labs, STI/IMM/LEG, Lausanne, Switzerland Procedural Analog Design Tool Interactive
More informationEE105 Fall 2015 Microelectronic Devices and Circuits
EE105 Fall 2015 Microelectronic Devices and Circuits MultiStage Amplifiers Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of MOS Amplifiers Common
More information6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers
6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers Massachusetts Institute of Technology February 24, 2005 Copyright 2005 by HaeSeung Lee and Michael H. Perrott High
More informationSensors & Transducers Published by IFSA Publishing, S. L.,
Sensors & Transducers Published by IFSA Publishing, S. L., 208 http://www.sensorsportal.com Fully Differential Operation Amplifier Using Self Cascode MOSFET Structure for High Slew Rate Applications Kalpraj
More informationECE 546 Lecture 12 Integrated Circuits
ECE 546 Lecture 12 Integrated Circuits Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Integrated Circuits IC Requirements
More informationECE315 / ECE515 Lecture 8 Date:
ECE35 / ECE55 Lecture 8 Date: 05.09.06 CS Amplifier with Constant Current Source Current Steering Circuits CS Stage Followed by CG Stage Cascode as Current Source Cascode as Amplifier ECE35 / ECE55 CS
More informationIJSRD  International Journal for Scientific Research & Development Vol. 4, Issue 03, 2016 ISSN (online):
IJSRD  International Journal for Scientific Research & Development Vol. 4, Issue 03, 2016 ISSN (online): 23210613 Design and Analysis of Wide Swing FoldedCascode OTA using 180nm Technology Priyanka
More informationES 330 Electronics II Fall 2016
ES 330 Electronics II Fall 2016 Sect Lectures Location Instructor Office Office Hours Email Tel 001 001 9:00 am to 9:50 am Wednesday 10:00 am to 10 :50 am 2001 2001 Dr. Donald Estreich Dr. Donald Estreich
More informationRadivoje Đurić, 2015, Analogna Integrisana Kola 1
Low power OTA 1 TwoStage, Miller Op Amp Operating in Weak Inversion Low frequency response: gm1 gm6 Av 0 g g g g A v 0 ds2 ds4 ds6 ds7 I D m, ds D nvt g g I n GB and SR: GB 1 1 n 1 2 4 6 6 7 g 2 2 m1
More informationChapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik
1 Chapter 10 Feedback Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: ActiveLoaded Differential Pair 4. Ch 10: Feedback 5. Ch 11: Output
More informationA PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER
A PSEUDOCLASSAB TELESCOPICCASCODE OPERATIONAL AMPLIFIER M. TaherzadehSani, R. Lotfi, and O. Shoaei ABSTRACT A novel classab architecture for singlestage operational amplifiers is presented. The structure
More informationLecture 240 Cascode Op Amps (3/28/10) Page 2401
Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog
More informationComparative Analysis of Compensation Techniques for improving PSRR of an OPAMP
Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP 1 Pathak Jay, 2 Sanjay Kumar M.Tech VLSI and Embedded System Design, Department of School of Electronics, KIIT University,
More informationCMOS OperationalAmplifier
CMOS OperationalAmplifier 1 What will we learn in this course How to design a good OP Amp. Basic building blocks Biasing and Loading Swings and Bandwidth CH2(8) Operational Amplifier as A Black Box Copyright
More informationChapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier
Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in doubleended
More informationCMOS OperationalAmplifier
CMOS OperationalAmplifier 1 What will we learn in this course How to design a good OP Amp. Basic building blocks Biasing and Loading Swings and Bandwidth CH2(8) Operational Amplifier as A Black Box Copyright
More informationLecture 300 Low Voltage Op Amps (3/28/10) Page 3001
Lecture 300 Low Voltage Op Amps (3/28/10) Page 3001 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits
More informationAdvanced OPAMP Design
Advanced OPAMP Design Two Stage OPAMP with Cascoding To increase the gain, the idea of cascoding can be combined with the idea of cascading. A two stage amplifier with one stage being cascode is possible.
More informationTWO AND ONE STAGES OTA
TWO AND ONE STAGES OTA F. Maloberti Department of Electronics Integrated Microsystem Group University of Pavia, 7100 Pavia, Italy franco@ele.unipv.it tel. +393850505; fax. +39038505677 474 EE Department
More informationIOWA STATE UNIVERSITY. EE501 Project. Fully Differential MultiStage OpAmp Design. Ryan Boesch 11/12/2008
IOWA STATE UNIVERSITY EE501 Project Fully Differential MultiStage OpAmp Design Ryan Boesch 11/12/2008 This report documents the design, simulation, layout, and postlayout simulation of a fully differential
More informationChapter 7 Building Blocks of Integrated Circuit Amplifiers: Part D: Advanced Current Mirrors
1 Chapter 7 Building Blocks of Integrated Circuit Amplifiers: Part D: Advanced Current Mirrors Current Mirror Example 2 Two Stage Op Amp (MOSFET) Current Mirror Example Three Stage 741 Opamp (BJT) 3 4
More informationLecture 21: Voltage/Current Buffer Freq Response
Lecture 21: Voltage/Current Buffer Freq Response Prof. Niknejad Lecture Outline Last Time: Frequency Response of Voltage Buffer Frequency Response of Current Buffer Current Mirrors Biasing Schemes Detailed
More informationGOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Electronics and Communication Engineering COURSE PLAN
Appendix  C GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Electronics and Communication Engineering Academic Year: 201617 Semester: EVEN COURSE PLAN Semester: VI Subject Code& Name: 10EC63
More informationRevision History. Contents
Revision History Ver. # Rev. Date Rev. By Comment 0.0 9/15/2012 Initial draft 1.0 9/16/2012 Remove class A part 2.0 9/17/2012 Comments and problem 2 added 3.0 10/3/2012 cmdmprobe resimulation, add supplement
More informationDesign of Miller Compensated TwoStage Operational Amplifier for Data Converter Applications
Design of Miller Compensated TwoStage Operational Amplifier for Data Converter Applications Prema Kumar. G Shravan Kudikala Casest, School Of Physics Casest, School Of Physics University Of Hyderabad
More informationAnalysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications
Analysis and Design of Analog Integrated Circuits Lecture 8 Key Opamp Specifications Michael H. Perrott April 8, 0 Copyright 0 by Michael H. Perrott All rights reserved. Recall: Key Specifications of Opamps
More informationMicroelectronics Part 2: Basic analog CMOS circuits
GBM830 Dispositifs Médicaux Intelligents Microelectronics Part : Basic analog CMOS circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim!! http://www.cours.polymtl.ca/gbm830/! mohamad.sawan@polymtl.ca!
More informationLecture 33: Context. Prof. J. S. Smith
Lecture 33: Prof J. S. Smith Context We are continuing to review some of the building blocks for multistage amplifiers, including current sources and cascode connected devices, and we will also look at
More informationMultistage Amplifiers
Multistage Amplifiers Singlestage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)
More informationIndex. SmallSignal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10
Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 baseemitter voltage, 16, 50 baseemitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar
More informationECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier
ECEN 474/704 Lab 8: TwoStage Miller Operational Amplifier Objective Design, simulate and test a twostage operational amplifier Introduction Operational amplifiers (opamp) are essential components of
More informationDesign and Simulation of Low Voltage Operational Amplifier
Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America
More informationA Compact Foldedcascode Operational Amplifier with ClassAB Output Stage
A Compact Foldedcascode Operational Amplifier with ClassAB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design
More informationA low voltage railtorail operational amplifier with constant operation and improved process robustness
Graduate Theses and Dissertations Graduate College 2009 A low voltage railtorail operational amplifier with constant operation and improved process robustness Rien Lerone Beal Iowa State University Follow
More informationCHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations
CHAPTER 3 Instrumentation Amplifier (IA) Background 3.1 Introduction The IAs are key circuits in many sensor readout systems where, there is a need to amplify small differential signals in the presence
More informationClassAB LowVoltage CMOS UnityGain Buffers
ClassAB LowVoltage CMOS UnityGain Buffers Mariano Jimenez, Antonio Torralba, Ramón G. Carvajal and J. RamírezAngulo Abstract ClassAB circuits, which are able to deal with currents several orders of
More informationAnalog Integrated Circuit Design Exercise 1
Analog Integrated Circuit Design Exercise 1 Integrated Electronic Systems Lab Prof. Dr.Ing. Klaus Hofmann M.Sc. Katrin Hirmer, M.Sc. Sreekesh Lakshminarayanan Status: 21.10.2015 PreAssignments The lecture
More informationEE Analog and Nonlinear Integrated Circuit Design
University of Southern California Viterbi School of Engineering Ming Hsieh Department of Electrical Engineering EE 479  Analog and Nonlinear Integrated Circuit Design Instructor: Ali Zadeh Email: prof.zadeh@yahoo.com
More informationAnalog Integrated Circuits Fundamental Building Blocks
Analog Integrated Circuits Fundamental Building Blocks Basic OTA/Opamp architectures Faculty of Electronics Telecommunications and Information Technology Gabor Csipkes Bases of Electronics Department Outline
More informationECE315 / ECE515 Lecture 7 Date:
Lecture 7 ate: 01.09.2016 CG Amplifier Examples Biasing in MOS Amplifier Circuits Common Gate (CG) Amplifier CG Amplifier nput is applied at the Source and the output is sensed at the rain. The Gate terminal
More informationAnalog IC Design 2011
Analog IC Design 2011 Lecture 11  Fully differential Opamps Markus Törmänen Markus.Tormanen@eit.lth.se All images are taken from Gray, Hurst, Lewis, Meyer, 5th ed., unless noted otherwise. 111010 Markus
More informationBasic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair,
Basic Circuits Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair, CCS  Basic Circuits P. Fischer, ZITI, Uni Heidelberg, Seite 1 Reminder: Effect of Transistor Sizes Very crude classification:
More informationAnalog Integrated Circuit Configurations
Analog Integrated Circuit Configurations Basic stages: differential pairs, current biasing, mirrors, etc. Approximate analysis for initial design MOSFET and Bipolar circuits Basic Current Bias Sources
More informationANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS
ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,
More informationLecture 20 Transistor Amplifiers (II) Other Amplifier Stages. November 17, 2005
6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 20 1 Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages November 17, 2005 Contents: 1. Common source amplifier (cont.) 2. Common drain
More informationBuilding Blocks of IntegratedCircuit Amplifiers
Building Blocks of ntegratedcircuit Amplifiers 1 The Basic Gain Cell CS and CE Amplifiers with Current Source Loads Currentsource or activeloaded CS amplifier Rin A o R A o g r r o g r 0 m o m o Currentsource
More informationDesign of High Gain Two stage OpAmp using 90nm Technology
Design of High Gain Two stage OpAmp using 90nm Technology Shaik Aqeel 1, P. Krishna Deva 2, C. Mahesh Babu 3 and R.Ganesh 4 1 CVR College of Engineering/UG Student, Hyderabad, India 2 CVR College of Engineering/UG
More informationA CMOS LowVoltage, HighGain OpAmp
A CMOS LowVoltage, HighGain OpAmp G N Lu and G Sou LEAM, Université Pierre et Marie Curie Case 203, 4 place Jussieu, 75252 Paris Cedex 05, France Telephone: (33 1) 44 27 75 11 Fax: (33 1) 44 27 48 37
More informationUNIT I BIASING OF DISCRETE BJT AND MOSFET PART A
UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression
More informationLecture 030 ECE4430 Review III (1/9/04) Page 0301
Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material
More informationDifferential Amplifier Design
Fall  2009 EE114  Design Project Differential Amplifier Design Submitted by Piyush Keshri (0559 4497) Jeffrey Tu (0554 4565) On November 20th, 2009 EE114  Design Project Stanford University Page No.
More informationTopology Selection: Input
Project #2: Design of an Operational Amplifier By: Adrian Ildefonso Nedeljko Karaulac I have neither given nor received any unauthorized assistance on this project. Process: Baker s 50nm CAD Tool: Cadence
More informationAnalog Integrated Circuits. Lecture 4: Differential Amplifiers
Analog Integrated Circuits Lecture 4: Differential Amplifiers ELC 601 Fall 2013 Dr. Ahmed Nader Dr. Mohamed M. Aboudina anader@ieee.org maboudina@gmail.com Department of Electronics and Communications
More informationChapter 1. Introduction
EECS3611 Analog Integrated Circuit esign Chapter 1 Introduction EECS3611 Analog Integrated Circuit esign Instructor: Prof. Ebrahim GhafarZadeh, Prof. Peter Lian email: egz@cse.yorku.ca peterlian@cse.yorku.ca
More informationREVIEW OF FOLDED CASCODE & TELESCOPIC OPAMP
REVIEW OF FOLDED CASCODE & TELESCOPIC OPAMP Achala Shukla 1, Ankur Girolkar 1, Jagveer Verma 2 M.Tech Scholar [DE], Dept. of ECE, Chouksey Engineering College, Bilaspur, Chhattisgarh, India 1 Assistant
More informationd. Can you find intrinsic gain more easily by examining the equation for current? Explain.
EECS140 Final Spring 2017 Name SID 1. [8] In a vacuum tube, the plate (or anode) current is a function of the plate voltage (output) and the grid voltage (input). I P = k(v P + µv G ) 3/2 where µ is a
More informationFully integrated CMOS transmitter design considerations
Semiconductor Technology Fully integrated CMOS transmitter design considerations Traditionally, multiple IC chips are needed to build transmitters (Tx) used in wireless communications. The difficulty with
More informationSKEL 4283 Analog CMOS IC Design Current Mirrors
SKEL 4283 Analog CMOS IC Design Current Mirrors Dr. Nasir Shaikh Husin Faculty of Electrical Engineering Universiti Teknologi Malaysia Current Mirrors 1 Objectives Introduce and characterize the current
More informationECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers
ECE 442 Solid State Devices & Circuits 15. Differential Amplifiers Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 442 Jose Schutt Aine 1 Background
More informationDesign of Analog CMOS Integrated Circuits
Design of Analog CMOS Integrated Circuits Behzad Razavi Professor of Electrical Engineering University of California, Los Angeles H Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco
More informationPerformance Evaluation of Different Types of CMOS Operational Transconductance Amplifier
Performance Evaluation of Different Types of CMOS Operational Transconductance Amplifier Kalpesh B. Pandya 1, Kehul A. shah 2 1 Gujarat Technological University, Department of Electronics & Communication,
More informationFullydifferential amplifiers
Fullydifferential amplifiers Willy Sansen KULeuven, ESATMICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 1005 081 Table of contents Requirements Fullydiff. amps with linear MOSTs FDA
More informationDesign of Low Voltage High Speed Operational Amplifier for Pipelined ADC in 90 nm Standard CMOS Process
Design of Low Voltage High Speed Operational Amplifier for Pipelined ADC in 90 nm Standard CMOS Process Shri Kant M.Tech. (VLSI student), Department of electronics and communication engineering NIT Kurukshetra,
More informationChapter 11. Differential Amplifier Circuits
Chapter 11 Differential Amplifier Circuits 11.0 ntroduction Differential amplifier or diffamp is a multitransistor amplifier. t is the fundamental building block of analog circuit. t is virtually formed
More information2. Single Stage OpAmps
/74 2. Single Stage OpAmps Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imbcnm.csic.es Integrated
More informationNonlinear Macromodeling of Amplifiers and Applications to Filter Design.
ECEN 622(ESS) Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar SanchezSinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant
More informationNonlinear Macromodeling of Amplifiers and Applications to Filter Design.
ECEN 622 Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar SanchezSinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant
More information20129th International MultiConference on Systems, Signals and Devices An Enhanced Fully Differential Recyclic Folded Cascade OTA
2012 9th International MultiConference on Systems, Signals and Devices An Enhanced Fully Differential Recyclic Folded Cascade OTA Pravanjan Patra, S.Kumaravel Research scholar, ECE Tiruchirappalli, INDIA
More informationDesign and implementation of two stage operational amplifier
Design and implementation of two stage operational amplifier Priyanka T 1, Dr. H S Aravind 2, Yatheesh Hg 3 1M.Tech student, Dept, of ECE JSSATE Bengaluru 2Professor and HOD, Dept, of ECE JSSATE Bengaluru
More informationDesign and Simulation of an Operational Amplifier with High Gain and Bandwidth for Switched Capacitor Filters
IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) eissn: 22781676,pISSN: 23203331, Volume 11, Issue 1 Ver. II (Jan. Feb. 2016), PP 4753 www.iosrjournals.org Design and Simulation
More informationd. Why do circuit designers like to use feedback when they make amplifiers? Give at least two reasons.
EECS105 Final 5/12/10 Name SID 1 /20 2 /30 3 /20 4 /20 5 /30 6 /40 7 /20 8 /20 Total 1. Give a short answer to each question a. Your friend from Stanford says that he has designed a threestage high gain
More informationLow Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier
RESEARCH ARTICLE OPEN ACCESS Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier Akshay Kumar Kansal 1, Asst Prof. Gayatri Sakya 2 Electronics and Communication Department, 1,2
More information