DESCRIPTION FEATURES APPLICATIONS. LTC1590 Dual Serial 12-Bit Multiplying DAC TYPICAL APPLICATION

Size: px
Start display at page:

Download "DESCRIPTION FEATURES APPLICATIONS. LTC1590 Dual Serial 12-Bit Multiplying DAC TYPICAL APPLICATION"

Transcription

1 FEATRES DNL and INL Over Temperature: ±.LSB Max Gain Error: ±LSB Max Low Supply Current: µa Max -Quadrant Multiplication Power-On Reset Asynchronous Clear Input Daisy-Chain -Wire Serial Interface -Pin Narrow SO and PDIP Packages APPLICATIONS Process Control and Industrial Automation Software Controlled Gain Adjustment Digitally Controlled Filter and Power Supplies DESCRIPTION LTC9 Dual Serial -Bit Multiplying DAC The LTC 9 is a dual, serial input -bit multiplying digital-to-analog converter (DAC). It includes two current output multiplying CMOS DACs and an easy SPI compatible serial interface with daisy-chain output. An asynchronous CLR pin sets both DACs to zero scale. Excellent accuracy, stability and versatility are combined with the smallest package available for a dual -bit multiplying DAC. Parts are available in -pin PDIP and narrow SO packages and are specified over the commercial and industrial temperature ranges. Automatic Test Equipment, LTC and LT are registered trademarks of Linear Technology Corporation. TYPICAL APPLICATION Integral Nonlinearity Over Temperature Dual -Bit -Quadrant Multiplying DAC.. THREE SPERIMPOSED CRVES T A = C, C, C D IN V V CC V IN A ±V V IN B ±V 9 Daisy-Chained Control Outputs pf V LT INL (LSB). µp CLK CS/LD D OT -BIT SHIFT REG AND LATCH V V REF B R FB B V REF A R FB A OT B OT B OT A OT A CLR DGND AGND LTC9 pf V V OT B ±V V OT A ±V LTC9 TA INL (LSB)... 9 DIGITAL INPT CODE LTC9 TA Integral Nonlinearity Over Temperature THREE SPERIMPOSED CRVES T A = C, C, C.. 9 DIGITAL INPT CODE LTC9 TA

2 LTC9 ABSOLTE MAXIMM RATINGS W W W V CC to AGND....V to V V CC to DGND....V to V AGND to DGND... V CC.V DGND to AGND...V CC.V V REF to AGND... ±V R FB to AGND... ±V Digital Inputs to DGND....V to V CC.V V OT, V OT to AGND....V to V CC.V Maximum Junction Temperature... C Operating Temperature Range LTC9C... C to C LTC9I... C to C Storage Temperature Range... C to C Lead Temperature (Soldering, sec)... C PACKAGE/ORDER I FOR V REF B R FB B OT B OT B OT A OT A AGND R FB A N PACKAGE -LEAD PDIP TOP VIEW V CC CLR CLK D IN D OT CS/LD DGND 9 V REF A S PACKAGE -LEAD PLASTIC SO T JMAX = C, θ JA = C/W (N) T JMAX = C, θ JA = C/W (S) Consult factory for Military grade parts. W ATIO ORDER PART NMBER LTC9CN LTC9CS LTC9IN LTC9IS ELECTRICAL CHARACTERISTICS V CC =.V to.v, V REF = V, V OT = V OT = AGND = DGND = V, T A = T MIN to T MAX, unless otherwise noted. SYMBOL PARAMETER CONDITIONS MIN TYP MAX NITS Accuracy Resolution Bits INL Integral Nonlinearity (Note ) ±. LSB DNL Differential Nonlinearity Guaranteed Monotonic, T MIN to T MAX ±. LSB GE Gain Error (Note ), T A = C ± LSB T MIN to T MAX ± LSB Gain Temperature Coefficient (Note ) Gain/ Temperature ppm/ C I LEAKAGE OT A, OT B Leakage Current (Note ), T A = C ± na T MIN to T MAX ± na Zero-Scale Error T A = C ±. LSB T MIN to T MAX ±. LSB PSRR Power Supply Rejection V CC = V ±% ±. ±. %/% Reference Input R REF V REF Input Resistance kω AC Performance (Note ) V REFA, V REFB Input Resistance Match % Digital-to-Analog Glitch Impulse (Notes, ) nv-s Multiplying Feedthrough Error (Note ) 9 db Output Current Settling Time (Note ) To.% for Full-Scale Change.. µs Channel-to-Channel Isolation (Note ) 9 db Digital Crosstalk (Notes, ) nv-s Output Noise Voltage Density (Note 9) nv/ Hz THD Total Harmonic Distortion (Note ) 9 db Multiplying Bandwidth (Note ) MHz

3 LTC9 ELECTRICAL CHARACTERISTICS V CC =.V to.v, V REF = V, V OT = V OT = AGND = DGND = V, T A = T MIN to T MAX, unless otherwise noted. SYMBOL PARAMETER CONDITIONS MIN TYP MAX NITS Analog Outputs C OT Output Capacitance (Note ) DAC Register Loaded to All s 9 pf DAC Register Loaded to All s pf Digital Input V IH Digital Input High Voltage. V V IL Digital Input Low Voltage. V I IN Digital Input Current. ± µa C IN Digital Input Capacitance (Note ) V IN = V pf Digital Output V OH Digital Output High Voltage I OH = µa V V OL Digital Output Low Voltage I OH =.ma. V Timing Characteristics t D IN to CLK Setup Time ns t D IN to CLK Setup Hold Time ns t CLK High Time ns t CLK Low Time ns t CS/LD High Time ns t LSB CLK to CS/LD ns t CS/LD Low to CLK High ns t CLK Low to CS/LD Low ns t 9 CLK to D OT Delay ns Power Supply V CC Operating Supply Range.. V I CC Supply Current Digital Inputs = V or V CC µa The denotes specifications which apply over the full operating temperature range. Note : ±.LSB = ±.% of full scale. Note : sing internal feedback resistor. Note : Guaranteed by design, not subject to test. Note : I OT with DAC register loaded with all s. Note : OT load = Ω in parallel with pf. Note : V REF = V. DAC register contents changed from all s to all s or all s to all s. Note : output with V REF A = V and V REF B = khz V P-P, or output with V REF B = V, V REF A = khz V P-P. Both DAC registers loaded with all s. Note : Glitch on or output when the other DAC makes a full-scale transition. Note 9: Hz to khz. Calculation from e n = KTRB where: K = Boltzmann constant (J/K ); R = resistance (Ω); T = resistor temperature ( K); B = bandwidth (Hz). Note: V REF = V RMS at khz. DAC register loaded with all s, using LT op amp. Note : V REF = ±V, khz sine wave, DAC register loaded with all s, using LT op amp. Note : db bandwidth using LT op amp.

4 LTC9 TYPICAL PERFORMANCE CHARACTERISTICS W Full-Scale Settling Waveform Integral Nonlinearity (INL) Differential Nonlinearity (DNL) OTPT VOLTAGE (V/DIV) V DD = V V TO V OTPT RANGE LT OP AMP C FB pf INTEGRAL NONLINEARITY (LSB)... DIFFERENTIAL NONLINEARITY (LSB)... TIME (ns/div) 9 G. 9 DIGITAL INPT CODE 9 G. 9 DIGITAL INPT CODE 9 G SIGNAL-TO-(NOISE DISTORTION) (db) ATTENATION (db) 9 9 Multiplying Mode Signal-to- (Noise Distortion) vs Frequency V DD = V SING AN LT WITH khz FILTER Multiplying Mode Frequency Response vs Digital Code D D D9 D D D D D D D D D SING AN LT WITH khz FILTER FREQENCY (khz) ALL BITS OFF k k k M M FREQENCY (Hz) 9 G ALL BITS ON INTEGRAL NONLINEARITY (LSB) INTEGRAL NONLINEARITY (LSB) Integral Nonlinearity vs Reference Voltage V DD = V 9 REFERENCE VOLTAGE (V) Integral Nonlinearity vs Supply Voltage V REF = V V REF = V 9 G 9 SPPLY VOLTAGE (V) DIFFERENTIAL NONLINEARITY (LSB) DIFFERENTIAL NONLINEARITY (LSB) Differential Nonlinearity vs Reference Voltage. V DD = V... 9 REFERENCE VOLTAGE (V) Differential Nonlinearity vs Supply Voltage 9 G V REF = V. V REF = V. 9 SPPLY VOLTAGE (V) 9 G 9 G 9 G9

5 LTC9 TYPICAL PERFORMANCE CHARACTERISTICS W OTPT VOLTAGE (mv/div) Midscale Glitch Impulse V DD = V LT OP AMP C FB = pf LOGIC THRESHOLD (V) Logic Threshold vs Supply Voltage SPPLY CRRENT (ma).. Supply Current vs Logic Input Voltage TIME (ns/div) 9 G SPPLY VOLTAGE (V) 9 G INPT VOLTAGE (V) 9 G PIN FNCTIONS V REF B, V REF A (Pins, 9): Reference Inputs for /B. Typically ±V, accepts up to ±V. R FB B, R FB A (Pins, ): Feedback Resistors for /B. Normally tied to the output of current to voltage converter op amp. Typically swings to ±V. Swings from V to V REF. OT B, OT A (Pins, ): True Current Output for DAC A/B. Normally tied to inverting input of current to voltage converter op amp. OT B, OT A (Pins, ): Complement Current Output for /B. Normally tied to ground. AGND (Pin ): Analog Ground Pin. Tie to ground. DGND (Pin ): Digital Ground Pin. Tie to ground. CS/LD (Pin ): The Serial Interface Enable and Load Control Input. When CS/LD is low the CLK signal is enabled so the data can be clocked in. When CS/LD is pulled high, data is loaded from the shift register into the DAC register, updating the DAC output. D OT (Pin ): The Serial Data Output. Data becomes valid on the rising edge of the CLK. D IN (Pin ): The Serial Data Input. Data on the D IN pin is latched into the shift register on the rising edge of the serial clock. Data is loaded as one -bit word. The first bits are for, MSB-first and the second bits are for, MSB-first. CLK (Pin ): The Serial Interface Clock Input. CLR (Pin ): The Clear Pin for the DAC. Clears both DACs to zero scale when pulled low. This pin should be tied to V CC for normal operation. V CC (Pin ): The Positive Supply Input.. V CC.V. Requires a bypass capacitor to ground.

6 LTC9 BLOCKDAGRA I W V REF B k k k k k k k k k k k R FB B OT B OT B DECODER D (MSB) LOAD D D9 D D DAC REGISTER B (LSB) V REF A 9 CS/LD R FB A OT A OT A CLK D IN IN CLK INPT -BIT SHIFT REGISTER OT D OT 9 BD V CC DGND AGND TIMING DIAGRAMS W W OPERATING SEQENCE D IN MSB INPT LSB INPT D D D9 D D D D D D D D D D D D9 D D D D D D D D D MSB LSB CLK 9 9 CS/LD (ENABLE CLOCK) (PDATE DAC OTPT) LTC9 TD

7 LTC9 TIMING DIAGRAMS W W TIMING DIAGRAM t t t t t CLK t t D IN D A MSB D A D9 A D B D B LSB CS/LD t t 9 D OT D A PREVIOS WORD D A PREVIOS WORD D9 A PREVIOS WORD D B PREVIOS WORD D A CRRENT WORD 9 TD APPLICATIONS INFORMATION Description W The LTC9 is a dual -bit multiplying DAC that has serial inputs and current outputs. It uses precision R/R resistor ladder technology to provide exceptional linearity and stability. The device operates from a single V supply and provides a ±V reference input and voltage output range when used with an external op amp. Serial I/O The LTC9 has a -wire SPI/MICROWIRE TM compatible serial port that accepts -bit serial words. Data is loaded MSB first with the first bits controlling and the second bits controlling. Data is shifted into the D IN input on the rising edge of CLK. The CS/LD input must be taken low before transferring data to enable the CLK input. After transferring data, CS/LD is pulled high to load data from the shift register to the DAC registers which updates both DACs. The buffered output of the -bit shift register is available on the D OT pin. Multiple DACs can be daisy-chained on one -wire interface by connecting the D OT pin to the D IN pin of the next DAC (see the Timing Diagrams section). MICROWIRE is a trademark of National Semiconductor Corporation. Equivalent Circuit Figure shows an equivalent analog circuit for the LTC9 DACs. R is the reference input, R REF, which is nominally k. The DAC output is represented by the Thevinin equivalent current source with a value of: (Code/9)(V REF /R) The current source I LKG models the junction leakage of the DAC output switches. I LKG is typically less than na at C and decreases by roughly two times for every C reduction in temperature. C OT is the output capacitance, and it also comes from the DAC output switches and varies from pf at zero scale to pf at full scale. R O is the equivalent output resistance, which varies with digital input code (see Op Amp Selection section). V REF A V REF B R CODE V REF ( 9 )( R ) R O R I LKG Figure. Equivalent Circuit R FB A R FB B OT A OT B COT OT A OT B AGND 9 F

8 LTC9 APPLICATIONS INFORMATION nipolar -Quadrant Multiplying Mode (V OT = V to V REF ) The LTC9 can be used with a dual op amp to provide a dual -quadrant multiplying DAC as shown in Figure. The unipolar DAC transfer function is shown in Table. The pf feedback capacitor is recommended to compensate for the pole caused by the internal feedback resistor and the OT output capacitance. For high speed op amps this feedback capacitor is required for stability, and a smaller value, pf to pf, may be desired to get the fastest transient response and shortest settling time. A larger feedback capacitor can be used to reduce wideband noise, glitch impulse and distortion for lower frequency signals. A pole is introduced in the DAC transfer function at approximately (C FB )(R FB ). For example, a pf feedback capacitor will typically give a pole at: khz = π pf kω W ( )( ) Table. nipolar Binary Code Table DIGITAL INPT BINARY NMBER ANALOG OTPT IN DAC REGISTER V OT MSB LSB V REF (9/9) V REF (/9) = V REF / V REF (/9) V Bipolar -Quadrant Multiplying Mode (V OT = V REF to V REF ) The circuit of Figure can be used to provide a dual -quadrant multiplying DAC. This circuit starts with the unipolar application circuit and adds three resistors and an op amp. These extra devices provide a gain of from the unipolar output to the bipolar output, plus an offset of ()(V REF ) to produce the transfer function shown in Table. A pack of matched k resistors, with two resistors in parallel forming the k resistor, is recommended..µf V V REF V TO V V CC V REF R FB OT LTC9 OR OT DGND AGND pf V LT V V OT V TO V REF 9 F Table. Bipolar Offset Binary Code Table DIGITAL INPT BINARY NMBER ANALOG OTPT IN DAC REGISTER V OT MSB LSB V REF (/) V REF () V V REF () V REF (/) = V REF Figure. nipolar Operation (-Quadrant Multiplication) V REF V TO V R k R k V.µF V CC V REF R FB OT LTC9 OR OT DGND AGND pf V LT V R k V LT V OT V REF TO V REF V 9 F Figure. Bipolar Operation (-Quadrant Multiplication)

9 LTC9 APPLICATIONS INFORMATION Op Amp Selection W To maintain the excellent accuracy and stability of the LTC9 thought should be given to op amp selection. Fortunately, the sensitivity of INL and DNL to op amp offset has been significantly reduced compared to competing parts of this type. The op amp s V OS causes DAC output offset. In addition, because the DAC s equivalent output resistance R O changes as a function of code, there is a code-dependent DAC output error proportional to V OS. For fixed reference applications this causes gain, INL and DNL error. For multiplying applications, a code-dependent, DC output voltage error is seen. At zero scale the DAC output error is equal to the op amp offset, and at full scale the output error is equal to twice the op amp offset. For example, a mv op amp offset will cause a.lsb zeroscale error and a.lsb full-scale error with a V fullscale range. The offset caused INL error is approximately. times the op amp V OS and DNL error is. times op amp V OS. For the same example of mv op amp V OS and V full-scale range, the INL degradation will be.lsb and DNL degradation will be.lsb. Op amp bias current causes only an offset error equal to (I BIAS )(R FB ) (I BIAS )(kω). For example, a na op amp bias current causes a.mv DAC offset, or.lsb for a V full-scale range. It is important to note that connecting the op amp noninverting input to ground through a resistor will not cancel bias current errors and should never be done! Similarly an offset caused by op amp bias current should not be adjusted by using the op amp null pins since this increases offset between DAC OT and OT pins, causing INL, DNL and gain errors. If op amp offset error adjustment is required, the op amp input offset voltage (the voltage difference between OT and OT) should be nulled. Grounding As with any high precision data converter, clean grounding is important. A low impedance analog ground plane and star grounding should be used. OT carries the complementary DAC output current and should be tied to the star ground with as low a resistance as possible. Other ground points that must be tied to the star ground point include the V REF input ground, the op amp noninverting input(s) and the V OT ground reference point. TYPICAL APPLICATIONS Dual Programmable Attenuator DATA IN SERIAL CLOCK CHIP SELECT/DAC LOAD DATA OT CLEAR.µF D IN CLK CS/LD D OT CLR V AGND DGND -BIT SHIFT REG AND LATCH V IN B ±V V REF B V REF A LTC9 R FB B R FB A 9 OT B OT B OT A OT A pf pf V LT LT V.µF V OT = V IN.µF V OT B D ( 9) V OT A 9 TA V IN A ±V 9

10 LTC9 TYPICAL APPLICATIONS Very Low Power Single Supply Dual V OT DAC k k / LT9 V OT A k k V.V / LT9 V OT B V TO.V 9 V CC V.V k.v OT B OT B R FB B V REF B LTC9 LT-..µF k k / LT9 OT A OT A R FB A V REF A AGND DGND I SPPLY TOTAL = µa (TYP) (WORSE-CASE CODE) 9 TA Dual Programmable Gain Amplifier V V IN B ±V DATA IN SERIAL CLOCK CHIP SELECT/DAC LOAD DATA OT CLEAR.µF D IN CLK CS/LD D OT CLR AGND DGND -BIT SHIFT REG AND LATCH V REF B R FB B LTC9 V REF A R FB A 9 OT B OT B OT A OT A pf pf V LT LT V.µF.µF V OT B 9 V OT = V IN ( D ) V OT A 9 TA V IN A ±V

11 LTC9 TYPICAL APPLICATIONS Dual Programmable Gain Amplifier with Input Attenuation V IN B ±V V k k k k DATA IN SERIAL CLOCK CHIP SELECT/DAC LOAD DATA OT CLEAR.µF D IN CLK CS/LD D OT CLR AGND DGND -BIT SHIFT REG AND LATCH k V REF B V REF A LTC9 R FB B R FB A 9 OT B OT B OT A OT A k pf pf V LT LT V.µF.µF V OT B 9 V OT = V IN ( D ) V OT A 9 TA9 k k V IN A ±V PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted. N Package -Lead PDIP (Narrow.) (LTC DWG # --).* (9.) MAX 9. ±.* (. ±.).. (..). ±. (. ±.).. (..).9. (.9.) ( ). (.) MIN. (.) MIN. (.) MIN. ±. (. ±.) *THESE DIMENSIONS DO NOT INCLDE MOLD FLASH OR PROTRSIONS. MOLD FLASH OR PROTRSIONS SHALL NOT EXCEED. INCH (.mm) Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.. (.) TYP. ±. (. ±.) N 9

12 LTC9 PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted. S Package -Lead Plastic Small Outline (Narrow.) (LTC DWG # --)..9* (9..).. (..).. (..) TYP..9 (..).. (..) (..) *DIMENSION DOES NOT INCLDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED." (.mm) PER SIDE ** DIMENSION DOES NOT INCLDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED." (.mm) PER SIDE. (.) TYP.. (.9.9)..** (..9) S 9 TYPICAL APPLICATION Dual Programmable Attenuator with Gain V IN B ±V V k k k DATA IN SERIAL CLOCK CHIP SELECT/DAC LOAD DATA OT CLEAR.µF D IN CLK CS/LD D OT CLR AGND DGND -BIT SHIFT REG AND LATCH V REF B R FB B LTC9 V REF A R FB A 9 OT B OT B OT A OT A k k k pf pf V LT LT V.µF V OT = V IN.µF V OT B D ( 9) V OT A 9 TA k k V IN A ±V RELATED PARTS PART NMBER DESCRIPTION COMMENTS LTC9 -Bit Multiplying I OT DAC in SO- True -Bit pgrade for DAC LTC9 -Bit Multiplying I OT DAC True -Bit pgrade for DAC and AD LTCA Parallel I/O Multiplying I OT -Bit DAC -Bit Wide Parallel Input LTC/LTC Serial I/O Multiplying I OT -Bit DACs Clear Pin and Serial Data Output (LTC) LTCA Parallel I/O Multiplying I OT -Bit DAC -Bit Wide Latched Parallel Input LTC Serial I/O Multiplying I OT -Bit DAC -Pin SO and PDIP Linear Technology Corporation McCarthy Blvd., Milpitas, CA 9- () -9 FAX: () - TELEX: f LT/TP 9 K PRINTED IN SA LINEAR TECHNOLOGY CORPORATION 99

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

FEATURES DESCRIPTIO APPLICATIO S LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO

FEATURES DESCRIPTIO APPLICATIO S LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

DESCRIPTIO. LTC1446/LTC1446L Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8

DESCRIPTIO. LTC1446/LTC1446L Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8 Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES Dual DACs with 12-Bit Resolution SO-8 Package Rail-to-Rail Output Amplifiers 3V Operation (LTC1446L): I CC = 65µA Typ 5V Operation (LTC1446): I

More information

TYPICAL APPLICATION LTC1591/LTC1591-1

TYPICAL APPLICATION LTC1591/LTC1591-1 FEATURES True -Bit Performance Over Industrial Temperature Range DNL and INL: LSB Max On-Chip 4-Quadrant Resistors Allow Precise V to V, V to V or ±V Outputs Pin Compatible 4- and -Bit Parts Asynchronous

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1498/LT MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1498/LT MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps FEATRES Rail-to-Rail Input and Output 475µV Max V OS from V + to V Gain-Bandwidth Product: MHz Slew Rate: 6V/µs Low Supply Current

More information

LTC Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES

LTC Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES 12-Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES Buffered True Rail-to-Rail Voltage Output Maximum DNL Error:.5LSB 12-Bit Resolution Supply Operation: 3V to 5V Output Swings from V to V REF

More information

Distributed by: www.jameco.com --- The content and copyrights of the attached material are the property of its owner. LTC Micropower Quad -Bit DAC FEATRES Tiny: DACs in the Board Space of an SO- Micropower:

More information

DESCRIPTIO. LTC Low Power, 8th Order Progressive Elliptic, Lowpass Filter

DESCRIPTIO. LTC Low Power, 8th Order Progressive Elliptic, Lowpass Filter LTC9- Low Power, th Order Progressive Elliptic, Lowpass Filter FEATRES th Order Elliptic Filter in SO- Package Operates from Single.V to ±V Power Supplies db at.f CTOFF db at.f CTOFF db at f CTOFF Wide

More information

FEATURES APPLICATIONS TYPICAL APPLICATION LT1466L/LT1467L Micropower Dual/Quad Precision Rail-to-Rail Input and Output Op Amps

FEATURES APPLICATIONS TYPICAL APPLICATION LT1466L/LT1467L Micropower Dual/Quad Precision Rail-to-Rail Input and Output Op Amps Micropower Dual/Quad Precision Rail-to-Rail Input and Output Op Amps FEATRES Rail-to-Rail Input and Output Low Supply Current: 75µA Max 39µV V OS(MAX) for V CM = V to V + High Common Mode Rejection Ratio:

More information

APPLICATIONS LT1351. Operational Amplifier DESCRIPTION FEATURES TYPICAL APPLICATION

APPLICATIONS LT1351. Operational Amplifier DESCRIPTION FEATURES TYPICAL APPLICATION FEATRES 3MHz Gain Bandwidth V/µs Slew Rate 5µA Supply Current Available in Tiny MSOP Package C-Load TM Op Amp Drives All Capacitive Loads nity-gain Stable Power Saving Shutdown Feature Maximum Input Offset

More information

LTC1515 Series Step-Up/Step-Down Switched Capacitor DC/DC Converters with Reset DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LTC1515 Series Step-Up/Step-Down Switched Capacitor DC/DC Converters with Reset DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION LTC Series Step-p/Step-Down Switched Capacitor DC/DC Converters with Reset FEATRES Adjustable/Selectable 3V, 3.3V or V Output Voltages V to V Input Voltage Range p to ma Output Current Only Three External

More information

TYPICAL APPLICATIO. LT MHz, 250V/µs, A V 4 Operational Amplifier DESCRIPTIO FEATURES APPLICATIO S

TYPICAL APPLICATIO. LT MHz, 250V/µs, A V 4 Operational Amplifier DESCRIPTIO FEATURES APPLICATIO S 5MHz, 5V/µs, A V Operational Amplifier FEATRES Gain-Bandwidth: 5MHz Gain of Stable Slew Rate: 5V/µs Input Noise Voltage: nv/ Hz C-Load TM Op Amp Drives Capacitive Loads Maximum Input Offset Voltage: µv

More information

Quad 12-Bit Digital-to-Analog Converter (Serial Interface)

Quad 12-Bit Digital-to-Analog Converter (Serial Interface) Quad 1-Bit Digital-to-Analog Converter (Serial Interface) FEATURES COMPLETE QUAD DAC INCLUDES INTERNAL REFERENCES AND OUTPUT AMPLIFIERS GUARANTEED SPECIFICATIONS OVER TEMPERATURE GUARANTEED MONOTONIC OVER

More information

DESCRIPTION FEATURES APPLICATIONS. LTC / LTC /LTC1329A-50 Micropower 8-Bit Current Output D/A Converter TYPICAL APPLICATION

DESCRIPTION FEATURES APPLICATIONS. LTC / LTC /LTC1329A-50 Micropower 8-Bit Current Output D/A Converter TYPICAL APPLICATION LTC9-/ LTC9-/LTC9A- Micropower -Bit Current Output D/A Converter FEATRES Guaranteed Precision Full-Scale DAC Output Current at C: LTC9A- µa ±% LTC9- µa ±% LTC9- µa ±% Wide Output Voltage DC Compliance:

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1039A/LT1039A-16 Triple RS232 Driver/Receiver with Shutdown

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1039A/LT1039A-16 Triple RS232 Driver/Receiver with Shutdown FEATRES On-Chip ESD Protection: ±15kV Human Body Model ±15kV IEC-00-4-2 Air Gap Test** ±8kV IEC-00-4-2 Contact Test 125kBd Operation with 3kΩ/2500pF Load 250kBd Operation with 3kΩ/00pF Load Operates from

More information

FEATURES DESCRIPTIO TYPICAL APPLICATIO LTC Bit, Ultra Precise, Fast Settling V OUT DAC APPLICATIO S

FEATURES DESCRIPTIO TYPICAL APPLICATIO LTC Bit, Ultra Precise, Fast Settling V OUT DAC APPLICATIO S FEATURES µs Settling to.15% for 1V Step 1LSB Max DNL and INL Over Industrial Temperature Range On-Chip 4-Quadrant Resistors Allow Precise V to 1V, V to 1V or ±1V Outputs Low Glitch Impulse: nv s Low Noise:

More information

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunication FINAL EXAMINATION. Session 1, ELEC3106 Electronics

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunication FINAL EXAMINATION. Session 1, ELEC3106 Electronics THE UNIVERSITY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunication FINAL EXAMINATION Session 1, 2014 ELEC3106 Electronics TIME ALLOWED: 3 hours TOTAL MARKS: 100 TOTAL NUMBER OF QUESTIONS:

More information

DESCRIPTION FEATURES. LT1490/LT1491 Dual and Quad Micropower Rail-to-Rail Input and Output Op Amps APPLICATIONS TYPICAL APPLICATION

DESCRIPTION FEATURES. LT1490/LT1491 Dual and Quad Micropower Rail-to-Rail Input and Output Op Amps APPLICATIONS TYPICAL APPLICATION FEATRES Rail-to-Rail Input and Output Single Supply Input Range:.4V to 44V Micropower: µa/amplifier Max Specified on 3V, 5V and ±5V Supplies High Output Current: ma Output Drives,pF with Output Compensation

More information

LTC1664 Micropower Quad 10-Bit DAC. Applications. Block Diagram

LTC1664 Micropower Quad 10-Bit DAC. Applications. Block Diagram LTC Micropower Quad -Bit DAC Features n Tiny: DACs in the Board Space of an SO- n Micropower: µa per DAC Plus µa Sleep Mode for Extended Battery Life n Wide.V to.v Supply Range n Rail-to-Rail Voltage Outputs

More information

FEATURES DESCRIPTIO APPLICATIO S. LT1636 Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp TYPICAL APPLICATIO

FEATURES DESCRIPTIO APPLICATIO S. LT1636 Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp TYPICAL APPLICATIO Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp FEATRES Rail-to-Rail Input and Output Micropower: 5µA I Q, 44V Supply MSOP Package Over-The-Top TM : Input Common Mode Range Extends 44V Above

More information

FEATURES DESCRIPTIO. LTC Linear Phase, DC Accurate, Low Power, 10th Order Lowpass Filter APPLICATIO S TYPICAL APPLICATIO

FEATURES DESCRIPTIO. LTC Linear Phase, DC Accurate, Low Power, 10th Order Lowpass Filter APPLICATIO S TYPICAL APPLICATIO Linear Phase, DC Accurate, Low Power, 0th Order Lowpass Filter FEATRES One External R Sets Cutoff Frequency Root Raised Cosine Response ma Supply Current with a Single Supply p to khz Cutoff on a Single

More information

FEATURES TYPICAL APPLICATIO. LT1635 Micropower Rail-to-Rail Op Amp and Reference DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LT1635 Micropower Rail-to-Rail Op Amp and Reference DESCRIPTIO APPLICATIO S LT5 Micropower Rail-to-Rail Op Amp and Reference FEATRES Guaranteed Operation at.v Op Amp and Reference on Single Chip Micropower: µa Supply Current Industrial Temperature Range SO- Packages Rail-to-Rail

More information

Distributed by: www.jameco.com --3-44 The content and copyrights of the attached material are the property of its owner. MHz, 3nV/ Hz, A V Operational Amplifier FEATRES Gain-Bandwidth: MHz Gain of Stable

More information

APPLICATIONS TYPICAL APPLICATION. LTC1841/LTC1842/LTC1843 Ultralow Power Dual Comparators with Reference DESCRIPTION FEATURES

APPLICATIONS TYPICAL APPLICATION. LTC1841/LTC1842/LTC1843 Ultralow Power Dual Comparators with Reference DESCRIPTION FEATURES LTC/LTC/LTC3 ltralow Power Dual Comparators with Reference FEATRES ltralow Quiescent Current: 3.µA Typ Open-Drain Outputs Typically Sink Greater Than ma Wide Supply Range: (LTC) Single: V to V Dual: ±V

More information

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LTC1046 Inductorless 5V to 5V Converter

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LTC1046 Inductorless 5V to 5V Converter LTC Inductorless V to V Converter FEATRES ma Output Current Plug-In Compatible with ICL/LTC R OT = Ω Maximum µa Maximum No Load Supply Current at V Boost Pin (Pin ) for Higher Switching Frequency 9% Minimum

More information

LT1780/LT1781 Low Power 5V RS232 Dual Driver/Receiver with ±15kV ESD Protection DESCRIPTIO

LT1780/LT1781 Low Power 5V RS232 Dual Driver/Receiver with ±15kV ESD Protection DESCRIPTIO FEATRES ma Max Supply Current ESD Protection to IEC -- Level ±1kV Air Gap, ±kv Contact ses Small Capacitors:.1µF kbaud Operation for R L = 3k, C L = pf kbaud Operation for R L = 3k, C L = pf Outputs Withstand

More information

DESCRIPTION FEATURES. LTC1550/LTC1551 Low Noise, Switched Capacitor Regulated Voltage Inverters APPLICATIONS TYPICAL APPLICATION

DESCRIPTION FEATURES. LTC1550/LTC1551 Low Noise, Switched Capacitor Regulated Voltage Inverters APPLICATIONS TYPICAL APPLICATION LTC55/LTC55 Low Noise, Switched Capacitor Regulated Voltage Inverters FEATRES Regulated Negative Voltage from a Single Positive Supply Low Output Ripple: Less Than mv P-P Typ High Charge Pump Frequency:

More information

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1080/LT1081 Advanced Low Power 5V RS232 Dual Driver/Receiver APPLICATIO S

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1080/LT1081 Advanced Low Power 5V RS232 Dual Driver/Receiver APPLICATIO S Advanced Low Power V RS Dual Driver/Receiver FEATRES Superior to CMOS Improved Speed: Operates over kbaud Improved Protection: Outputs Can Be Forced to ±0V without Damage Three-State Outputs Are High Impedance

More information

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1469 Dual 90MHz, 22V/µs 16-Bit Accurate Operational Amplifier APPLICATIO S

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1469 Dual 90MHz, 22V/µs 16-Bit Accurate Operational Amplifier APPLICATIO S FEATURES 9MHz Gain Bandwidth, f = khz Maximum Input Offset Voltage: 5µV Settling Time: 9ns (A V =, 5µV, V Step) V/µs Slew Rate Low Distortion: 96.5dB for khz, V P-P Maximum Input Offset Voltage Drift:

More information

DESCRIPTIO TYPICAL APPLICATIO. LTC1383 5V Low Power RS232 Transceiver FEATURES APPLICATIO S

DESCRIPTIO TYPICAL APPLICATIO. LTC1383 5V Low Power RS232 Transceiver FEATURES APPLICATIO S LTC V Low Power RS Transceiver FEATRES Operates from a Single V Supply Low Supply Current: I CC = µa ESD Protection Over ±kv Available in -Pin SOIC Narrow Package ses Small Capacitors: Operates to kbaud

More information

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER FEATURES 12-BICCURACY IN 8-PIN MINI-DIP AND 8-PIN SOIC FAST 3-WIRE SERIAL INTERFACE LOW INL AND DNL: ±1/2 LSB max GAIN ACCURACY TO ±1LSB

More information

Distributed by: www.jameco.com -8-8-22 The content and copyrights of the attached material are the property of its owner. FEATRES Input Bias Current, Warmed p: pa Max % Tested Low Voltage Noise: 8nV/ Hz

More information

FEATURES TYPICAL APPLICATIO. LTC1382 5V Low Power RS232 Transceiver with Shutdown DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LTC1382 5V Low Power RS232 Transceiver with Shutdown DESCRIPTIO APPLICATIO S FEATRES Operates from a Single V Supply Low Supply Current: I CC = µa I CC =.µa in Shutdown Mode ESD Protection Over ±1kV ses Small Capacitors:.1µF Operates to 1kBaud Output Overvoltage Does Not Force

More information

FEATURES TYPICAL APPLICATIO LTC MHz to 3GHz RF Power Detector. in SC70 Package DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO LTC MHz to 3GHz RF Power Detector. in SC70 Package DESCRIPTIO APPLICATIO S 300MHz to 3GHz RF Power Detector in SC70 Package FEATRES Temperature Compensated Internal Schottky Diode RF Detector Wide Input Frequency Range: 300MHz to 3GHz Wide Input Power Range: 30dBm to 6dBm Buffered

More information

FEATURES APPLICATIO S TYPICAL APPLICATIO. LTC Low Noise, 8th Order, Clock Sweepable Elliptic Lowpass Filter DESCRIPTIO

FEATURES APPLICATIO S TYPICAL APPLICATIO. LTC Low Noise, 8th Order, Clock Sweepable Elliptic Lowpass Filter DESCRIPTIO LTC- Low Noise, th Order, Clock Sweepable Elliptic Lowpass Filter FEATRES th Order Filter in a -Pin Package No External Components : Clock to Center Ratio µv RMS Total Wideband Noise.% THD or Better khz

More information

Distributed by: www.jameco.com --- The content and copyrights of the attached material are the property of its owner. Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier

More information

5-Bit VID-Controlled High Current Application (Simplified Block Diagram) 4.5V TO 22V LTC TG1 SW1 BG1 PGND TG2 SW2 BG2 4.5V TO 22V LTC TG1

5-Bit VID-Controlled High Current Application (Simplified Block Diagram) 4.5V TO 22V LTC TG1 SW1 BG1 PGND TG2 SW2 BG2 4.5V TO 22V LTC TG1 LTC0- -Bit ID oltage Programmer for AMD Opteron CPs FEATRES Programs Regulator Output oltage Range from 0. to. in m Steps Programs a Wide Range of Linear Technology DC/DC Converters with a 0. Reference

More information

FEATURES APPLICATIO S. LTC1588/LTC1589/LTC /14-/16-Bit SoftSpan DACs with Programmable Output Range DESCRIPTIO TYPICAL APPLICATIO

FEATURES APPLICATIO S. LTC1588/LTC1589/LTC /14-/16-Bit SoftSpan DACs with Programmable Output Range DESCRIPTIO TYPICAL APPLICATIO LTC88/LTC89/LTC9 -/-/-Bit SoftSpan DACs with Programmable Output Range FEATURES Six Programmable Output Ranges Unipolar Mode: V to, V to V Bipolar Mode: ±, ±V, ±.,. to. LSB Max DNL and INL Over the Industrial

More information

5-Bit VID-Controlled High Current 4-Phase Application (Simplified Block Diagram) 4.5V TO 22V LTC1629 TG1 SW1 BG1 PGND TG2 SW2 BG2 4.

5-Bit VID-Controlled High Current 4-Phase Application (Simplified Block Diagram) 4.5V TO 22V LTC1629 TG1 SW1 BG1 PGND TG2 SW2 BG2 4. -Bit Desktop VID Voltage Programmer FEATRES Programs Regulator Output Voltage Range from.v to.v in mv Steps and from.v to.v in mv Steps (VRM 8.) Programs a Wide Range of Linear Technology DC/DC Converters

More information

LT MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp. Description. Features. Applications. Typical Application

LT MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp. Description. Features. Applications. Typical Application Features n Stable in Gain A (A = ) n MHz Gain Bandwidth Product n /μs Slew Rate n Settling Time: 8ns ( Step, ) n Specified at and Supplies n Low Distortion, 9.dB for khz, P-P n Maximum Input Offset oltage:

More information

FEATURES DESCRIPTIO APPLICATIO S. LTC2050/LTC2050HV Zero-Drift Operational Amplifiers in SOT-23 TYPICAL APPLICATION

FEATURES DESCRIPTIO APPLICATIO S. LTC2050/LTC2050HV Zero-Drift Operational Amplifiers in SOT-23 TYPICAL APPLICATION FEATRES Maximum Offset Voltage of µv Maximum Offset Voltage Drift of nv/ C Noise:.µV P-P (.Hz to Hz Typ) Voltage Gain: db (Typ) PSRR: db (Typ) CMRR: db (Typ) Supply Current:.8mA (Typ) Supply Operation:.7V

More information

DESCRIPTIO. LT1413 Single Supply, Dual Precision Op Amp

DESCRIPTIO. LT1413 Single Supply, Dual Precision Op Amp Single Supply, Dual Precision Op Amp FEATRES Single Supply Operation: Input Goes Below Ground Output Swings to Ground Sinking Current No Pull-Down Resistors Needed Phase Reversal Protection At V, V Low

More information

FEATURES TYPICAL APPLICATIO. LTC Low Power 8th Order Pin Selectable Butterworth or Bessel Lowpass Filter DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LTC Low Power 8th Order Pin Selectable Butterworth or Bessel Lowpass Filter DESCRIPTIO APPLICATIO S FEATRES Pin Selectable Butterworth or Bessel Response ma Supply Current with ±V Supplies f CTOFF up to khz µv RMS Wideband Noise THD

More information

FEATURES TYPICAL APPLICATIO. LT1194 Video Difference Amplifier DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LT1194 Video Difference Amplifier DESCRIPTIO APPLICATIO S FEATURES Differential or Single-Ended Gain Block: ± (db) db Bandwidth: MHz Slew Rate: /µs Low Cost Output Current: ±ma Settling Time: ns to.% CMRR at MHz: db Differential Gain Error:.% Differential Phase

More information

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 19-1560; Rev 1; 7/05 +2.7V to +5.5V, Low-Power, Triple, Parallel General Description The parallel-input, voltage-output, triple 8-bit digital-to-analog converter (DAC) operates from a single +2.7V to +5.5V

More information

APPLICATIO S TYPICAL APPLICATIO. LT V Single Supply Video Difference Amplifier FEATURES DESCRIPTIO

APPLICATIO S TYPICAL APPLICATIO. LT V Single Supply Video Difference Amplifier FEATURES DESCRIPTIO FEATRES Differential or Single-Ended Gain Block Wide Supply Range V to.v Output Swings Rail-to-Rail Input Common Mode Range Includes Ground V/µs Slew Rate db Bandwidth = 7MHz, A V = ± CMRR at MHz: >db

More information

VID Controlled High Current 4-Phase DC/DC Converter (Simplified Block Diagram) 4.5V TO 22V V OS TG1 INTV CC SW1 LTC1629 BG1 PGND SGND TG2 EAIN SW2

VID Controlled High Current 4-Phase DC/DC Converter (Simplified Block Diagram) 4.5V TO 22V V OS TG1 INTV CC SW1 LTC1629 BG1 PGND SGND TG2 EAIN SW2 FEATRES Fully Compliant with the Intel RM 8. ID Specification Programs Regulator Output oltage from.0 to.8 in m Steps Programs an Entire Family of Linear Technology DC/DC Converters with 0.8 References

More information

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface 19-2124; Rev 2; 7/3 12-Bit, Low-Power, Dual, Voltage-Output General Description The dual,12-bit, low-power, buffered voltageoutput, digital-to-analog converter (DAC) is packaged in a space-saving 8-pin

More information

SCLK 4 CS 1. Maxim Integrated Products 1

SCLK 4 CS 1. Maxim Integrated Products 1 19-172; Rev ; 4/ Dual, 8-Bit, Voltage-Output General Description The contains two 8-bit, buffered, voltage-output digital-to-analog converters (DAC A and DAC B) in a small 8-pin SOT23 package. Both DAC

More information

DESCRIPTION FEATURES APPLICATIONS. LT1313 Dual PCMCIA VPP Driver/Regulator TYPICAL APPLICATION

DESCRIPTION FEATURES APPLICATIONS. LT1313 Dual PCMCIA VPP Driver/Regulator TYPICAL APPLICATION Dual PCMCIA VPP Driver/Regulator FEATRES Digital Selection of V, V CC, 12V or Hi-Z Output Current Capability: 12mA Internal Current Limiting and Thermal Shutdown Automatic Switching from 3.3V to Powered

More information

FEATURES TYPICAL APPLICATIO. LTC1443/LTC1444/LTC1445 Ultralow Power Quad Comparators with Reference DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LTC1443/LTC1444/LTC1445 Ultralow Power Quad Comparators with Reference DESCRIPTIO APPLICATIO S LTC/LTC/LTC ltralow Power Quad Comparators with Reference FEATRES ltralow Quiescent Current:.µA Max Reference Output Drives.µF Capacitor Adjustable Hysteresis (LTC/LTC) Wide Supply Range Single: V to V

More information

TYPICAL APPLICATIO. LT1027 Precision 5V Reference FEATURES DESCRIPTIO APPLICATIO S

TYPICAL APPLICATIO. LT1027 Precision 5V Reference FEATURES DESCRIPTIO APPLICATIO S Precision 5V Reference FEATRES Very Low Drift: 2ppm/ C Max TC Pin Compatible with LT121-5, REF-2, (PDIP Package) Output Sources 15mA, Sinks 1mA Excellent Transient Response Suitable for A-to-D Reference

More information

CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible

CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible FEATURES FOUR-QUADRANT MULTIPLICATION LOW GAIN TC: 2ppm/ C typ MONOTONICITY GUARANTEED OVER TEMPERATURE SINGLE 5V TO 15V SUPPLY

More information

FEATURES DESCRIPTIO. LTC6912 Dual Programmable Gain Amplifiers with Serial Digital Interface

FEATURES DESCRIPTIO. LTC6912 Dual Programmable Gain Amplifiers with Serial Digital Interface FEATURES 2 Channels with Independent Gain Control LTC692-: (,, 2, 5,, 2, 5, and V/V) LTC692-2: (,, 2, 4, 8, 6, 32, and 64V/V) Offset Voltage = 2mV Max ( 4 C to 85 C) Channel-to-Channel Gain Matching of.db

More information

Current Output/Serial Input, 16-Bit DAC AD5543-EP

Current Output/Serial Input, 16-Bit DAC AD5543-EP Data Sheet Current Output/Serial Input, 16-Bit DAC FEATURES FUNCTIONAL BLOCK DIAGRAM 1/+2 LSB DNL ±3 LSB INL Low noise: 12 nv/ Hz Low power: IDD = 1 μa.5 μs settling time 4Q multiplying reference input

More information

Distributed by: www.jameco.com -8-83-4242 The content and copyrights of the attached material are the property of its owner. FEATRES Regulates While Sourcing or Sinking Current Provides Termination for

More information

DESCRIPTIO. LT685 High Speed Comparator FEATURES APPLICATIO S TYPICAL APPLICATIO

DESCRIPTIO. LT685 High Speed Comparator FEATURES APPLICATIO S TYPICAL APPLICATIO High Speed Comparator FEATRES ltrafast (5.5ns typ) Complementary ECL Output 50Ω Line Driving Capability Low Offset Voltage Output Latch Capability External Hysteresis Control Pin Compatible with Am685

More information

APPLICATIO S BLOCK DIAGRA. LTC2602/LTC2612/LTC2622 Dual 16-/14-/12-Bit Rail-to-Rail DACs in 8-Lead MSOP FEATURES DESCRIPTIO

APPLICATIO S BLOCK DIAGRA. LTC2602/LTC2612/LTC2622 Dual 16-/14-/12-Bit Rail-to-Rail DACs in 8-Lead MSOP FEATURES DESCRIPTIO LTC262/LTC2612/LTC2622 Dual 16-/14-/12-Bit Rail-to-Rail DACs in 8-Lead MSOP FEATURES Smallest Pin-Compatible Dual DACs: LTC262: 16-Bits LTC2612: 14-Bits LTC2622: 12-Bits Guaranteed 16-Bit Monotonic Over

More information

DESCRIPTIO FEATURES. LTC1065 DC Accurate, Clock-Tunable Linear Phase 5th Order Bessel Lowpass Filter APPLICATIO S TYPICAL APPLICATIO

DESCRIPTIO FEATURES. LTC1065 DC Accurate, Clock-Tunable Linear Phase 5th Order Bessel Lowpass Filter APPLICATIO S TYPICAL APPLICATIO FEATRES Clock-Tunable Cutoff Frequency mv DC Offset (Typical) db CMR (Typical) Internal or External Clock µv RMS Clock Feedthrough : Clock-to-Cutoff Frequency Ratio µv RMS Total Wideband Noise.% Noise

More information

LT1342 5V RS232 Transceiver with 3V Logic Interface DESCRIPTIO

LT1342 5V RS232 Transceiver with 3V Logic Interface DESCRIPTIO V RS Transceiver with V Logic Interface FEATRES ESD Protection Over ±kv V Logic Interface ses Small Capacitors:.µF,.µF µa Supply Current in Shutdown Low Power Driver Disable Operating Mode Pin Compatible

More information

FEATURES. LT1612 Synchronous, Step-Down 800kHz PWM DC/DC Converter DESCRIPTIO APPLICATIO S TYPICAL APPLICATION

FEATURES. LT1612 Synchronous, Step-Down 800kHz PWM DC/DC Converter DESCRIPTIO APPLICATIO S TYPICAL APPLICATION Synchronous, Step-Down 8kHz PWM DC/DC Converter FEATRES Operates from Input Voltage As Low As 2V Internal.7A Synchronous Switches ses Ceramic Input and Output Capacitors 62mV Reference Voltage 8kHz Fixed

More information

Low-Power, Low-Glitch, Octal 12-Bit Voltage- Output DACs with Serial Interface

Low-Power, Low-Glitch, Octal 12-Bit Voltage- Output DACs with Serial Interface 9-232; Rev 0; 8/0 Low-Power, Low-Glitch, Octal 2-Bit Voltage- Output s with Serial Interface General Description The are 2-bit, eight channel, lowpower, voltage-output, digital-to-analog converters (s)

More information

FEATURES U APPLICATIO S TYPICAL APPLICATIO. LTC1860L/LTC1861L µpower, 3V, 12-Bit, 150ksps 1- and 2-Channel ADCs in MSOP DESCRIPTIO

FEATURES U APPLICATIO S TYPICAL APPLICATIO. LTC1860L/LTC1861L µpower, 3V, 12-Bit, 150ksps 1- and 2-Channel ADCs in MSOP DESCRIPTIO LTCL/LTCL µpower, V, -Bit, ksps - and -Channel ADCs in MSOP FEATRES -Bit ksps ADCs in MSOP Package Single V Supply Low Supply Current: µa (Typ) Auto Shutdown Reduces Supply Current to µa at ksps True Differential

More information

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LTC1250 Very Low Noise Zero-Drift Bridge Amplifier APPLICATIO S

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LTC1250 Very Low Noise Zero-Drift Bridge Amplifier APPLICATIO S LTC Very Low Noise Zero-Drift Bridge Amplifier FEATRES Very Low Noise:.µV P-P Typ,.Hz to Hz DC to Hz Noise Lower Than OP- Full Output Swing into k Load Offset Voltage: µv Max Offset Voltage Drift: nv/

More information

ABSOLTE MAXIMM RATINGS W W W... 7V Operating Junction Temperature Range Control Section... 0 C to 125 C Power Transistor... 0 C to 150 C Storage Tempe

ABSOLTE MAXIMM RATINGS W W W... 7V Operating Junction Temperature Range Control Section... 0 C to 125 C Power Transistor... 0 C to 150 C Storage Tempe FEATRES Fast Transient Response Guaranteed Dropout Voltage at Multiple Currents Load Regulation: 0.05% Typ Trimmed Current Limit On-Chip Thermal Limiting APPLICATIONS Intel Pentium Pro Processor GTL Supply

More information

DESCRIPTIO FEATURES APPLICATIO S. LT1129/LT /LT Micropower Low Dropout Regulators with Shutdown TYPICAL APPLICATIO

DESCRIPTIO FEATURES APPLICATIO S. LT1129/LT /LT Micropower Low Dropout Regulators with Shutdown TYPICAL APPLICATIO Micropower Low Dropout Regulators with Shutdown FEATRES.4V Dropout Voltage 7mA Output Current µa Quiescent Current No Protection Diodes Needed Adjustable Output from 3.8V to 3V 3.3V and V Fixed Output

More information

Low-Cost, Voltage-Output, 16-Bit DACs with Internal Reference in µmax

Low-Cost, Voltage-Output, 16-Bit DACs with Internal Reference in µmax 19-2655; Rev 2; 1/4 Low-Cost, Voltage-Output, 16-Bit DACs with General Description The serial input, voltage-output, 16-bit digital-to-analog converters (DACs) provide monotonic 16-bit output over temperature

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

+3V/+5V, Low-Power, 8-Bit Octal DACs with Rail-to-Rail Output Buffers

+3V/+5V, Low-Power, 8-Bit Octal DACs with Rail-to-Rail Output Buffers 19-1844; Rev 1; 4/1 EVALUATION KIT AVAILABLE +3V/+5V, Low-Power, 8-Bit Octal DACs General Description The are +3V/+5V single-supply, digital serial-input, voltage-output, 8-bit octal digital-toanalog converters

More information

LT Dual 200MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT Dual 200MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n Stable in Gain A (A = ) n MHz Gain Bandwidth Product n /μs Slew Rate n Settling Time: 8ns (μ, Step) n Specifi ed at and Supplies n Maximum Input Offset oltage: μ n Low Distortion: 9. for khz,

More information

3V/5V, 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference

3V/5V, 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 19-2332; Rev 2; 9/8 3V/5V, 12-Bit, Serial Voltage-Output Dual DACs General Description The low-power, dual 12-bit voltageoutput digital-to-analog converters (DACs) feature an internal 1ppm/ C precision

More information

General Description. Benefits and Features. Simplified Block Diagram. Applications

General Description. Benefits and Features. Simplified Block Diagram. Applications EVALUATION KIT AVAILABLE MAX5717/MAX5719 General Description The MAX5717 and MAX5719 are serial-input, unbuffered 16 and 20-bit voltage-output unipolar digital-to-analog converters (DACs) with integrated

More information

DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO LTC1921 Dual 48V Supply and Fuse Monitor FEATURES

DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO LTC1921 Dual 48V Supply and Fuse Monitor FEATURES LTC9 Dual Supply and Fuse Monitor FEATRES Withstands Transient Voltages p to V/V Requires No Precision External Components Independently Monitors Two Supplies for ndervoltage Faults:.V ±V MAX Overvoltage

More information

DESCRIPTIO FEATURES APPLICATIO S. LTC1063 DC Accurate, Clock-Tunable 5th Order Butterworth Lowpass Filter TYPICAL APPLICATIO

DESCRIPTIO FEATURES APPLICATIO S. LTC1063 DC Accurate, Clock-Tunable 5th Order Butterworth Lowpass Filter TYPICAL APPLICATIO FEATRES Clock-Tunable Cutoff Frequency mv DC Offset (Typical) db CMRR (Typical) Internal or External Clock µv RMS Clock Feedthrough : Clock-to-Cutoff Frequency Ratio 9µV RMS Total Wideband Noise.% THD

More information

FEATURES DESCRIPTIO. LT ns, Low Power, Single Supply, Ground-Sensing Comparator APPLICATIO S TYPICAL APPLICATIO

FEATURES DESCRIPTIO. LT ns, Low Power, Single Supply, Ground-Sensing Comparator APPLICATIO S TYPICAL APPLICATIO FEATURES Low Power: 45µA Fast: 6ns at 2mV Overdrive 85ns at 5mV Overdrive Low Offset Voltage:.8mV Operates Off Single or Dual ± Supplies Input Common Mode Extends to Negative Supply No Minimum Input Slew

More information

DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO. LT1813/LT1814 Dual/Quad 3mA, 100MHz, 750V/µs Operational Amplifiers

DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO. LT1813/LT1814 Dual/Quad 3mA, 100MHz, 750V/µs Operational Amplifiers / LT8 FEATRES MHz Gain Bandwidth Product 75V/µs Slew Rate 3.6mA Maximum Supply Current per Amplifier Tiny 3mm x 3mm x.8mm DFN Package 8nV/ Hz Input Noise Voltage nity-gain Stable.5mV Maximum Input Offset

More information

Low-Power, 12-Bit, Rail to Rail Voltage-Output Serial DAC in SOT23

Low-Power, 12-Bit, Rail to Rail Voltage-Output Serial DAC in SOT23 General Description The MAX5712 is a small footprint, low-power, 12-bit digitalto-analog converter (DAC) that operates from a single +2.7V to +5.5V supply. The MAX5712 on-chip precision output amplifier

More information

+5 Volt, Parallel Input Complete Dual 12-Bit DAC AD8582

+5 Volt, Parallel Input Complete Dual 12-Bit DAC AD8582 MIN Volts LINEARITY ERROR LSB a FEATURES Complete Dual -Bit DAC No External Components Single + Volt Operation mv/bit with.9 V Full Scale True Voltage Output, ± ma Drive Very Low Power: mw APPLICATIONS

More information

FEATURES DESCRIPTIO TYPICAL APPLICATIO. LM / LM /LM Micropower Voltage Reference APPLICATIO S

FEATURES DESCRIPTIO TYPICAL APPLICATIO. LM / LM /LM Micropower Voltage Reference APPLICATIO S Micropower Voltage Reference FEATRES 2µA to 2mA Operating Range Guaranteed % Initial Voltage Tolerance Guaranteed Ω Dynamic Impedance Very Low Power Consumption APPLICATIO S Portable Meter References Portable

More information

APPLICATIO S TYPICAL APPLICATIO. LTC1482 Low Power RS485 Transceiver with Carrier Detect and Receiver Fail-Safe DESCRIPTIO FEATURES

APPLICATIO S TYPICAL APPLICATIO. LTC1482 Low Power RS485 Transceiver with Carrier Detect and Receiver Fail-Safe DESCRIPTIO FEATURES FEATRES No Damage or Latchup to ±15kV (Human Body Model), IEC1-4-2 Level 4 (±8kV) Contact and Level 3 (±8kV) Air Discharge Active Low Carrier Detect Output Guaranteed High Receiver Output State for Floating,

More information

+3 Volt, Serial Input. Complete 12-Bit DAC AD8300

+3 Volt, Serial Input. Complete 12-Bit DAC AD8300 a FEATURES Complete 2-Bit DAC No External Components Single +3 Volt Operation.5 mv/bit with 2.475 V Full Scale 6 s Output Voltage Settling Time Low Power: 3.6 mw Compact SO-8.5 mm Height Package APPLICATIONS

More information

FEATURES U U PRECO DITIO I G APPLICATIO S TYPICAL APPLICATIO. LT1033 3A Negative Adjustable Regulator DESCRIPTIO

FEATURES U U PRECO DITIO I G APPLICATIO S TYPICAL APPLICATIO. LT1033 3A Negative Adjustable Regulator DESCRIPTIO NOT RECOMMENDED FOR NEW DESIGNS Contact Linear Technology for Potential Replacement FEATRES Guaranteed 1% Initial Voltage Tolerance Guaranteed.15%/V Line Regulation Guaranteed.2%/ W Thermal Regulation

More information

LTC1518/LTC Mbps Precision Delay RS485 Quad Line Receivers DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO

LTC1518/LTC Mbps Precision Delay RS485 Quad Line Receivers DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO FEATRES Precision Propagation Delay: 8.ns ±.ns Over C to C Temperature Range High Data Rate: Mbps Low t PLH /t PHL Skew: ps Typ Low Channel-to-Channel Skew: ps Typ Guaranteed Fail-Safe Operation over the

More information

LTC2751 Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O Description. Features. Applications. Typical Application

LTC2751 Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O Description. Features. Applications. Typical Application Features n Six Programmable Output Ranges Unipolar: V to, V to V Bipolar: ±, ±V, ±.,. to 7. n Maximum 6-Bit INL Error: ± LSB over Temperature n Low µa (Maximum Supply Current n Guaranteed Monotonic over

More information

PART MAX5304EUA TOP VIEW OUT 8 CONTROL INPUT REGISTER. Maxim Integrated Products 1

PART MAX5304EUA TOP VIEW OUT 8 CONTROL INPUT REGISTER. Maxim Integrated Products 1 19-1562; Rev ; 1/99 1-Bit Voltage-Output General Description The combines a low-power, voltage-output, 1-bit digital-to-analog converter () and a precision output amplifier in an 8-pin µmax package. It

More information

LC2 MOS Octal 8-Bit DAC AD7228A

LC2 MOS Octal 8-Bit DAC AD7228A a FEATURES Eight 8-Bit DACs with Output Amplifiers Operates with Single +5 V, +12 V or +15 V or Dual Supplies P Compatible (95 ns WR Pulse) No User Trims Required Skinny 24-Pin DlPs, SOIC, and 28-Terminal

More information

LT1169 Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp DESCRIPTIO U S

LT1169 Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp DESCRIPTIO U S FEATRES Input Bias Current, Warmed p: pa Max % Tested Low Voltage Noise: nv/ Hz Max S and N Package Standard Pinout Very Low Input Capacitance:.pF Voltage Gain:. Million Min Offset Voltage: mv Max Input

More information

2.5 V to 5.5 V, 500 A, Parallel Interface Quad Voltage-Output 8-/10-/12-Bit DACs AD5334/AD5335/AD5336/AD5344*

2.5 V to 5.5 V, 500 A, Parallel Interface Quad Voltage-Output 8-/10-/12-Bit DACs AD5334/AD5335/AD5336/AD5344* a FEATURES AD5334: Quad 8-Bit in 24-Lead TSSOP AD5335: Quad 1-Bit in 24-Lead TSSOP AD5336: Quad 1-Bit in 28-Lead TSSOP AD5344: Quad 12-Bit in 28-Lead TSSOP Low Power Operation: 5 A @ 3 V, 6 A @ 5 V Power-Down

More information

LC2 MOS Complete 12-Bit Multiplying DAC AD7845

LC2 MOS Complete 12-Bit Multiplying DAC AD7845 a FEATURES 12-Bit CMOS MDAC with Output Amplifier 4-Quadrant Multiplication Guaranteed Monotonic (T MIN to T MAX ) Space-Saving 0.3" DIPs and 24- or 28-Terminal Surface Mount Packages Application Resistors

More information

+2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

+2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 9-565; Rev ; /99 +.7 to +5.5, Low-Power, Dual, Parallel General Description The MAX5 parallel-input, voltage-output, dual 8-bit digital-to-analog converter (DAC) operates from a single +.7 to +5.5 supply

More information

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23 19-195; Rev 1; 1/4 1-Bit, Low-Power, Rail-to-Rail General Description The is a small footprint, low-power, 1-bit digital-to-analog converter (DAC) that operates from a single +.7V to +5.5V supply. The

More information

+3V/+5V, 12-Bit, Serial, Multiplying DACs

+3V/+5V, 12-Bit, Serial, Multiplying DACs 19-126; Rev 1; 9/2 +3/+5, 12-Bit, Serial, Multiplying DACs General Description The are 12-bit, current-output, 4-quadrant multiplying digital-to-analog converters (DACs). These devices are capable of providing

More information

OBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0

OBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0 a FEATURES Four High Performance VCAs in a Single Package.2% THD No External Trimming 12 db Gain Range.7 db Gain Matching (Unity Gain) Class A or AB Operation APPLICATIONS Remote, Automatic, or Computer

More information

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanodacs in LFCSP AD5541A/AD5542A/AD5512A

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanodacs in LFCSP AD5541A/AD5542A/AD5512A Preliminary Technical Data 2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanodacs in LFP FEATURES Low power, 1 LSB INL nanodacs AD5541A: 16 bits AD5542A: 16 bits AD5512A: 12 bits 2.7 V to 5.5

More information

LTC1798 Series Micropower Low Dropout References FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION

LTC1798 Series Micropower Low Dropout References FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION Micropower Low Dropout References FEATURES n mv Max Dropout at ma Output Current n µa Typical Quiescent Current n.% Max Initial Accuracy n No Output Capacitor Required n Output Sources ma, Sinks ma n ppm/

More information

APPLICATIO S TYPICAL APPLICATIO. LTC2051/LTC2052 Dual/Quad Zero-Drift Operational Amplifiers FEATURES DESCRIPTIO

APPLICATIO S TYPICAL APPLICATIO. LTC2051/LTC2052 Dual/Quad Zero-Drift Operational Amplifiers FEATURES DESCRIPTIO LTC/LTC Dual/Quad Zero-Drift Operational Amplifiers FEATRES Maximum Offset Voltage of μv Maximum Offset Voltage Drift of nv/ C Small Footprint, Low Profile MS/GN Packages Single Supply Operation:.V to

More information

DESCRIPTIO TYPICAL APPLICATION. LT1130A/LT1140A Series Advanced Low Power 5V RS232 Drivers/Receivers with Small Capacitors

DESCRIPTIO TYPICAL APPLICATION. LT1130A/LT1140A Series Advanced Low Power 5V RS232 Drivers/Receivers with Small Capacitors FEATRES ESD Protection over ±kv (±kv IEC--- for LTA, LTA and LTA) ses Small Capacitors:.µF,.µF µa Supply Current in SHTDOWN kbaud Operation for R L = k, C L = pf kbaud Operation for R L = k, C L = pf CMOS

More information

12-Bit Serial Input Multiplying DAC AD5441

12-Bit Serial Input Multiplying DAC AD5441 12-Bit Serial Input Multiplying DAC AD5441 FEATURES 2.5 V to 5.5 V supply operation True 12-bit accuracy 5 V operation @

More information

LT1106. DC/DC Converter for PCMCIA Card Flash Memory DESCRIPTIO OBSOLETE:

LT1106. DC/DC Converter for PCMCIA Card Flash Memory DESCRIPTIO OBSOLETE: FOR INFORMATION PRPOSES ONLY OBSOLETE: Contact Linear Technology for Potential Replacement FEATRES 60mA Output Current at 12V from 3V Supply Shutdown to 10µA Programmable 12V or 5V Output p to 85% Efficiency

More information