+5 Volt, Parallel Input Complete Dual 12-Bit DAC AD8582

Size: px
Start display at page:

Download "+5 Volt, Parallel Input Complete Dual 12-Bit DAC AD8582"

Transcription

1 MIN Volts LINEARITY ERROR LSB a FEATURES Complete Dual -Bit DAC No External Components Single + Volt Operation mv/bit with.9 V Full Scale True Voltage Output, ± ma Drive Very Low Power: mw APPLICATIONS Digitally Controlled Calibration Portable Equipment Servo Controls Process Control Equipment PC Peripherals LDA CS A/B DATA LDB + Volt, Parallel Input Complete Dual -Bit DAC AD88 FUNCTIONAL BLOCK DIAGRAM AD88 DAC A REGISTER INPUT A REGISTER INPUT B REGISTER DAC B REGISTER -BIT DAC A REFERENCE -BIT DAC B V OUTA V REF V OUTB AGND DGND RST MSB GENERAL DESCRIPTION The AD88 is a complete, parallel input, dual -bit, voltage output DAC designed to operate from a single + volt supply. Built using a CBCMOS process, this monolithic DAC offers the user low cost, and ease-of-use in + volt only systems. Included on the chip, in addition to the DACs, are a rail-to-rail amplifier, latch and reference. The reference (V REF ) is trimmed to. volts output, and the on-chip amplifier gains up the DAC output to.9 volts full scale. The user needs only supply a + volt supply. The AD88 is coded natural binary. The op amp output swings from volt to +.9 volts for a one-millivolt-per-bit resolution, and is capable of driving ± ma. Operation down to. V is possible with output load currents less than ma...8 VFS LSB T A = + C The high speed parallel data interface connects to the fastest processors without wait states. The double-buffered input structure allows the user to load the input registers one at a time, then a single load strobe tied to both LDA + LDB inputs will update both DAC outputs simultaneously. LDA and LDB can also be activated independently to immediately update their respective DAC registers. An address input decodes DAC A or DAC B when the chip select CS input is strobed. An asynchronous reset input sets the output to zero scale. The MSB bit can be used to establish a preset to midscale when the reset input is strobed. The AD88 is available in the -pin plastic DIP and the surface mount SOIC-. Each part is fully specified for operation over C to +8 C, and the full + V ± % power supply range.... = +V T A = C, + C, +8 C.6. PROPER OPERATION WHEN SUPPLY VOLTAGE ABOVE CURVE OUTPUT LOAD CURRENT ma Figure. Minimum Supply Voltage vs. Load... = + C & +8 C = C 8 7 DIGITAL INPUT CODE Decimal 96 Figure. Linearity Error vs. Digital Code and Temperature REV. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 96, Norwood. MA 6-96, U.S.A. Tel: 67/9-7 Fax: 67/6-87

2 AD88 SPECIFICATIONS ELECTRICAL CHARACTERISTICS = +. V ± %, R L = No Load, C T A +8 C, unless otherwise noted) Parameter Symbol Condition Min Typ Max Units STATIC PERFORMANCE Resolution N Note Bits Relative Accuracy INL ±/ + LSB Differential Nonlinearity DNL Monotonic ±/ + LSB Zero-Scale Error V ZSE Data = H +. + mv Full-Scale Voltage V FS Data = FFF H, V Full-Scale Tempco TCV FS Notes and ±6 ppm/ C MATCHING PERFORMANCE Linearity Matching Error V FS A/B ± LSB REFERENCE OUTPUT Output Voltage V REF.8..6 V Output Source Current I REF Note ma Line Rejection LN REJ.8 %/V Load Regulation LD REG I REF = ma to ma. %/ma ANALOG OUTPUT Output Current I OUT Data = 8 H ± ma Load Regulation at Half Scale LD REG R L = Ω to, Data = 8 H LSB Capacitive Load C L No Oscillation pf DYNAMIC CHARACTERISTICS Crosstalk C T >6 db Voltage Output Settling Time t S To ± LSB of Final Value 6 µs Digital Feedthrough F T Signal Measured at DAC Output, While nv s Changing Data (LDA = LDB = ) LOGIC INPUTS Logic Input Low Voltage V IL.8 V Logic Input High Voltage V IH. V Input Leakage Current I IL µa Input Capacitance C IL Note pf TIMING SPECIFICATIONS, 6 Chip Select Pulse Width t CSW ns DAC Select Setup t AS ns DAC Select Hold t AH ns Data Setup t DS ns Data Hold t DH ns Load Setup t LS ns Load Hold t LH ns Load Pulse Width t LDW ns Reset Pulse Width t RSW ns SUPPLY CHARACTERISTICS Positive Supply Current I DD V IH =. V, V IL =.8 V 7 ma V IL = V, = + V ma Power Dissipation 7 P DISS V IH =. V, V IL =.8 V mw V IL = V, = + V mw Power Supply Sensitivity PSS = ±%.. %/% NOTES LSB = mv for V to +.9 V output range. Includes internal voltage reference error. These parameters are guaranteed by design and not subject to production testing. Very little sink current is available at the V REF pin. Use external buffer if setting up a virtual ground. Settling time is not guaranteed for the first six codes through. 6 All input control signals are specified with t R = t F = ns (% to 9% of + V) and timed from a voltage level of.6 V. 7 Power dissipation is a calculated value I DD V. Specifications subject to change without notice. REV.

3 AD88 ABSOLUTE MAXIMUM RATINGS* to DGND & AGND V, +7 V Logic Inputs to DGND V, +. V V OUT to AGND V, +. V V REF to AGND V, +. V AGND to DGND V, I OUT Short Circuit to GND ma Package Power Dissipation (T J max T A )/θ JA Thermal Resistance, θ JA -Pin Plastic DIP Package (N-) C/W -Lead SOIC Package (SOL-) C/W Maximum Junction Temperature (T J max) C Operating Temperature Range C to +8 C Storage Temperature Range C to + C Lead Temperature (Soldering, sec) C *Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. CS A/B D D LDA, LDB RST V OUT t AS t DS t CSW t LS t AH t DH t LH t RSW t LDW t S t S ± LSB ERROR BAND Timing Diagram ORDERING INFORMATION* Temperature Package Package Model Range Description Option AD88AN C to +8 C -Pin Plastic DIP N- AD88AR C to +8 C -Lead SOIC SOL- AD88Chips + C Die *For die specifications contact your local Analog Devices sales office. The AD88 contains 7 transistors. Pin No. Name Description PIN DESCRIPTION, V OUTA Voltage outputs from the DACs. Fixed V OUTB output voltage range of V to.9 V with mv/lsb. An internal temperature stabilized reference maintains a fixed full-scale voltage independent of time, temperature and power supply variations. AGND Analog Ground. Ground reference for the internal bandgap reference voltage, the DAC, and the output buffer. DGND Digital ground for input logic., LDA, Load DAC register strobes. Transfers LDB input register data to the DAC registers. Active low inputs, Level sensitive latch. May be connected together to doublebuffer load DAC registers. MSB Digital Input: High presets DAC registers to half scale (8 H ), Low clears DAC registers to zero ( H ) upon RST assertion. 6 RST Active low digital input that clears the DAC register to zero, setting the DAC to minimum scale when MSB pin =, or half-scale when MSB pin =. 7 8 DB Twelve Binary Data Bit Inputs. DB is the MSB and DB is the LSB. 9 CS Chip Select. Active low input. A/B Select DAC A = or DAC B =. Positive Supply. Nominal value + V, ±%. V REF Nominal. V reference output voltage. This node must be buffered if required to drive external loads. N- -Pin Plastic DIP PIN CONFIGURATIONS V OUTA AGND V OUTB V REF DGND LDA LDB MSB RST DB 6 7 AD88 TOP VIEW (Not to Scale) 9 8 A/B CS DB DB 8 7 DB DB 9 6 DB9 DB DB8 DB DB7 DB DB6 SOL- -Pin SOIC AD88 TOP VIEW (Not to Scale) CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD88 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. WARNING! ESD SENSITIVE DEVICE REV.

4 AD88 Table I. Control Logic Truth Table CS A/B LDA LDB RST MSB Input Register DAC Register L L H H H X Write to A Latched L H H H H X Write to B Latched L L L H H X Write to A A Transparent L H H L H X Write to B B Transparent H X L L H X Latched A & B Transparent H X ^ ^ H X Latched Latched X X X X L L Reset to Zero Scale Reset to Zero Scale X X X X L H Reset to Midscale Reset to Midscale H X X X ^ X Latch Reset Value Latch Reset Value ^Denotes positive edge triggered. OPERATION The AD88 is a complete, ready-to-use dual -bit digital-toanalog converter. Only one + V power supply is necessary for operation. It contains two voltage-switched, -bit, lasertrimmed digital-to-analog converters, a curvature-corrected bandgap reference, rail-to-rail output op amps, input registers, and DAC registers. The parallel data interface consists of twelve data bits, DB DB, an address select pin A/B, two load strobe pins (LDA, LDB) and an active low CS strobe. In addition an asynchronous RST pin will set all DAC register bits to zero causing the V OUT to become zero volts, or to midscale for trimming applications when the MSB pin is programmed to Logic. This function is useful for power on reset or system failure recovery to a known state. BANDGAP REFERENCE V REF.V BUFFER VOLTAGE SWITCHED -BIT R-R D/A CONVERTER SPDT N CH FET SWITCHES R R R R R R R R RAIL-TO-RAIL OUTPUT AMPLIFIER R AV =.9/. =.68V/V V OUT D/A CONVERTER SECTION The internal DAC is a -bit voltage-mode device with an output that swings from AGND potential to the. volt internal bandgap voltage. It uses a laser trimmed R-R ladder which is switched by N channel MOSFETs. The output voltage of the DAC has a constant resistance independent of digital input code. The DAC output (not available to the user) is internally connected to the rail-to-rail output op amp. AMPLIFIER SECTION The internal DAC s output is buffered by a low power consumption precision amplifier. This low power amplifier contains a differential PNP pair input stage which provides low offset voltage and low noise, as well as the ability to amplify the zeroscale DAC output voltages. The rail-to-rail amplifier is configured in a gain of.68 (=.9 V/. V) in order to set the.9 volt full-scale output ( mv/lsb). See Figure for an equivalent circuit schematic of the analog section. The op amp has a 6 µs typical settling time to.%. There are slight differences in settling time for negative slewing signals versus positive. See the oscilloscope photos in the Typical Performances section of this data sheet. Figure. Equivalent Schematic of Analog Portion OUTPUT SECTION The rail-to-rail output stage of this amplifier has been designed to provide precision performance while operating near either power supply. Figure shows an equivalent output schematic of the rail-to-rail amplifier with its N channel pull-down FETs that will pull an output load directly to GND. The output sourcing current is provided by a P channel pull-up device that can supply GND terminated loads, especially important at the % supply tolerance value of.7 volts. P-CH N-CH V OUT AGND Figure. Equivalent Analog Output Circuit REV.

5 AD88 Figures and 6 in the typical performance characteristics section provide information on output swing performance near ground and full-scale as a function of load. In addition to resistive load driving capability, the amplifier has also been carefully designed and characterized for up to pf capacitive load driving capability. REFERENCE SECTION The internal. V curvature-corrected bandgap voltage reference is laser trimmed for both initial accuracy and low temperature coefficient. The voltage generated by the reference is available at the V REF pin. Since V REF is not intended to drive external loads, it must be buffered. The equivalent emitter follower output circuit of the V REF pin is shown in Figure. Bypassing the V REF pin will improve noise performance; however, bypassing is not required for proper operation. Figure 8 shows broadband noise performance. POWER SUPPLY The very low power consumption of the AD88 is a direct result of a circuit design optimizing use of the CBCMOS process. By using the low power characteristics of the CMOS for the logic, and the low noise, tight matching of the complementary bipolar transistors good analog accuracy is achieved. For power-consumption sensitive applications it is important to note that the internal power consumption of the AD88 is strongly dependent on the actual logic-input voltage levels present on the DB DB, CS, A/B, MSB, LDA, LDB and RST pins. Since these inputs are standard CMOS logic structures they contribute static power dissipation dependent on the actual driving logic V OH and V OL voltage levels. The graph in Figure 9 shows the effect on total AD88 supply current as a function of the actual value of input logic voltage. Consequently, for optimum dissipation use of CMOS logic versus TTL provides minimal dissipation in the static state. A V INL = V on the DB pins provides the lowest standby dissipation of ma typical with a + V power supply. As with any analog system, it is recommended that the AD88 power supply be bypassed on the same PC card that contains the chip. Figure shows the power supply rejection versus frequency performance. This should be taken into account when using higher frequency switched-mode power supplies with ripple frequencies of khz and higher. One advantage of the rail-to-rail output amplifiers used in the AD88 is the wide range of usable supply voltage. The part is fully specified and tested over temperature for operation from +.7 V to +. V. If reduced linearity and source current capability near full scale can be tolerated, operation of the AD88 is possible down to +. volts. The minimum operating supply voltage versus load current plot, in Figure, provides information for operation below = +.7 V. TIMING AND CONTROL The input registers are level triggered and acquire data from the data bus during the time period when CS is low. The input register selected is determined by the A/B select pin, see Table I. for a complete description. When CS goes high, the data is latched into the register and held until CS returns low. The minimum time required for the data to be present on the bus before CS returns high is called the data setup time (t DS ) as seen in Timing Diagram. The data hold time (t DH ) is the amount of time that the data has to remain on the bus after CS goes high. The high speed timing offered by the AD88 provides for direct interface with no wait states in all but the fastest microprocessors. The data from the input registers is transferred to the DAC registers by the active low LDA and LDB pins. If these inputs are tied together, a single logic input can perform a double buffer update of the DAC registers, which in turn simultaneously changes the analog output voltages to a new value. If the LDA and LDB pins are wired low, they become transparent. In this mode the input register data will directly control the output voltages. Refer to the Control Logic Truth Table for a complete description. Unipolar Output Operation This is the basic mode of operation for the AD88. The AD88 has been designed to drive loads as low as 8Ω in parallel with pf. The code table for this operation is shown in Table II. Table II. Unipolar Code Table Hexadecimal Number in DAC Decimal Number Analog Output Register in DAC Register Voltage (V) FFF FF REV.

6 V OUT Volts OUTPUT OUTPUT VOLTAGE mv/div LD INPUT DATA OUTPUT NOISE VOLTAGE µv/div SUPPLY CURRENT ma POWER SUPPLY REJECTION db OUTPUT VOLTAGE Volts OUTPUT PULL-DOWN VOLTAGE mv OUTPUT CURRENT ma AD88 Typical Performance Characteristics = +V T A = + C R L TIED TO AGND = +V DATA = H 8 6 POSITIVE CURRENT LIMIT R L TIED TO +V DATA = H k k k LOAD RESISTANCE Ω.. T A = +8 C T A = + C T A = C OUTPUT SINK CURRENT µa 6 8 DATA = 8 H R L TIED TO +V NEGATIVE CURRENT LIMIT OUTPUT VOLTAGE Volts Figure. Output Swing vs. Load Figure 6. Pull-Down Voltage vs. Output Sink Current Capability Figure 7. I OUT vs. V OUT T A = + C NBW = 6kHz = +.7V = +V T A = + C 8 6 = +V ±mv AC T A = + C TIME = µs/div LOGIC VOLTAGE VALUE Volts k k k FREQUENCY Hz Figure 8. Broadband Noise Figure 9. Supply Current vs. Logic Input Voltage Figure. Power Supply Rejection vs. Frequency V LDB TO 7 = +V T A = + C µs % V µs = +V T A = + C.8 TIME ns/div TIME = µs/div TIME µs/div Figure. Midscale Transition Performance Figure. Large Signal Settling Time Figure. Output Voltage Rise Time Detail 6 REV.

7 SUPPLY CURRENT ma mv/div DATA ZERO-SCALE OUTPUT Volts OUTPUT NOISE DENSITY µv/ Hz NOMINAL FULL-SCALE VOLTAGE CHANGE mv OUTPUT VOLTAGE mv/div FREQUENCY DATA FULL-SCALE OUTPUT Volts AD88 µs = +V T A = + C TUE = ΣINL+ZS+FS SS = 97 UNITS = +.7V T A = + C = +.7V NO LOAD SS = 98 UNITS σ +σ.8.8 σ σ TIME µs/div TOTAL UNADJUSTED ERROR mv.7 7 Figure. Output Voltage Fall Time Detail Figure. Total Unadjusted Error Histogram Figure 6. Full-Scale Voltage vs. Temperature = +.7V NO LOAD SS = 98 UNITS = +V T A = + C = +V SS = UNITS σ +σ. σ σ 7. k k k FREQUENCY Hz HOURS OF OPERATION AT + C 6 Figure 7. Zero-Scale Voltage vs. Temperature Figure 8. Output Voltage Noise Density vs. Frequency Figure 9. Long-Term Drift Accelerated by Burn-In = +.V V DATA = +.V NO LOAD = +.V V 9 V µs T A = + C R L = = +V 9 V µs CS = HIGH V REF VOUT = +.7V V % % V mv 7 TIME µs/div TIME µs/div Figure. Supply Current vs. Temperature Figure. Reference Startup vs. Time Figure. Digital Feedthrough vs. Time REV. 7

8 REFERENCE ERROR mv REF LOAD REGULATION %/ma REF LINE REGULATION %/Volt AD = +.7V σ +σ σ σ 7 Figure. Reference Error vs. Temperature PIN. (.) MAX. (.). (.8) PIN. (.8). (.6) σ +σ 7 = +.7V I L = ma σ σ Figure. Reference Load Regulation vs. Temperature OUTLINE DIMENSIONS Dimensions shown in inches and (mm). N- -Pin Narrow Body Plastic DIP.7 (.). (8.6). (.) BSC SOL- -Lead Wide Body SOIC.6 (.6).98 (.).7 (.77). (.).99 (7.6).9 (7.).8 (7.). (6.).6 (.). (.8). (.8) MIN SEATING PLANE.9 (.6).97 (.). (.6).96 (.). (8.). (7.6) σ +σ σ σ = +.7 TO +.V 7 Figure. Reference Line Regulation vs. Temperature.9 (.9). (.9). (.8).8 (.).9 (.7).98 (.) x PRINTED IN U.S.A. C869 8 /9.8 (.). (.). (.7) BSC.9 (.9).8 (.) 8. (.).9 (.). (.7).7 (.) 8 REV.

+3 Volt, Serial Input. Complete 12-Bit DAC AD8300

+3 Volt, Serial Input. Complete 12-Bit DAC AD8300 a FEATURES Complete 2-Bit DAC No External Components Single +3 Volt Operation.5 mv/bit with 2.475 V Full Scale 6 s Output Voltage Settling Time Low Power: 3.6 mw Compact SO-8.5 mm Height Package APPLICATIONS

More information

Quad 12-Bit Digital-to-Analog Converter (Serial Interface)

Quad 12-Bit Digital-to-Analog Converter (Serial Interface) Quad 1-Bit Digital-to-Analog Converter (Serial Interface) FEATURES COMPLETE QUAD DAC INCLUDES INTERNAL REFERENCES AND OUTPUT AMPLIFIERS GUARANTEED SPECIFICATIONS OVER TEMPERATURE GUARANTEED MONOTONIC OVER

More information

Octal Sample-and-Hold with Multiplexed Input SMP18

Octal Sample-and-Hold with Multiplexed Input SMP18 a FEATURES High Speed Version of SMP Internal Hold Capacitors Low Droop Rate TTL/CMOS Compatible Logic Inputs Single or Dual Supply Operation Break-Before-Make Channel Addressing Compatible With CD Pinout

More information

LC2 MOS Dual 12-Bit DACPORTs AD7237A/AD7247A

LC2 MOS Dual 12-Bit DACPORTs AD7237A/AD7247A a FEATURES Complete Dual 12-Bit DAC Comprising Two 12-Bit CMOS DACs On-Chip Voltage Reference Output Amplifiers Reference Buffer Amplifiers Improved AD7237/AD7247: 12 V to 15 V Operation Faster Interface

More information

+3 V/+5 V, Rail-to-Rail Quad, 8-Bit DAC AD7304/AD7305*

+3 V/+5 V, Rail-to-Rail Quad, 8-Bit DAC AD7304/AD7305* a FEATURES Four -Bit DACs in One Package +3 V, +5 V and 5 V Operation Rail-to-Rail REF-Input to Voltage Output Swing 2.6 MHz Reference Multiplying Bandwidth Compact. mm Height TSSOP 6-/2-Lead Package Internal

More information

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 19-1560; Rev 1; 7/05 +2.7V to +5.5V, Low-Power, Triple, Parallel General Description The parallel-input, voltage-output, triple 8-bit digital-to-analog converter (DAC) operates from a single +2.7V to +5.5V

More information

CMOS 8-Bit Buffered Multiplying DAC AD7524

CMOS 8-Bit Buffered Multiplying DAC AD7524 a FEATURES Microprocessor Compatible (6800, 8085, Z80, Etc.) TTL/ CMOS Compatible Inputs On-Chip Data Latches Endpoint Linearity Low Power Consumption Monotonicity Guaranteed (Full Temperature Range) Latch

More information

3 V Serial-Input Micropower 10-Bit and 12-Bit DACs AD7390/AD7391

3 V Serial-Input Micropower 10-Bit and 12-Bit DACs AD7390/AD7391 a FEATURES Micropower 100 A Single-Supply 2.7 V to. V Operation Compact 1.7 mm Height SO-8 Package and 1.1 mm Height TSSOP-8 Package AD7390 12-Bit Resolution AD7391 10-Bit Resolution SPI and QSPI Serial

More information

LC2 MOS Octal 8-Bit DAC AD7228A

LC2 MOS Octal 8-Bit DAC AD7228A a FEATURES Eight 8-Bit DACs with Output Amplifiers Operates with Single +5 V, +12 V or +15 V or Dual Supplies P Compatible (95 ns WR Pulse) No User Trims Required Skinny 24-Pin DlPs, SOIC, and 28-Terminal

More information

DACPORT Low Cost, Complete P-Compatible 8-Bit DAC AD557*

DACPORT Low Cost, Complete P-Compatible 8-Bit DAC AD557* a FEATURES Complete 8-Bit DAC Voltage Output 0 V to 2.56 V Internal Precision Band-Gap Reference Single-Supply Operation: 5 V ( 10%) Full Microprocessor Interface Fast: 1 s Voltage Settling to 1/2 LSB

More information

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface 19-2124; Rev 2; 7/3 12-Bit, Low-Power, Dual, Voltage-Output General Description The dual,12-bit, low-power, buffered voltageoutput, digital-to-analog converter (DAC) is packaged in a space-saving 8-pin

More information

12-Bit Serial Input DIGITAL-TO-ANALOG CONVERTER

12-Bit Serial Input DIGITAL-TO-ANALOG CONVERTER -Bit Serial Input DIGITAL-TO-ANALOG CONVERTER FEATURES LOW POWER:.5mW FAST SETTLING: 7µs to LSB mv LSB WITH.95V FULL-SCALE RANGE COMPLETE WITH REFERENCE -BIT LINEARITY AND MONOTONICITY OVER INDUSTRIAL

More information

High Common-Mode Voltage Difference Amplifier AD629

High Common-Mode Voltage Difference Amplifier AD629 a FEATURES Improved Replacement for: INAP and INAKU V Common-Mode Voltage Range Input Protection to: V Common Mode V Differential Wide Power Supply Range (. V to V) V Output Swing on V Supply ma Max Power

More information

OBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0

OBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0 a FEATURES Four High Performance VCAs in a Single Package.2% THD No External Trimming 12 db Gain Range.7 db Gain Matching (Unity Gain) Class A or AB Operation APPLICATIONS Remote, Automatic, or Computer

More information

AD557 SPECIFICATIONS. T A = 25 C, V CC = 5 V unless otherwise noted) REV. B

AD557 SPECIFICATIONS. T A = 25 C, V CC = 5 V unless otherwise noted) REV. B SPECIFICATIONS Model Min Typ Max Unit RESOLUTION 8 Bits RELATIVE ACCURACY 0 C to 70 C ± 1/2 1 LSB Ranges 0 to 2.56 V Current Source 5 ma Sink Internal Passive Pull-Down to Ground 2 SETTLING TIME 3 0.8

More information

12-Bit Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER

12-Bit Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER DAC764 DAC765 DAC764 DAC765 -Bit Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER FEATURES LOW POWER: 0mW UNIPOLAR OR BIPOLAR OPERATION SETTLING TIME: 0µs to 0.0% -BIT LINEARITY AND MONOTONICITY: to RESET

More information

Low-Power, 12-Bit, Rail to Rail Voltage-Output Serial DAC in SOT23

Low-Power, 12-Bit, Rail to Rail Voltage-Output Serial DAC in SOT23 General Description The MAX5712 is a small footprint, low-power, 12-bit digitalto-analog converter (DAC) that operates from a single +2.7V to +5.5V supply. The MAX5712 on-chip precision output amplifier

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

SCLK 4 CS 1. Maxim Integrated Products 1

SCLK 4 CS 1. Maxim Integrated Products 1 19-172; Rev ; 4/ Dual, 8-Bit, Voltage-Output General Description The contains two 8-bit, buffered, voltage-output digital-to-analog converters (DAC A and DAC B) in a small 8-pin SOT23 package. Both DAC

More information

CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible

CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible FEATURES FOUR-QUADRANT MULTIPLICATION LOW GAIN TC: 2ppm/ C typ MONOTONICITY GUARANTEED OVER TEMPERATURE SINGLE 5V TO 15V SUPPLY

More information

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23 19-195; Rev 1; 1/4 1-Bit, Low-Power, Rail-to-Rail General Description The is a small footprint, low-power, 1-bit digital-to-analog converter (DAC) that operates from a single +.7V to +5.5V supply. The

More information

+2.7 V to +5.5 V, Parallel Input, Voltage Output 8-Bit DAC AD7801

+2.7 V to +5.5 V, Parallel Input, Voltage Output 8-Bit DAC AD7801 a FEATURES Single 8-Bit DAC 2-Pin SOIC/TSSOP Package +2.7 V to +5.5 V Operation Internal and External Reference Capability DAC Power-Down Function Parallel Interface On-Chip Output Buffer Rail-to-Rail

More information

QUAD 12-BIT DIGITAL-TO-ANALOG CONVERTER (12-bit port interface)

QUAD 12-BIT DIGITAL-TO-ANALOG CONVERTER (12-bit port interface) QUAD -BIT DIGITAL-TO-ANALOG CONVERTER (-bit port interface) FEATURES COMPLETE WITH REFERENCE AND OUTPUT AMPLIFIERS -BIT PORT INTERFACE ANALOG OUTPUT RANGE: ±1V DESCRIPTION is a complete quad -bit digital-to-analog

More information

LC2 MOS Complete 12-Bit Multiplying DAC AD7845

LC2 MOS Complete 12-Bit Multiplying DAC AD7845 a FEATURES 12-Bit CMOS MDAC with Output Amplifier 4-Quadrant Multiplication Guaranteed Monotonic (T MIN to T MAX ) Space-Saving 0.3" DIPs and 24- or 28-Terminal Surface Mount Packages Application Resistors

More information

3 V, Parallel Input Micropower 10-/12-Bit DACs AD7392/AD7393

3 V, Parallel Input Micropower 10-/12-Bit DACs AD7392/AD7393 3 V, Parallel Input Micropower -/2-Bit DACs /AD7393 FEATURES Micropower: μa. μa typical power shutdown Single-supply 2.7 V to 5.5 V operation : 2-bit resolution AD7393: -bit resolution.9 LSB differential

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Precision, Low Power, Micropower Dual Operational Amplifier OP290 a FEATURES Single-/Dual-Supply Operation, 1. V to 3 V,. V to 1 V True Single-Supply Operation; Input and Output Voltage Ranges Include Ground Low Supply Current (Per Amplifier), A Max High Output Drive,

More information

DAC7615 FPO DAC7615. Serial Input, 12-Bit, Quad, Voltage Output DIGITAL-TO-ANALOG CONVERTER GND. Input Register A. DAC Register A.

DAC7615 FPO DAC7615. Serial Input, 12-Bit, Quad, Voltage Output DIGITAL-TO-ANALOG CONVERTER GND. Input Register A. DAC Register A. FPO Serial Input, -Bit, Quad, Voltage Output DIGITAL-TO-ANALOG CONVERTER FEATURES LOW POWER: mw UNIPOLAR OR BIPOLAR OPERATION SETTLING TIME: µs to.% -BIT LINEARITY AND MONOTONICITY: C to USER SELECTABLE

More information

Low-Power, Low-Glitch, Octal 12-Bit Voltage- Output DACs with Serial Interface

Low-Power, Low-Glitch, Octal 12-Bit Voltage- Output DACs with Serial Interface 9-232; Rev 0; 8/0 Low-Power, Low-Glitch, Octal 2-Bit Voltage- Output s with Serial Interface General Description The are 2-bit, eight channel, lowpower, voltage-output, digital-to-analog converters (s)

More information

10-Bit High Speed Multiplying D/A Converter (Universal Digital Logic Interface) DAC10*

10-Bit High Speed Multiplying D/A Converter (Universal Digital Logic Interface) DAC10* a FEATURES Fast Settling: 85 ns Low Full-Scale Drift: 0 ppm/ C Nonlinearity to 0.05% Max Over Temperature Range Complementary Current Outputs: 0 ma to ma Wide Range Multiplying Capability: MHz Bandwidth

More information

Dual, Current Feedback Low Power Op Amp AD812

Dual, Current Feedback Low Power Op Amp AD812 a FEATURES Two Video Amplifiers in One -Lead SOIC Package Optimized for Driving Cables in Video Systems Excellent Video Specifications (R L = ): Gain Flatness. db to MHz.% Differential Gain Error. Differential

More information

High Speed 12-Bit Monolithic D/A Converters AD565A/AD566A

High Speed 12-Bit Monolithic D/A Converters AD565A/AD566A a FEATURES Single Chip Construction Very High Speed Settling to 1/2 AD565A: 250 ns max AD566A: 350 ns max Full-Scale Switching Time: 30 ns Guaranteed for Operation with 12 V (565A) Supplies, with 12 V

More information

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER FEATURES 12-BICCURACY IN 8-PIN MINI-DIP AND 8-PIN SOIC FAST 3-WIRE SERIAL INTERFACE LOW INL AND DNL: ±1/2 LSB max GAIN ACCURACY TO ±1LSB

More information

12-Bit Successive-Approximation Integrated Circuit A/D Converter AD ADC80

12-Bit Successive-Approximation Integrated Circuit A/D Converter AD ADC80 a 2-Bit Successive-Approximation Integrated Circuit A/D Converter FEATURES True 2-Bit Operation: Max Nonlinearity.2% Low Gain T.C.: 3 ppm/ C Max Low Power: 8 mw Fast Conversion Time: 25 s Precision 6.3

More information

Microprocessor-Compatible 12-Bit D/A Converter AD667*

Microprocessor-Compatible 12-Bit D/A Converter AD667* a FEATURES Complete 12-Bit D/A Function Double-Buffered Latch On Chip Output Amplifier High Stability Buried Zener Reference Single Chip Construction Monotonicity Guaranteed Over Temperature Linearity

More information

High Accuracy 8-Pin Instrumentation Amplifier AMP02

High Accuracy 8-Pin Instrumentation Amplifier AMP02 a FEATURES Low Offset Voltage: 100 V max Low Drift: 2 V/ C max Wide Gain Range 1 to 10,000 High Common-Mode Rejection: 115 db min High Bandwidth (G = 1000): 200 khz typ Gain Equation Accuracy: 0.5% max

More information

150 μv Maximum Offset Voltage Op Amp OP07D

150 μv Maximum Offset Voltage Op Amp OP07D 5 μv Maximum Offset Voltage Op Amp OP7D FEATURES Low offset voltage: 5 µv max Input offset drift:.5 µv/ C max Low noise:.25 μv p-p High gain CMRR and PSRR: 5 db min Low supply current:. ma Wide supply

More information

High Precision 10 V IC Reference AD581

High Precision 10 V IC Reference AD581 High Precision 0 V IC Reference FEATURES Laser trimmed to high accuracy 0.000 V ±5 mv (L and U models) Trimmed temperature coefficient 5 ppm/ C maximum, 0 C to 70 C (L model) 0 ppm/ C maximum, 55 C to

More information

Low-Cost, Voltage-Output, 16-Bit DACs with Internal Reference in µmax

Low-Cost, Voltage-Output, 16-Bit DACs with Internal Reference in µmax 19-2655; Rev 2; 1/4 Low-Cost, Voltage-Output, 16-Bit DACs with General Description The serial input, voltage-output, 16-bit digital-to-analog converters (DACs) provide monotonic 16-bit output over temperature

More information

1.2 V Precision Low Noise Shunt Voltage Reference ADR512

1.2 V Precision Low Noise Shunt Voltage Reference ADR512 1.2 V Precision Low Noise Shunt Voltage Reference FEATURES Precision 1.200 V Voltage Reference Ultracompact 3 mm 3 mm SOT-23 Package No External Capacitor Required Low Output Noise: 4 V p-p (0.1 Hz to

More information

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Precision, Low Power, Micropower Dual Operational Amplifier OP290 Precision, Low Power, Micropower Dual Operational Amplifier OP9 FEATURES Single-/dual-supply operation:. V to 3 V, ±.8 V to ±8 V True single-supply operation; input and output voltage Input/output ranges

More information

12-Bit Successive-Approximation Integrated Circuit ADC ADADC80

12-Bit Successive-Approximation Integrated Circuit ADC ADADC80 2-Bit Successive-Approximation Integrated Circuit ADC FEATURES True 2-bit operation: maximum nonlinearity ±.2% Low gain temperature coefficient (TC): ±3 ppm/ C maximum Low power: 8 mw Fast conversion time:

More information

Current Output/Serial Input, 16-Bit DAC AD5543-EP

Current Output/Serial Input, 16-Bit DAC AD5543-EP Data Sheet Current Output/Serial Input, 16-Bit DAC FEATURES FUNCTIONAL BLOCK DIAGRAM 1/+2 LSB DNL ±3 LSB INL Low noise: 12 nv/ Hz Low power: IDD = 1 μa.5 μs settling time 4Q multiplying reference input

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

Quad Audio Switch REV. B BLOCK DIAGRAM OF ONE SWITCH CHANNEL

Quad Audio Switch REV. B BLOCK DIAGRAM OF ONE SWITCH CHANNEL a FEATURES CIickless Bilateral Audio Switching Four SPST Switches in a -Pin Package Ultralow THD+N:.8% @ khz ( V rms, R L = k ) Low Charge Injection: 3 pc typ High OFF Isolation: db typ (R L = k @ khz)

More information

Ultrafast Comparators AD96685/AD96687

Ultrafast Comparators AD96685/AD96687 a FEATURES Fast: 2.5 ns Propagation Delay Low Power: 118 mw per Comparator Packages: DIP, SOIC, PLCC Power Supplies: +5 V, 5.2 V Logic Compatibility: ECL 50 ps Delay Dispersion APPLICATIONS High Speed

More information

8-Bit A/D Converter AD673 REV. A FUNCTIONAL BLOCK DIAGRAM

8-Bit A/D Converter AD673 REV. A FUNCTIONAL BLOCK DIAGRAM a FEATURES Complete 8-Bit A/D Converter with Reference, Clock and Comparator 30 s Maximum Conversion Time Full 8- or 16-Bit Microprocessor Bus Interface Unipolar and Bipolar Inputs No Missing Codes Over

More information

2.5 V to 5.5 V, 500 A, Parallel Interface Quad Voltage-Output 8-/10-/12-Bit DACs AD5334/AD5335/AD5336/AD5344*

2.5 V to 5.5 V, 500 A, Parallel Interface Quad Voltage-Output 8-/10-/12-Bit DACs AD5334/AD5335/AD5336/AD5344* a FEATURES AD5334: Quad 8-Bit in 24-Lead TSSOP AD5335: Quad 1-Bit in 24-Lead TSSOP AD5336: Quad 1-Bit in 28-Lead TSSOP AD5344: Quad 12-Bit in 28-Lead TSSOP Low Power Operation: 5 A @ 3 V, 6 A @ 5 V Power-Down

More information

Octal, 16-Bit DAC with 5 ppm/ C On-Chip Reference in 14-Lead TSSOP AD5668-EP

Octal, 16-Bit DAC with 5 ppm/ C On-Chip Reference in 14-Lead TSSOP AD5668-EP Data Sheet Octal, -Bit with 5 ppm/ C On-Chip Reference in -Lead TSSOP FEATURES Enhanced product features Supports defense and aerospace applications (AQEC) Military temperature range ( 55 C to +5 C) Controlled

More information

3V/5V, 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference

3V/5V, 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 19-2332; Rev 2; 9/8 3V/5V, 12-Bit, Serial Voltage-Output Dual DACs General Description The low-power, dual 12-bit voltageoutput digital-to-analog converters (DACs) feature an internal 1ppm/ C precision

More information

AD9300 SPECIFICATIONS ELECTRICAL CHARACTERISTICS ( V S = 12 V 5%; C L = 10 pf; R L = 2 k, unless otherwise noted) COMMERCIAL 0 C to +70 C Test AD9300K

AD9300 SPECIFICATIONS ELECTRICAL CHARACTERISTICS ( V S = 12 V 5%; C L = 10 pf; R L = 2 k, unless otherwise noted) COMMERCIAL 0 C to +70 C Test AD9300K a FEATURES 34 MHz Full Power Bandwidth 0.1 db Gain Flatness to 8 MHz 72 db Crosstalk Rejection @ 10 MHz 0.03 /0.01% Differential Phase/Gain Cascadable for Switch Matrices MIL-STD-883 Compliant Versions

More information

2.5 V to 5.5 V, 230 A, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs AD5332/AD5333/AD5342/AD5343*

2.5 V to 5.5 V, 230 A, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs AD5332/AD5333/AD5342/AD5343* a FEATURES AD5332: Dual 8-Bit in 2-Lead TSSOP AD5333: Dual 1-Bit in 24-Lead TSSOP AD5342: Dual 12-Bit in 28-Lead TSSOP AD5343: Dual 12-Bit in 2-Lead TSSOP Low Power Operation: 23 A @ 3 V, 3 A @ 5 V via

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 a FEATURE HIGH DC PRECISION V max Offset Voltage.6 V/ C max Offset Drift pa max Input Bias Current LOW NOISE. V p-p Voltage Noise,. Hz to Hz LOW POWER A Supply Current Available in -Lead Plastic Mini-DlP,

More information

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8273 FEATURES ±4 V HBM ESD Very low distortion.25% THD + N (2 khz).15% THD + N (1 khz) Drives 6 Ω loads Two gain settings Gain of

More information

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES Preliminary Technical Data 0 MHz, 20 V/μs, G =, 0, 00, 000 i CMOS Programmable Gain Instrumentation Amplifier FEATURES Small package: 0-lead MSOP Programmable gains:, 0, 00, 000 Digital or pin-programmable

More information

Microprocessor-Compatible 12-Bit D/A Converter AD767*

Microprocessor-Compatible 12-Bit D/A Converter AD767* a FEATURES Complete 12-Bit D/A Function On-Chip Output Amplifier High Stability Buried Zener Reference Fast 40 ns Write Pulse 0.3" Skinny DIP and PLCC Packages Single Chip Construction Monotonicity Guaranteed

More information

Complete 14-Bit CCD/CIS Signal Processor AD9822

Complete 14-Bit CCD/CIS Signal Processor AD9822 a FEATURES 14-Bit 15 MSPS A/D Converter No Missing Codes Guaranteed 3-Channel Operation Up to 15 MSPS 1-Channel Operation Up to 12.5 MSPS Correlated Double Sampling 1 6x Programmable Gain 350 mv Programmable

More information

LTC Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES

LTC Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES 12-Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES Buffered True Rail-to-Rail Voltage Output Maximum DNL Error:.5LSB 12-Bit Resolution Supply Operation: 3V to 5V Output Swings from V to V REF

More information

Matched Monolithic Quad Transistor MAT04

Matched Monolithic Quad Transistor MAT04 a FEATURES Low Offset Voltage: 200 V max High Current Gain: 400 min Excellent Current Gain Match: 2% max Low Noise Voltage at 100 Hz, 1 ma: 2.5 nv/ Hz max Excellent Log Conformance: rbe = 0.6 max Matching

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

Single Supply, Low Power, Triple Video Amplifier AD8013

Single Supply, Low Power, Triple Video Amplifier AD8013 a FEATURES Three Video Amplifiers in One Package Drives Large Capacitive Load Excellent Video Specifications (R L = 5 ) Gain Flatness. db to MHz.% Differential Gain Error. Differential Phase Error Low

More information

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

REV. B. NOTES 1 At Pin 1. 2 Calculated as average over the operating temperature range. 3 H = Hermetic Metal Can; N = Plastic DIP.

REV. B. NOTES 1 At Pin 1. 2 Calculated as average over the operating temperature range. 3 H = Hermetic Metal Can; N = Plastic DIP. SPECIFICATIONS (@ V IN = 15 V and 25 C unless otherwise noted.) Model AD584J AD584K AD584L Min Typ Max Min Typ Max Min Typ Max Unit OUTPUT VOLTAGE TOLERANCE Maximum Error 1 for Nominal Outputs of: 10.000

More information

Four-Channel Sample-and-Hold Amplifier AD684

Four-Channel Sample-and-Hold Amplifier AD684 a FEATURES Four Matched Sample-and-Hold Amplifiers Independent Inputs, Outputs and Control Pins 500 ns Hold Mode Settling 1 s Maximum Acquisition Time to 0.01% Low Droop Rate: 0.01 V/ s Internal Hold Capacitors

More information

Single-Supply 42 V System Difference Amplifier AD8205

Single-Supply 42 V System Difference Amplifier AD8205 Single-Supply 42 V System Difference Amplifier FEATURES Ideal for current shunt applications High common-mode voltage range 2 V to +65 V operating 5 V to +68 V survival Gain = 50 Wide operating temperature

More information

OBSOLETE. 16-Bit/18-Bit, 16 F S PCM Audio DACs AD1851/AD1861

OBSOLETE. 16-Bit/18-Bit, 16 F S PCM Audio DACs AD1851/AD1861 a FEATURES 0 db SNR Fast Settling Permits 6 Oversampling V Output Optional Trim Allows Super-Linear Performance 5 V Operation 6-Pin Plastic DIP and SOIC Packages Pin-Compatible with AD856 & AD860 Audio

More information

Complete Low Cost 12-Bit D/A Converters ADDAC80/ADDAC85/ADDAC87

Complete Low Cost 12-Bit D/A Converters ADDAC80/ADDAC85/ADDAC87 a FEATURES Single Chip Construction On-Board Output Amplifier Low Power Dissipation: 300 mw Monotonicity Guaranteed over Temperature Guaranteed for Operation with 12 V Supplies Improved Replacement for

More information

Micropower Precision CMOS Operational Amplifier AD8500

Micropower Precision CMOS Operational Amplifier AD8500 Micropower Precision CMOS Operational Amplifier AD85 FEATURES Supply current: μa maximum Offset voltage: mv maximum Single-supply or dual-supply operation Rail-to-rail input and output No phase reversal

More information

LC2 MOS 16-Bit Voltage Output DAC AD7846

LC2 MOS 16-Bit Voltage Output DAC AD7846 a LC2 MOS -Bit Voltage Output DAC FEATURES -Bit Monotonicity over Temperature 2 LSBs Integral Linearity Error Microprocessor Compatible with Readback Capability Unipolar or Bipolar Output Multiplying Capability

More information

Dual 12-Bit Double-Buffered Multiplying CMOS D/A Converter DAC8222

Dual 12-Bit Double-Buffered Multiplying CMOS D/A Converter DAC8222 a FEATURES Two Matched 12-Bit DACs on One Chip Direct Parallel Load of All 12 Bits for High Data Throughput Double-Buffered Digital Inputs 12-Bit Endpoint Linearity ( 1/2 LSB) Over Temperature +5 V to

More information

Very Low Distortion, Precision Difference Amplifier AD8274

Very Low Distortion, Precision Difference Amplifier AD8274 Very Low Distortion, Precision Difference Amplifier AD8274 FEATURES Very low distortion.2% THD + N (2 khz).% THD + N ( khz) Drives Ω loads Excellent gain accuracy.3% maximum gain error 2 ppm/ C maximum

More information

Precision Micropower Single Supply Operational Amplifier OP777

Precision Micropower Single Supply Operational Amplifier OP777 a FEATURES Low Offset Voltage: 1 V Max Low Input Bias Current: 1 na Max Single-Supply Operation: 2.7 V to 3 V Dual-Supply Operation: 1.35 V to 15 V Low Supply Current: 27 A/Amp Unity Gain Stable No Phase

More information

200 ma Output Current High-Speed Amplifier AD8010

200 ma Output Current High-Speed Amplifier AD8010 a FEATURES 2 ma of Output Current 9 Load SFDR 54 dbc @ MHz Differential Gain Error.4%, f = 4.43 MHz Differential Phase Error.6, f = 4.43 MHz Maintains Video Specifications Driving Eight Parallel 75 Loads.2%

More information

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048 5 MHz, General Purpose Voltage Feedback Op Amps AD8/AD88 FEATURES Wide Bandwidth AD8, G = + AD88, G = + Small Signal 5 MHz 6 MHz Large Signal ( V p-p) MHz 6 MHz 5.8 ma Typical Supply Current Low Distortion,

More information

OBSOLETE. Ultrahigh Speed Window Comparator with Latch AD1317

OBSOLETE. Ultrahigh Speed Window Comparator with Latch AD1317 a FEATURES Full Window Comparator 2.0 pf max Input Capacitance 9 V max Differential Input Voltage 2.5 ns Propagation Delays Low Dispersion Low Input Bias Current Independent Latch Function Input Inhibit

More information

LC 2 MOS 16-Bit Voltage Output DAC AD7846

LC 2 MOS 16-Bit Voltage Output DAC AD7846 Data Sheet LC 2 MOS 6-Bit Voltage Output DAC FEATURES FUNCTIONAL BLOCK DIAGRAM 6-bit monotonicity over temperature ±2 LSBs integral linearity error Microprocessor compatible with readback capability Unipolar

More information

+2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

+2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 9-565; Rev ; /99 +.7 to +5.5, Low-Power, Dual, Parallel General Description The MAX5 parallel-input, voltage-output, dual 8-bit digital-to-analog converter (DAC) operates from a single +.7 to +5.5 supply

More information

Single Supply, Low Power Triple Video Amplifier AD813

Single Supply, Low Power Triple Video Amplifier AD813 a FEATURES Low Cost Three Video Amplifiers in One Package Optimized for Driving Cables in Video Systems Excellent Video Specifications (R L = 15 ) Gain Flatness.1 db to 5 MHz.3% Differential Gain Error.6

More information

Voltage-to-Frequency and Frequency-to-Voltage Converter ADVFC32

Voltage-to-Frequency and Frequency-to-Voltage Converter ADVFC32 a FEATURES High Linearity 0.01% max at 10 khz FS 0.05% max at 100 khz FS 0.2% max at 500 khz FS Output TTL/CMOS Compatible V/F or F/V Conversion 6 Decade Dynamic Range Voltage or Current Input Reliable

More information

9-Bit, 30 MSPS ADC AD9049 REV. 0. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

9-Bit, 30 MSPS ADC AD9049 REV. 0. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM a FEATURES Low Power: 00 mw On-Chip T/H, Reference Single +5 V Power Supply Operation Selectable 5 V or V Logic I/O Wide Dynamic Performance APPLICATIONS Digital Communications Professional Video Medical

More information

Low Cost Instrumentation Amplifier AD622

Low Cost Instrumentation Amplifier AD622 a FEATURES Easy to Use Low Cost Solution Higher Performance than Two or Three Op Amp Design Unity Gain with No External Resistor Optional Gains with One External Resistor (Gain Range 2 to ) Wide Power

More information

Dual 16-Bit DIGITAL-TO-ANALOG CONVERTER

Dual 16-Bit DIGITAL-TO-ANALOG CONVERTER Dual - DIGITAL-TO-ANALOG CONVERTER FEATURES COMPLETE DUAL V OUT DAC DOUBLE-BUFFERED INPUT REGISTER HIGH-SPEED DATA INPUT: Serial or Parallel HIGH ACCURACY: ±0.003% Linearity Error 14-BIT MONOTONICITY OVER

More information

Quad 8-Bit Multiplying CMOS D/A Converter with Memory DAC8408

Quad 8-Bit Multiplying CMOS D/A Converter with Memory DAC8408 a FEATURES Four DACs in a 28 Pin, 0.6 Inch Wide DIP or 28-Pin JEDEC Plastic Chip Carrier 1/4 LSB Endpoint Linearity Guaranteed Monotonic DACs Matched to Within 1% Microprocessor Compatible Read/Write Capability

More information

High Precision 10 V Reference AD587

High Precision 10 V Reference AD587 High Precision V Reference FEATURES Laser trimmed to high accuracy.000 V ± 5 mv (U grade) Trimmed temperature coefficient 5 ppm/ C maximum (U grade) Noise-reduction capability Low quiescent current: ma

More information

Quad 150 MHz Rail-to-Rail Amplifier AD8044

Quad 150 MHz Rail-to-Rail Amplifier AD8044 a FEATURES Single AD84 and Dual AD842 Also Available Fully Specified at + V, +5 V, and 5 V Supplies Output Swings to Within 25 mv of Either Rail Input Voltage Range Extends 2 mv Below Ground No Phase Reversal

More information

OP SPECIFICATIONS ELECTRICAL CHARACTERISTICS (V S = ± V, T A = C, unless otherwise noted.) OPA/E OPF OPG Parameter Symbol Conditions Min Typ Max Min T

OP SPECIFICATIONS ELECTRICAL CHARACTERISTICS (V S = ± V, T A = C, unless otherwise noted.) OPA/E OPF OPG Parameter Symbol Conditions Min Typ Max Min T a FEATURES Excellent Speed:. V/ms Typ Fast Settling (.%): ms Typ Unity-Gain Stable High-Gain Bandwidth: MHz Typ Low Input Offset Voltage: mv Max Low Offset Voltage Drift: mv/ C Max High Gain: V/mV Min

More information

OBSOLETE. High-Speed, Dual Operational Amplifier OP271 REV. A. Figure 1. Simplified Schematic (One of the two amplifiers is shown.

OBSOLETE. High-Speed, Dual Operational Amplifier OP271 REV. A. Figure 1. Simplified Schematic (One of the two amplifiers is shown. a FEATURES Excellent Speed:. V/ms Typ Fast Settling (.%): ms Typ Unity-Gain Stable High-Gain Bandwidth: MHz Typ Low Input Offset Voltage: mv Max Low Offset Voltage Drift: mv/ C Max High Gain: V/mV Min

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

Quad Picoampere Input Current Bipolar Op Amp AD704

Quad Picoampere Input Current Bipolar Op Amp AD704 a FEATURES High DC Precision 75 V Max Offset Voltage V/ C Max Offset Voltage Drift 5 pa Max Input Bias Current.2 pa/ C Typical I B Drift Low Noise.5 V p-p Typical Noise,. Hz to Hz Low Power 6 A Max Supply

More information

Octal, RS-232/RS-423 Line Driver ADM5170

Octal, RS-232/RS-423 Line Driver ADM5170 a FEATURES Eight Single Ended Line Drivers in One Package Meets EIA Standard RS-3E, RS-3A and CCITT V./X. Resistor Programmable Slew Rate Wide Supply Voltage Range Low Power CMOS 3-State Outputs TTL/CMOS

More information

Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio

Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio Low Power, Precision, Auto-Zero Op Amps FEATURES Low offset voltage: 3 μv maximum Input offset drift:.3 μv/ C Single-supply operation: 2.7 V to 5.5 V High gain, CMRR, and PSRR Low input bias current: 25

More information

10-Bit, 40 MSPS/60 MSPS A/D Converter AD9050 REV. B. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

10-Bit, 40 MSPS/60 MSPS A/D Converter AD9050 REV. B. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM a FEATURES Low Power: 1 mw @ 0 MSPS, mw @ 0 MSPS On-Chip T/H, Reference Single + V Power Supply Operation Selectable V or V Logic I/O SNR: db Minimum at MHz w/0 MSPS APPLICATIONS Medical Imaging Instrumentation

More information

PART MAX5541ESA REF CS DIN SCLK. Maxim Integrated Products 1

PART MAX5541ESA REF CS DIN SCLK. Maxim Integrated Products 1 9-572; Rev 2; 6/2 Low-Cost, +5, Serial-Input, General Description The serial-input, voltage-output, 6-bit monotonic digital-to-analog converter (DAC) operates from a single +5 supply. The DAC output is

More information

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599 Dual, Ultralow Distortion, Ultralow Noise Op Amp FEATURES Low noise: 1 nv/ Hz at 1 khz Low distortion: 5 db THD @ khz

More information

High Precision 10 V Reference AD587

High Precision 10 V Reference AD587 High Precision V Reference FEATURES Laser trimmed to high accuracy.000 V ±5 mv (L and U grades) Trimmed temperature coefficient 5 ppm/ C max (L and U grades) Noise reduction capability Low quiescent current:

More information

Ultrafast TTL Comparators AD9696/AD9698

Ultrafast TTL Comparators AD9696/AD9698 a FEATURES 4.5 ns Propagation Delay 200 ps Maximum Propagation Delay Dispersion Single +5 V or 5 V Supply Operation Complementary Matched TTL Outputs APPLICATIONS High Speed Line Receivers Peak Detectors

More information

DESCRIPTIO. LTC1446/LTC1446L Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8

DESCRIPTIO. LTC1446/LTC1446L Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8 Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES Dual DACs with 12-Bit Resolution SO-8 Package Rail-to-Rail Output Amplifiers 3V Operation (LTC1446L): I CC = 65µA Typ 5V Operation (LTC1446): I

More information

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP 5 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range ( 55 C to +25 C) Controlled manufacturing baseline

More information

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References 19-38; Rev 3; 6/7 Low-Power, Low-Drift, +2.5V/+5V/+1V General Description The precision 2.5V, 5V, and 1V references offer excellent accuracy and very low power consumption. Extremely low temperature drift

More information