Session 4: Analog Circuits. BJT Biasing Single stage amplifier

Size: px
Start display at page:

Download "Session 4: Analog Circuits. BJT Biasing Single stage amplifier"

Transcription

1 Session 4: Analog ircuits JT iasing Single stage amplifier 1

2 Outline JT Amplifier 2

3 JT: ipolar Junction Transistor i D A p D n R F F : Forward R : Reverse V D p n p n p n : F 2 : R Active V 1 : F 2 : F Saturation 1 2 Qp utoff 1 : R 2 : R Reversed 1 : R 2 : F V Qn 3

4 JT: ipolar Junction Transistor A p D n i D V D Qn / Δ Δ2 2 / / Δ Δ2 2 / 4

5 JT onfigurations : ommon mitter : ommon ase : ommon ollector Qn Qn Qn Input haracteristic vs. for different Output haracteristic vs. for different or Transfer haracteristic vs. or for different 5

6 : ommon mitter Qn Input haracteristic 0 0 very little dependence to output voltage Output haracteristic arly voltage Saturation Active: Active utoff 6

7 : Transistor Model Qn Saturation utoff Output haracteristic SOA: Safe Operatin g Area 0.2 7

8 : Output haracteristic Ideally linear: SPI Qn 1 Saturation utoff 1 8

9 eta : urrent Gain 9

10 : ommon ase Qn Output haracteristic Saturation 0.4 Input haracteristic Active utoff Active: 1 very little dependence to output voltage Δ Δ2 10

11 Large Signal Model Qn Saturation 2 1 Active Saturation 0.2~ ideal ideal

12 Voltage Amplifier Qn 0.1v 10v 1 cutoff active saturation 12

13 iasing: V = cte 0.1v 10v cutoff active saturation 13

14 iasing: I = cte For max swing: For max gain: ~ 5 ~ ~ 5Ω ~ 9.7Ω Ω What is the problem? Replace it with transistor with

15 iasing: I = cte For max swing: ~ 5 430Ω Negative feedback! 15

16 iasing: I = cte independent of ~ 2.7 4Ω Ω 10 5Ω 10v Where is the tradeoff?

17 iasing: I = cte Ω Ω Assume: Ω Ω 4Ω Ω? This is for design how about analysis 17

18 iasing: I = cte Ω Ω Ω 1 2Ω Assume: What if was 10! 10 KVL / 1 1 For the above numbers:

19 iasing: I = cte D similar Only in Integrated ircuits! / 1 / 1 area 19

20 iasing: xample 01 15V kΩ Q1 5.6kΩ Q2 3.9kΩ [ma] [V] kΩ / kΩ 3.3kΩ 1 15V Q1 5.6kΩ kΩ 9.89 KVL / 15V Q2 3.9kΩ kΩ KVL 3.3kΩ /

21 iasing: xample 02 Vcc=10V kΩ Q [ma] [V] Q Ω

22 iasing: xample Vcc=9V 3.3 kω 2.2 kω Q Q [ma] [V] 3.3 kω V 2.2 kω kΩ kω Q1 0.7 Q2 47kΩ kω 22

23 iasing: xample 04 Vcc=10V kω kω kω Q2 Q1 3.9 kω kω 1.1 [ma] [V] Find bias points if 8.2 Ω Q2 8.2 kω [ma] [V]

24 Linear JT Amplifier V V in R Qn V o 1 sin 1 sin 2 sin sin 24

25 JT Small Signal Model (hπ) Qn Input resistance: Output resistance: Tranceonductance: 1 25

26 xample 01 D: A: Ω Assume Design for Find,, window for ~ cutoff saturation and maximum swing 10? 5 5Ω 0.2~0 ~ ollector resistance mitter s circuit resistance if 0: 26

27 xample 02 1Ω Ω Ω 6 2 2Ω 4Ω 1 Assume A circuit 100 ~ Find,, : ~20Ω

28 xample 02 1Ω 10 73Ω 27Ω 4Ω 2Ω 1.8 How we can increase gain? 1Ω 10 73Ω 27Ω 4Ω 2Ω ypass capacitance 28

29 xample Design a buffer A circuit : 1 window for saturation cutoff 5Ω 0 9.3~10? Ω ~1 29

30 xample

31 xample 04 Multistage Amplifier 1Ω 73Ω 27Ω 10 2Ω 930Ω Design an amplifier: Ω Ω 10 1Ω A circuit 1Ω 20Ω Ω 930Ω 5Ω Ω 1Ω buffer 5Ω 31

32 xample 05,, A circuit ?

33 ommon ase

34 xample 05,, Ω 34

35 ascode Amplifier, neglecting base current A circuit:

36 Some Notes: 36

37 Summary

38 ? V A

39 Input / Output Impedances Input port Output port 39

Biasing. Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal.

Biasing. Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal. D iasing JT iasing iasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. The D input establishes an operating or quiescent point called the Q-point.

More information

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 9 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT JT iasing D analysis Fixed-bias circuit mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback circuit

More information

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 14 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT iasing D analysis Fixed-bias circuit (revision) mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback

More information

Lecture (08) Bipolar Junction Transistor (2)

Lecture (08) Bipolar Junction Transistor (2) Lecture (08) ipolar Junction Transistor (2) y: Dr. Ahmed lshafee 1 JT haracteristic ollector haracteristic urves 2 Applying fixed V, increasing V Saturation Assume that V is set to produce a certain value

More information

CHAPTER 3 THE BIPOLAR JUNCTION TRANSISTOR (BJT)

CHAPTER 3 THE BIPOLAR JUNCTION TRANSISTOR (BJT) HAPT 3 TH IPOLA JUNTION TANSISTO (JT) 1 In this chapter, we will: JT Discuss the physical structure and operation of the bipolar junction transistor. Understand the dc analysis of bipolar transistor circuits.

More information

การไบอ สทรานซ สเตอร. Transistors Biasing

การไบอ สทรานซ สเตอร. Transistors Biasing การไบอ สทรานซ สเตอร Transistors iasing iasing iasing: Applying D voltages to a transistor in order to turn it on so that it can amplify A signals. The D input establishes an operating or quiescent point

More information

Electronic Circuits Laboratory EE462G Lab #8. BJT Common Emitter Amplifier

Electronic Circuits Laboratory EE462G Lab #8. BJT Common Emitter Amplifier lectronic ircuits Laboratory 46G Lab #8 JT ommon mitter Amplifier npn ipolar Junction Transistor JT in a common-emitter configuration ase ollector V _ n p n V _ mitter For most applications the JT is operated

More information

Lecture (06) Bipolar Junction Transistor

Lecture (06) Bipolar Junction Transistor Lecture (06) Bipolar Junction Transistor By: Dr. Ahmed lshafee ١ Agenda BJT structure BJT operation BJT characteristics ٢ BJT structure The BJT is constructed with three doped semiconductor regions One

More information

Electronic Devices, 9th edition Thomas L. Floyd. Input signal. R 1 and R 2 are selected to establish V B. If the V CE

Electronic Devices, 9th edition Thomas L. Floyd. Input signal. R 1 and R 2 are selected to establish V B. If the V CE 3/9/011 lectronic Devices Ninth dition Floyd hapter 5: Transistor ias ircuits The D Operating Point ias establishes the operating point (Q-point) of a transistor amplifier; the ac signal (ma) moves above

More information

Electronics Fundamentals BIPOLAR TRANSISTORS. Construction, circuit symbols and biasing examples for NPN and PNP junction transistors.

Electronics Fundamentals BIPOLAR TRANSISTORS. Construction, circuit symbols and biasing examples for NPN and PNP junction transistors. IPOLA TANSISTOS onstruction, circuit symbols and biasing examples for NPN and PNP junction transistors Slide 1 xternal bias voltages create an electric field, which pulls electrons (emitted into the base

More information

FYSE400 ANALOG ELECTRONICS

FYSE400 ANALOG ELECTRONICS 7.9.016 YS400 ANALOG LTONS LTU 1 ntroduction to ipolar Junction Transistor ircuits 1 NTODUTON The deal urrent-controlled urrent Source efore the detailed analyzation of transistor operation, we should

More information

TO-92 SOT-23 Mark: 83. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

TO-92 SOT-23 Mark: 83. TA = 25 C unless otherwise noted. Symbol Parameter Value Units 2N44 MMBT44 2N44 / MMBT44 B E TO-92 SOT-23 Mark: 83 B E This device is designed for use as general purpose amplifiers and switches requiring collector currents to 5 ma. Absolute Maximum Ratings* TA = 25

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics nstitute for NT/JF, GAT, T-JAM, M.Sc. ntrance, JST, TF and G in Physics 3. ipolar Junction Transistors 3.1 Transistor onstruction Transistor is a three-layer semiconductor device consisting of either two

More information

Chapter 4 DC Biasing BJTs. BJTs

Chapter 4 DC Biasing BJTs. BJTs hapter 4 D Biasing BJTs BJTs Biasing Biasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. Operating Point The D input establishes an operating or

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Junction Transistor (JT ipolar Junction Transistors JT is a three-terminal device: emitter (, collector ( and base (. There are two types: pnp-type and npn-type. npn transistor: emitter & collector

More information

Celso José Faria de Araújo, M.Sc.

Celso José Faria de Araújo, M.Sc. elso José Faria de Araújo, M.Sc. TH IPOLA JUNTION TANSISTOS - JT Objecties: Understand the basic principles of JT operation Interpret the transport model Identify operating regions of the JT and use simplified

More information

BJT Amplifiers: Overview

BJT Amplifiers: Overview Indian Institute of Technology Jodhpur, Year 07 Analog lectronics (ourse ode: 34) Lecture 9 0: BJT Biasing, Amplifiers ourse Instructor: Shree Prakash Tiwari mail: sptiwari@iitj.ac.in Webpage: http://home.iitj.ac.in/~sptiwari/

More information

8. Biasing Transistor Amplifiers

8. Biasing Transistor Amplifiers 8. iasing Transistor Amplifiers Lecture notes: Sec. 5 Sedra & Smith (6 th d): Sec. 5.4, 5.6 & 6.3-6.4 Sedra & Smith (5 th d): Sec. 4.4, 4.6 & 5.3-5.4 65, Winter013, F. Najmabadi ssues in developing a transistor

More information

CO2005: Electronics I. Transistor (BJT) Electronics I, Neamen 3th Ed. 1

CO2005: Electronics I. Transistor (BJT) Electronics I, Neamen 3th Ed. 1 O2005: Electronics The Bipolar Junction Transistor (BJT) Electronics, Neamen 3th Ed. 1 Bipolar Transistor Structures N P 17 10 N D 19 10 N D 15 10 Electronics, Neamen 3th Ed. 2 Forward-Active Mode in the

More information

EE 330 Lecture 18. Characteristics of Finer Feature Size Processes. Bipolar Process

EE 330 Lecture 18. Characteristics of Finer Feature Size Processes. Bipolar Process 330 Lecture 18 haracteristics of Finer Feature Size Processes ipolar Process How does the inverter delay compare between a 0.5u process and a 0.13u process? DD IN OUT IN OUT SS How does the inverter

More information

EE 330 Lecture 19. Bipolar Devices

EE 330 Lecture 19. Bipolar Devices 330 Lecture 19 ipolar Devices Review from last lecture n-well n-well n- p- Review from last lecture Metal Mask A-A Section - Section Review from last lecture D A A D Review from last lecture Should now

More information

Analog Electronics (Course Code: EE314) Lecture 5 7: Junction contd, BJT. Course Instructor: Shree Prakash Tiwari

Analog Electronics (Course Code: EE314) Lecture 5 7: Junction contd, BJT. Course Instructor: Shree Prakash Tiwari ndian nstitute of echnology Jodhpur, Year 2017 Analog lectronics (ourse ode: 314) Lecture 5 7: Junction contd, J ourse nstructor: Shree Prakash iwari mail: sptiwari@iitj.ac.in Webpage: http://home.iitj.ac.in/~sptiwari/

More information

TO-92 SOT-23 Mark: 3G. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

TO-92 SOT-23 Mark: 3G. TA = 25 C unless otherwise noted. Symbol Parameter Value Units MPSH MMBTH MPSH / MMBTH E B TO-92 SOT-2 Mark: G B E This device is designed for common-emitter low noise amplifier and mixer applications with collector currents in the µa to ma range to MHz, and low frequency

More information

I B. VCE =const. 25mV I C. V out = I C R C = β I B R C = βr C βr e

I B. VCE =const. 25mV I C. V out = I C R C = β I B R C = βr C βr e Physics 338 L 6 Spring 2016 ipolar Junction Transistors 0. (a) Load Lines and haracteristic urves The below figure shows the characteristic curves for a JT along with the load line for the simple common

More information

MMBT2222A. SOT-23 Mark: 1P. SOT-6 Mark:.1B. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

MMBT2222A. SOT-23 Mark: 1P. SOT-6 Mark:.1B. TA = 25 C unless otherwise noted. Symbol Parameter Value Units PN2222A TO-92 MMPQ2222 SOI-6 MMT2222A SOT-23 Mark: P PZT2222A SOT-223 NMT2222 SOT-6 Mark:. 2 Discrete POWR & Signal Technologies 2 2 This device is for use as a medium power amplifier and switch requiring

More information

BJT as an Amplifier and Its Biasing

BJT as an Amplifier and Its Biasing Microelectronic ircuits BJT as an Amplifier and Its Biasing Slide 1 Transfer haracteristics & Biasing Slide 2 BJT urrent-oltage relationship The collector current i I i i B s e i B vbe Is e T v BE T Emitter

More information

Lecture 6. OUTLINE BJT (cont d) PNP transistor (structure, operation, models) BJT Amplifiers General considerations. Reading: Chapter

Lecture 6. OUTLINE BJT (cont d) PNP transistor (structure, operation, models) BJT Amplifiers General considerations. Reading: Chapter Lecture 6 ANNOUNCMNTS HW#3, Prob. 2: Re-draw -plots for W reduced by a factor of 2. n case of a major earthquake: Try to duck/crouch on the floor in front of the seats for cover. Once the earthquake stops,

More information

PART MAX2601ESA MAX2602ESA TOP VIEW

PART MAX2601ESA MAX2602ESA TOP VIEW 9-; Rev 2; /97 VALUATION KIT AVAILAL.6V, W RF Power Transistors General Description The are RF power transistors optimized for use in portable cellular and wireless equipment that operates from three Nid/NiMH

More information

Output Stage and Power Amplifiers

Output Stage and Power Amplifiers Microelectronic Circuits Output Stage and ower Amplifiers Slide 1 ntroduction Most of the challenging requirement in the design of the output stage is ower delivery to the load. ower consumption at the

More information

Lecture 6: Transistors Amplifiers. K.K. Gan Lecture 6: Transistors Amplifiers

Lecture 6: Transistors Amplifiers. K.K. Gan Lecture 6: Transistors Amplifiers Lecture 6: Transistors Amplifiers ommon mitter Amplifier ( Simplified ): What's common (ground) a common emitter amp? The emitter! The emitter is connected (tied) to ground usually by a capacitor To an

More information

TO-92 SOT-23 Mark: 2A. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

TO-92 SOT-23 Mark: 2A. TA = 25 C unless otherwise noted. Symbol Parameter Value Units 2N396 / MMBT396 / MMPQ396 / PZT396 N Discrete POWER & Signal Technologies 2N396 MMBT396 E B E TO-92 SOT-23 Mark: 2A B MMPQ396 PZT396 E B E B E B E B SOI-6 SOT-223 B E This device is designed for general

More information

N9-1. Gain. Input and Output Impedances. Amplifier Types. Z out. Z in = AH( jω)

N9-1. Gain. Input and Output Impedances. Amplifier Types. Z out. Z in = AH( jω) Amplification We have seen in earlier notes that a carbon composition resistor continuously dissipates heat to the environment. Most circuit elements do likewise to some degree, including the capacitor

More information

EE 434 Lecture 21. MOS Amplifiers Bipolar Devices

EE 434 Lecture 21. MOS Amplifiers Bipolar Devices 434 ecture MOS Amplifiers ipolar Devices Quiz 3 The quiescent voltage across the 5K resistor in the circuit shown was measured to be 3. ) Determine the quiescent output voltage ) Determine the small signal

More information

Laboratory Four - Bipolar Junction Transistor (BJT)

Laboratory Four - Bipolar Junction Transistor (BJT) M/IS 3512 ioelectronics Laboratory Four - ipolar Junction Transistor (JT) Learning Objectives: Know how to differentiate between PNP & NPN JT transistors using a multimeter. e familiar with the operation

More information

TO-92 SOT-23 Mark: ZF. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

TO-92 SOT-23 Mark: ZF. TA = 25 C unless otherwise noted. Symbol Parameter Value Units 2N426 MMBT426 2N426 / MMBT426 B E TO-92 SOT-23 Mark: ZF B E This device is designed for general purpose amplifier and switching applications at collector currents to µa as a switch and to ma as an amplifier.

More information

Biasing of BJT IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1

Biasing of BJT IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1 HTTP://NGNS.N/ NGNS- ONSULTANTS LTU NOTS SS LTONS NGNNG 1 YA UPTU iasing of JT As we know that JT can be operated in three regions: active, saturation and cutoff by applying proper voltage condition. n

More information

Transistors. electrons N P N holes. Base. An NPN device makes a transistor

Transistors. electrons N P N holes. Base. An NPN device makes a transistor NPN Transistor Theory Transistors Transistors are similar to diodes in that they are made up on ntype and ptype silicon. They differ in that Transistors are 3terminal devices (NPN or PNP), Transistors

More information

Lecture 4. Accurate Bipolar Representation. Forward Active Region. Structure and Symbol of Bipolar Transistor

Lecture 4. Accurate Bipolar Representation. Forward Active Region. Structure and Symbol of Bipolar Transistor Lecture 4 Structure and Symbol of ipolar ransistor OULNE ipolar Junction ransistor (J) General considerations Structure Operation in active mode Large signal model and characteristics ransconductance Small

More information

Chapter 4 Physics of Bipolar Transistors. EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of Bipolar Transistor

Chapter 4 Physics of Bipolar Transistors. EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of Bipolar Transistor EE105 - Spring 2007 Microelectronic Devices and ircuits Lecture 10 Bipolar ransistors hapter 4 Physics of Bipolar ransistors 4.1 General onsiderations 4.2 Structure of Bipolar ransistor 4.3 Operation of

More information

PP300T060-ND. 3-Phase POW-R-PAK IGBT Assembly 300 Amperes/600 Volts

PP300T060-ND. 3-Phase POW-R-PAK IGBT Assembly 300 Amperes/600 Volts Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com 3-Phase POW-R-PK IGT ssembly T E K P (4 PLES) +D Q (7 PLES) PIN 1 F K L G F D J H D R +D -D P1 Outline Drawing

More information

TA = 25 C unless otherwise noted. Symbol Parameter Value Units

TA = 25 C unless otherwise noted. Symbol Parameter Value Units 2N425 2N425 B E TO-92 This device is designed for use as general purpose amplifiers and switches requiring collector currents of µa to ma. Absolute Maximum Ratings* TA = 25 unless otherwise noted Symbol

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo olantonio A.A. 2015-16 ias issues The D bias point is affected by thermal issue due to the active

More information

Bipolar Junction Transistor

Bipolar Junction Transistor ESE 211 / Spring 2011 / Lecture 10 Bipolar Junction Transistor Let us first consider general transconductance amplifier loaded with short circuit Transconductance Obviously, power supplies are needed for

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers 1. Explain the purpose of a thin, lightly doped base region.

More information

Analog Electronics (Course Code: EE314) Lecture 9 10: BJT Small Signal, Biasing, Amplifiers

Analog Electronics (Course Code: EE314) Lecture 9 10: BJT Small Signal, Biasing, Amplifiers Indian Institute of Technology Jodhpur, Year 08 Analog Electronics (ourse ode: EE34) Lecture 9 0: BJT Small Signal, Biasing, Amplifiers ourse Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

UNIT-III Bipolar Junction Transistor

UNIT-III Bipolar Junction Transistor DC UNT-3.xplain the construction and working of JT. UNT- ipolar Junction Transistor A bipolar (junction) transistor (JT) is a three-terminal electronic device constructed of doped semiconductor material

More information

Introduction PNP C NPN C

Introduction PNP C NPN C Introduction JT Transistors: A JT (or any transistor) can be used either as a switch with positions of on or off, or an amplifier that controls its output at all levels in between the extreme on or off

More information

(a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS (a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

More information

Transistors. Bipolar Junction transistors Principle of operation Characteristics. Field effect transistors Principle of operation Characteristics

Transistors. Bipolar Junction transistors Principle of operation Characteristics. Field effect transistors Principle of operation Characteristics Transistors ipolar Junction transistors Principle of operation haracteristics Field effect transistors Principle of operation haracteristics ntroduction Radio based on vacuum tubes Fundamental building

More information

INSULATED GATE BIPOLAR TRANSISTOR. E n-channel

INSULATED GATE BIPOLAR TRANSISTOR. E n-channel INSULATED GATE BIPOLAR TRANSISTOR PD - 9.780 UltraFast IGBT Features Switching-loss rating includes all "tail" losses Optimized for high operating frequency (over 5kHz) See Fig. for urrent vs. Frequency

More information

IRGPC40S PD TO-247AC. Features V CES = 600V. V CE(sat) 1.8V. Description. Absolute Maximum Ratings. Thermal Resistance

IRGPC40S PD TO-247AC. Features V CES = 600V. V CE(sat) 1.8V. Description. Absolute Maximum Ratings. Thermal Resistance INSULATED GATE BIPOLAR TRANSISTOR PD - 9.692 IRGP4S Standard Speed IGBT Features Switching-loss rating includes all "tail" losses Optimized for line frequency operation (to 4Hz) See Fig. for urrent vs.

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Prof. Paolo olantonio a.a. 2011 12 ipolar transistors are one of the main building blocks in electronic systems They are used in both analogue and digital circuits They incorporate two pn junctions and

More information

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

More information

E C B E. TO-92 SOT-23 Mark: 2X. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

E C B E. TO-92 SOT-23 Mark: 2X. TA = 25 C unless otherwise noted. Symbol Parameter Value Units 2N441 MMBT441 2N441 / MMBT441 E B E TO-92 SOT-23 Mark: 2X B NPN General Pupose Amplifier This device is designed for use as a medium power amplifier and switch requiring collector currents up to 5 ma.

More information

Pb-free lead plating; RoHS compliant. PG-DIP-14-1 Adjustable reference voltage V Stab. Type Ordering Code Package

Pb-free lead plating; RoHS compliant. PG-DIP-14-1 Adjustable reference voltage V Stab. Type Ordering Code Package Window iscriminator T 965 Pb-free lead plating; RoHS compliant ipolar I Features Two window settings direct setting of lower and upper edge voltage (window edges) indirect setting by window center voltage

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

BIPOLAR JUNCTION TRANSISTORS (BJTs) Dr Derek Molloy, DCU

BIPOLAR JUNCTION TRANSISTORS (BJTs) Dr Derek Molloy, DCU IPOLAR JUNCTION TRANSISTORS (JTs) Dr Derek Molloy, DCU What are JTs? Two PN junctions joined together is a JT Simply known as a transistor! ipolar? Current carried by electrons and holes Will see FETs

More information

IRGBC30M Short Circuit Rated Fast IGBT

IRGBC30M Short Circuit Rated Fast IGBT INSULTED GTE BIPOLR TRNSISTOR Features Short circuit rated - µs @ 25, V GE = 5V Switching-loss rating includes all "tail" losses Optimized for medium operating frequency ( to khz) See Fig. for urrent vs.

More information

2N3906 / MMBT3906 / PZT3906 PNP General-Purpose Amplifier

2N3906 / MMBT3906 / PZT3906 PNP General-Purpose Amplifier 2N396 / MMBT396 / PZT396 PNP General-Purpose Amplifier Description This device is designed for general-purpose amplifier and switching applications at collector currents of ma to ma. EB Ordering Information

More information

Q1. Explain the Astable Operation of multivibrator using 555 Timer IC.

Q1. Explain the Astable Operation of multivibrator using 555 Timer IC. Q1. Explain the Astable Operation of multivibrator using 555 Timer I. Answer: The following figure shows the 555 Timer connected for astable operation. A V PIN 8 PIN 7 B 5K PIN6 - S Q 5K PIN2 - Q PIN3

More information

FMB3906. pin #1. SuperSOT -6 Mark:.2A Dot denotes pin #1 T A. = 25 C unless otherwise noted. Symbol Parameter Value Units

FMB3906. pin #1. SuperSOT -6 Mark:.2A Dot denotes pin #1 T A. = 25 C unless otherwise noted. Symbol Parameter Value Units S7-6 Mark:.2A FFB396 B2 E2 pin # 2 B E NOTE: The pinouts are symmetrical; pin and pin are interchangeable. Units inside the carrier can be of either orientation and will not affect the functionality of

More information

Transistors as Amplifiers

Transistors as Amplifiers Transistors as Amplifiers The transistor works in the active region (a F ) around the quiescent point QP dc supply (dc voltage sources, dc current sources) asic amplifier with one transistor: S and amplifiers

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

Chapter 7 EMITTER-COUPLED LOGIC

Chapter 7 EMITTER-COUPLED LOGIC Chapter 7 EMITTER-COUPLED LOGIC The major speed limitation of TTL is the turn-off time of saturated transistors. To be sure, TTL has come a long way from the 100 ns time of DTL to the 2-4 ns propagation

More information

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S. CE Frequency Response The exact analysis is worked out on pp. 639-64 of H&S. The Miller Approximation Therefore, we consider the effect of C µ on the input node only V ---------- out V s = r g π m ------------------

More information

Large Signal Model for Saturation Mode

Large Signal Model for Saturation Mode ndian nstitute of echnology Jodhpur, Year 2016 nalog lectronics (Course Code: 314) Lecture 8: PP J, Small Signal nalysis Course nstructor: Shree Prakash iwari mail: sptiwari@iitj.ac.in ebpage: http://home.iitj.ac.in/~sptiwari/

More information

Features. NOTE: Non-designated pins are no connects and are not electrically connected internally.

Features. NOTE: Non-designated pins are no connects and are not electrically connected internally. OBSOLETE PRODUCT NO RECOMMENDED REPLACEMENT contact our Technical Support Center at 1-888-INTERSIL or www.intersil.com/tsc Data Sheet December 1995, Rev. G EL2001 FN7020 Low Power, 70MHz Buffer Amplifier

More information

IRGBC20KD2-S PD Short Circuit Rated UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

IRGBC20KD2-S PD Short Circuit Rated UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT REOVERY DIODE Features Short circuit rated -µs @25, V GE = 5V Switching-loss rating includes all "tail" losses HEXFRED TM soft ultrafast diodes Optimized

More information

University of Michigan EECS 311: Electronic Circuits Fall Final Exam 12/12/2008

University of Michigan EECS 311: Electronic Circuits Fall Final Exam 12/12/2008 University of Michigan EECS 311: Electronic Circuits Fall 2008 Final Exam 12/12/2008 NAME: Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations

More information

PartIIILectures. Multistage Amplifiers

PartIIILectures. Multistage Amplifiers University of missan Electronic II, Second year 2015-2016 PartIIILectures Assistant Lecture: 1 Multistage and Compound Amplifiers Basic Definitions: 1- Gain of Multistage Amplifier: Fig.(1-1) A general

More information

E n-channel. Parameter Min. Typ. Max. Units

E n-channel. Parameter Min. Typ. Max. Units INSULTED GTE BIPOLR TRNSISTOR Features Short circuit rated - µs @ 25, Switching-loss rating includes all "tail" losses Optimized for high operating frequency (over 5kHz) See Fig. for urrent vs. Frequency

More information

EE 330 Lecture 16. Comparison of MOS Processes Bipolar Process

EE 330 Lecture 16. Comparison of MOS Processes Bipolar Process 330 Lecture 16 omparison of MOS Processes ipolar Process Review from last lecture P-Select Mask p-diffusion p-diffusion A-A Section Note the gate is self aligned!! - Section Review from last lecture n-select

More information

3. RESISTOR - TRANSISTOR LOGIC CIRCUITS 3.1 AN RTL NOT GATE

3. RESISTOR - TRANSISTOR LOGIC CIRCUITS 3.1 AN RTL NOT GATE 3. ESSTO - TANSSTO LOG UTS When a transistor is used in conjunction with resistors to create a logic circuit, it is usually referred to as a resistor-transistor logic or TL for short. n a logic circuit,

More information

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN Hanoi, 9/24/2012 Contents 2 Structure and operation of BJT Different configurations of BJT Characteristic curves DC biasing method and analysis

More information

Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh

Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh Chapter 3: TRANSISTORS Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh OUTLINE Transistors Bipolar Junction Transistor (BJT) Operation of Transistor Transistor parameters Load Line Biasing

More information

Chapter 5 Bipolar Amplifiers. EE105 - Spring 2007 Microelectronic Devices and Circuits. Bipolar Amplifiers. Voltage Amplifier

Chapter 5 Bipolar Amplifiers. EE105 - Spring 2007 Microelectronic Devices and Circuits. Bipolar Amplifiers. Voltage Amplifier EE05 - Spring 2007 Microelectronic Deices and ircuits hapter 5 Bipolar mplifiers 5. General onsiderations 5.2 Operating Point nalysis and Design 5.3 Bipolar mplifier Topologies 5.4 Summary and dditional

More information

Precision Rectifier Circuits

Precision Rectifier Circuits Precision Rectifier Circuits Rectifier circuits are used in the design of power supply circuits. In such applications, the voltage being rectified are usually much greater than the diode voltage drop,

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

6.3 BJT Circuits at DC

6.3 BJT Circuits at DC 378 Chapter 6 Bipolar Junction Transistors (BJTs) 6.3 BJT Circuits at DC We are now ready to consider the analysis of BJT circuits to which only dc voltages are applied. In the following examples we will

More information

2N4403 / MMBT4403 PNP General-Purpose Amplifier

2N4403 / MMBT4403 PNP General-Purpose Amplifier 2N443 / MMBT443 PNP General-Purpose Amplifier Description This device is designed for use as a general-purpose amplifier and switch for collector currents to 5 ma. EB TO-92 SOT-23 Mark:2T B E Figure. 2N443

More information

IRGPH50FD2 Fast CoPack IGBT

IRGPH50FD2 Fast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT REOVERY DIODE Features Switching-loss rating includes all "tail" losses HEXFRED TM soft ultrafast diodes Optimized for medium operating frequency (

More information

ITT Technical Institute. ET215 Devices 1. Unit 6 Chapter 3, Sections

ITT Technical Institute. ET215 Devices 1. Unit 6 Chapter 3, Sections ITT Technical Institute ET215 Devices 1 Unit 6 Chapter 3, Sections 3.7-3.9 Chapter 3 Section 3.7 The Bipolar Transistor as a Switch Objectives: Explain how a transistor can be used as a switch 1. Compute

More information

ECEG 350 Electronics I Fall 2017

ECEG 350 Electronics I Fall 2017 EEG 350 Electronics Fall 07 Final Exam General nformation Rough breakdown of topic coverage: 0-0% JT fundamentals and regions of operation 0-40% MOSFET fundamentals biasing and small-signal modeling 0-5%

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

A Very Functional Transistor Circuit to Demonstrate Biasing, Voltage and Current Gains, and Frequency Response

A Very Functional Transistor Circuit to Demonstrate Biasing, Voltage and Current Gains, and Frequency Response A Very Functional Transistor ircuit to Demonstrate iasing, Voltage and urrent Gains, and Frequency Response Robert J Scoff, P 1 Abstract - Over the last four years The ngineering Technology Department

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

Multistage Amplifiers

Multistage Amplifiers Multistage Amplifiers Single-stage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)

More information

TA = 25 C unless otherwise noted. Symbol Parameter Value Units

TA = 25 C unless otherwise noted. Symbol Parameter Value Units 2N425 2N425 B E TO-92 PNP General Purpose Amplifier This device is designed for use as general purpose amplifiers and switches requiring collector currents of µa to ma. Absolute Maximum Ratings* TA = 25

More information

Sense IGBT Performance

Sense IGBT Performance hapter 8 ense IGBT Performance 1. cope 8-2 2. Function 8-2 3. Recommended R : ense Resistor 8-3 4. Typical haracteristics of 8-4 5. Dependence of I and T vj : (i) short- circuit / Transient 8-4 6. Dependence

More information

UNISONIC TECHNOLOGIES CO., LTD MMBT4401

UNISONIC TECHNOLOGIES CO., LTD MMBT4401 UNISONIC TECHNOLOGIES CO., LTD MMBT441 NPN GENERAL PURPOSE AMPLIFIER 3 DESCRIPTION The UTC MMBT441 is designed for use as a medium power amplifier and switch requiring collector currents up to 5mA. 2 1

More information

DCX4710H. General Description. Features. Mechanical Data. Maximum Ratings: Total Device. 100mA DUAL COMPLEMENTARY PRE-BIASED TRANSISTORS

DCX4710H. General Description. Features. Mechanical Data. Maximum Ratings: Total Device. 100mA DUAL COMPLEMENTARY PRE-BIASED TRANSISTORS DX471H 1mA DUAL OMPLEMENTARY PRE-IASED TRANSISTORS General Description DX471H is est suited for applications where the load needs to e turned on and off using micro-controllers, comparators or other control

More information

C Soldering Temperature, for 10 seconds 300 (0.063 in. (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (0.063 in. (1.6mm from case ) PD -9586 INSULTED GTE BIPOLR TRNSISTOR IRG4P50UPbF UltraFast Speed IGBT Features UltraFast: Optimized for high operating frequencies 8-40 khz in hard switching, >200 khz in resonant mode Generation 4 IGBT

More information

Transistor Configuration

Transistor Configuration Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

More information

Module-1 BJT AC Analysis: The re Transistor Model. Common-Base Configuration

Module-1 BJT AC Analysis: The re Transistor Model. Common-Base Configuration Module-1 BJT AC Analysis: BJT AC Analysis: BJT AC Analysis: BJT Transistor Modeling, The re transistor model, Common emitter fixed bias, Voltage divider bias, Emitter follower configuration. Darlington

More information

Example #6 1. An amplifier with a nominal gain

Example #6 1. An amplifier with a nominal gain 1. An amplifier with a nominal gain A=1000 V/V exhibits a gain change of 10% as the operating temperature changes from 25 o C to 75 o C. If it is required to constrain the change to 0.1% by applying negative

More information

Chapter 2. Bipolar Junction Transistor

Chapter 2. Bipolar Junction Transistor Chapter 2 ipolar Junction Transistor 2.0 History The name bipolar is used because both types of carriers namely hole and electron are used in the transistor, as opposed to field effect transistor, which

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210404 Set No. 1 II B.Tech I Semester Supplimentary Examinations, February 2008 ELECTRONIC CIRCUIT ANALYSIS ( Common to Electronics & Communication Engineering and Electronics & Telematics)

More information

Transistor Biasing Nafees Ahamad

Transistor Biasing Nafees Ahamad Transistor Biasing Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: www.eedofdit.weebly.com Introduction The basic function of transistor is to do amplification. (CE connection)

More information