CHAPTER 3 THE BIPOLAR JUNCTION TRANSISTOR (BJT)

Size: px
Start display at page:

Download "CHAPTER 3 THE BIPOLAR JUNCTION TRANSISTOR (BJT)"

Transcription

1 HAPT 3 TH IPOLA JUNTION TANSISTO (JT) 1 In this chapter, we will: JT Discuss the physical structure and operation of the bipolar junction transistor. Understand the dc analysis of bipolar transistor circuits. xamine three basic applications of bipolar transistor circuits. Investigate various dc biasing schemes of bipolar transistor circuits, including integrated circuit biasing. Look at biasing stability 2 1

2 JT asic device in electrical system Used as an amplifier or a switch Has 3 terminals ase, ollector, mitter, ipolar since conduction current is due to both the majority and minority carriers 3 JT 2 types npn and pnp n p n npn - structure and symbol p n p pnp - structure and symbol 4 2

3 JT n p n ollector () ase () mitter () p n n Symbol - arrow points from p n - ase is very thin with very small amount of majority carrier -mitter is wider with the most number of majority carrier. -ollector is wider than emitter but with little majority carrier. Structure - mitter : emitter of charge - ollector : collects charge - ase : a gate that controls flow of current 5 JT - Arrow marks emitter p n p Structure ollector () ase () mitter () n Symbol p p - points from p n -ase layer is thin with little majority carrier. -mitter is thicker with the most majority carrier - ollector is thickest with little majority carrier. 6 3

4 JT DIOD ANALOGY Pnp transistor Npn transistor 7 JT ross Section of Integrated ircuit npn Transistor 8 4

5 JT 4 Possible Modes of Operation Forward-Active - amplifier - junction is forward biased - junction is reverse biased Saturation switch (on) - and - junctions are forward biased ut-off switch (off) - and - junctions are reverse biased Inverse-Active (or everse-active) (off) - junction is reverse biased - junction is forward biased 9 JT Transistor currents in JT in Forward- Active (npn ) Forward biased everse biased emitter base collector 10 5

6 - junction forward biased JT - lectrons (majority) from emitter injected into base through junction. - ecome minority in base - junction reversed biased - ase very thin, get swept across - junction to become collector current - ery little electrons left in base to become base current 11 JT urrent flow in npn JT 12 6

7 JT urrents in a Transistor mitter current is the sum of the collector and base currents: I I + I The collector current is comprised of two currents: I I + I majority Ominority 13 ommon ase JT Transistor configuration The base is the common terminal between input and output ommon mitter The emitter is the common terminal between input and output ommon ollector The collector is the common terminal between input and output 14 7

8 JT ommon-ase onfiguration The base is common to both input (emitter base) and output (collector base) of the transistor. 15 JT Input haracteristics This curve shows the relationship between of input current (I ) to input voltage ( ) for various levels of output voltage ( ). 16 8

9 This graph demonstrates the relationship between the output current (I ) to an output voltage ( ) for various levels of input current (I ). JT Output haracteristics 17 JT Operating egions Active Operating range of the amplifier. utoff The amplifier is basically off. There is voltage, but little current. Saturation The amplifier is full on. There is current, but little voltage. Approximations mitter and collector currents: I I ase-emitter voltage:

10 Ideally: α 1 JT Alpha (α)( Alpha (α) relates the D currents I and I : α dc I I In reality: α is between 0.9 and Alpha (α) in the A mode: α ac 19 JT ommon mitter onfiguration The emitter is common to both input (base-emitter) and output (collectoremitter). The input is on the base and the output is on the collector

11 JT - ase/input haracteristics 21 JT ommon-mitter Output haracteristics ollector haracteristics 22 11

12 JT ommon-mitter Amplifier urrents Ideal urrents I I + I I α I Actual urrents I α I + I O where I O minority collector current This is usually so small that it can be ignored, except in high power transistors and in high temperature environments. When I 0 µa the transistor is in cutoff, but there is some minority current flowing called I O. IO I O I 0µA 1 α 23 JT eta (β)( β represents the amplification factor of a transistor. (β is sometimes referred to as h fe, a term used in transistor modeling calculations) In D mode: β dc I I In A mode: β ac cons tan t 24 12

13 JT eta (β)( Determining β from a graph β A (3.2mA 2.2mA) (30µA 20µA) 1mA 10µA ma 25 µ A β D Note: β A β D 25 JT eta (β)( elationship between amplification factors β and α α β β + 1 β α 1 α elationship etween urrents I βi I + 1)I I αi (β 26 13

14 JT ommon ollector ollector onfiguration The input is on the base and the output is on the emitter. 27 JT ommon ollector ollector onfiguration The characteristics are similar to those of the common-emitter configuration, except the vertical axis is I. I (ma) 28 14

15 JT Limitations of Operation for ach onfiguration is at maximum and I is at minimum (I max I O ) in the cutoff region. I is at maximum and is at minimum ( max sat O ) in the saturation region. The transistor operates in the active region between saturation and cutoff. 29 JT Power Dissipation ommon-base: P max I ommon-emitter: P max I ommon-collector: P max I 30 15

16 JT Transistor Specification Sheet 31 JT Transistor Specification Sheet 32 16

17 JT Transistor Testing urve Tracer Provides a graph of the characteristic curves. DMM Some DMMs measure b D or h fe. Ohmmeter Simulate 33 JT iasing iasing refers to the D voltages applied to a transistor in order to turn it on so that it can amplify the A signal

18 JT Operating Point The D input establishes an operating or quiescent point called the Q-point. 35 JT D iasing ircuits Fixed-bias circuit mitter-stabilized bias circuit ollector-emitter loop oltage divider bias circuit D bias with voltage feedback 36 18

19 JT Fixed ias ircuit SIMULAT 37 JT ase-mitter Loop From Kirchhoff s voltage law: + I 0 Solving for the base current: I 38 19

20 JT ollector-mitter Loop The collector current is given by: I βi From Kirchhoff s voltage law: I 39 JT Transistor Saturation Level When the transistor is operating in the saturation region it is conducting at maximum current flow through the transistor. I sat

21 JT Load Line Analysis The end points of the load line are: I sat I / 0 cutoff I 0 ma The Q-point is the particular operating point: where the value of sets the value of I where I and the load line intersect that sets the values of and I 41 ircuit alues Affect the Q-PointQ more 42 21

22 JT mitter-stabilized ias ircuit Adding a resistor ( ) to the emitter circuit stabilizes the bias circuit. 43 JT ase-mitter Loop From Kirchhoff s voltage law : + - I - - I 0 Since I (β + 1)I : - I - ( β + 1)I 0 Solving for I : I - + ( β + 1) 44 22

23 From Kirchhoff s voltage law : JT ollector-mitter Loop + I + + I 0 Since I I : (very true if β is HIGH) I( + ) Also: I + - I I + 45 JT Improved iased Stability Adding to the emitter improves the stability of a transistor. Stability refers to a bias circuit in which the currents and voltages will remain fairly constant for a wide range of temperatures and transistor eta (β) values

24 JT Saturation Level The endpoints can be determined from the load line. cutoff : I sat : I 0 ma 0 I + 47 JT oltage Divider ias This is a very stable bias circuit. The currents and voltages are almost independent of variations in β

25 JT Approximate Analysis Where I << I 1 and I 2 and I 1 I 2 : Where β > 10 2 : I ; oltage divider From Kirchhoff s voltage law: - I - I I I -I( + ) 49 JT oltage Divider ias Analysis Transistor Saturation Level I sat I max + Load Line Analysis utoff: I 0mA I Saturation:

26 JT D ias with oltage Feedback Another way to improve the stability of a bias circuit is to add a feedback path from collector to base. In this bias circuit the Q-point is only slightly dependent on the transistor beta, β. 51 From Kirchhoff s voltage law: JT ase-mitter Loop I I I 0 Where I << I : I I + I I Knowing I βi and I I, the loop equation becomes: βi I βi 0 Solving for I : I + β( + ) 52 26

27 JT ollector-mitter Loop Applying Kirchoff s voltage law: I + + I 0 Since I I and I βi : I ( + ) + 0 Solving for : I ( + ) 53 JT ase-mitter ias Analysis Transistor Saturation Level Isat Imax + Load Line Analysis I utoff 0mA I Saturation

28 JT PNP Transistors The analysis for pnp transistor biasing circuits is the same as that for npn transistor circuits. The only difference is that the currents are flowing in the opposite direction. 55 JT System stability depends on sensitivity to change in parameter values. I is sensitive to: ias Stability β changes with temperature (T increases, β increases) - decreases at a rate of 7.5m/ o with increase in temperature. I O (reverse saturated current) - doubles with every 10 o increase in temperature. All these can cause Q point to drift from original position 56 28

29 JT ias Stability Stability factors - S(I O ), S( ), S(β) Definition: S S(I S' S( S" S O ( β) ) ) β O A stable network has a LOW stability factor S or S(I O ) / O I is given by Due to heat JT ias Stability I βi + (β+1)i O (1) I O -> I O + O ; I -> I + ; I -> I + quation (1) becomes I + β(i + ) + (β+1)(i O + O ) (2) Subtract (1) from (2) β( ) + (β+1)( O ) earrange; O 1 β (β + 1) so that (β + 1) S

30 When applied to a fixed bias circuit, When temp increases, I increases by, but and remains the same, i.e. 0 and 0 So, I 0 0 so JT ias Stability 0 β + 1 and S β This is the worse case scenario for any stability factor due to reverse saturated current, I O. 59 JT When applied to a D ias with oltage Feedback I( + ) + I + ( I + I )( + ) + I + I ( + ) + I ( + + ) + With change in temperature, ias Stability I I + ; I I + ; 0; 0 So, 0 Therefore, S S(I ( + ) + ( + + ) + 0 ( + + ) ( + ) or + ( + + ) O β + 1 ) β + + If there is no β + 1 S β( ) S is smaller than 1+β ircuit is more stable 60 30

31 When applied to a voltage divider bias I + + I or I I I I 0 ( ( ) + ; I I + (I + I ) + ) I With change in temperature Stability factor is 1 + β S S(I O ) 1 + β + can be rewritten as S S(I O >> + ; JT ias Stability 0 ; (1 + β) 1 + ) (1 + β) + so can be ignored. So S ct has TH ST STAILITY 61 JT ias Stability 2. S or S( ) / A. When applied to a Fixed iased ircuit I ;So, I βi β Due to heat -> + ; I -> I + ; 0 So, β( ) [β( )]/( ) Therefore the stability factor S' β 62 31

32 JT. When applied to a D ias with oltage Feedback I + (β + 1)( + ) β( ) I βi + (β + 1)( + ) With change in temperature, + ; I I + ; 0; ias Stability So. S' β(0 ) + (β + 1)( + ) Therefore the stability factor : β + (β + 1)( + ) If there is no -β S' + ( β + 1) S is smaller than -β/ ircuit is more stable 63 I + (β + 1) JT β( ) and I βi + (β + 1) With change in temperature, So. + ; I I + ; 0; β(0 ) + (β + 1) S' β + (β + 1) ias Stability. When applied to a voltage divider bias, can be rewritten as β S' S() + ( β + 1) For a well designed circuit, -β S' ; and β >> 1 ; So, (1 + β) ( β + 1) >> S' - 1 S depends on A large gives good stability

33 3. S or S(β) JT ias Stability A. When applied to a Fixed iased ircuit S / β I 1 / β 1 where: I 1 the value of I at temperature T 1 β 1 the value of β at temperature T 1 65 JT ias Stability. When applied to a D ias with oltage Feedback ( 0) S S(β) β I1( + ) β ( + (1 + β 1 2 ) where: I 1 the value of I at temperature T 1 β 1 the value of I at temperature T 1 β 2 the value of β at temperature T

34 S' ' JT. When applied to a voltage divider bias, where: I + 1(1 ) I S( β) β β + β I 1 the value of I at temperature T 1 β 1 the value of β at temperature T 1 β 2 the value of β at temperature T To find the stability factor due to al three factors, add up the changes due to all 3 factors I (total) S O + S' + S' ' β 67 XAMPL For the circuit shown: At 25 o ; I 2mA, β 100; I O 0.1nA; 0.65 At 100 o ; I O 20n,; 0.48 alculate I at 100 o JT 240kΩ 68 34

35 A. hange due to I O O 20n 0.1 n 19.9 na For a fixed biased circuit; S β JT And by definition, S x O 101 x 19.9nA 2µA A. hange due to For a fixed biased circuit; S -β/ -100/240k x 10-3 And by definition, S x x10-3 x µ Therefore, total change (tot) A + 2µ µ 72.9µA alue of I at 100 O I 2m µ 2.07 ma 69 JT Amplifier oncept 70 35

36 Objectives Understand the concept of amplifiers Understand and analyze commonemitter, common-base, and commoncollector amplifiers 71 Introduction One of the primary uses of a transistor is to amplify ac signals. This could be an audio signal or perhaps some high frequency radio signal. It has to be able to do this without distorting the original input

37 Amplifier Operation ecall from the previous chapter that the purpose of dc biasing was to establish the Q-point for operation. The collector curves and load lines help us to relate the Q-point and its proximity to cutoff and saturation. The Q-point is best established where the signal variations do not cause the transistor to go into saturation or cutoff. What we are most interested in is the ac signal itself. Since the dc part of the overall signal is filtered out in most cases, we can view a transistor circuit in terms of just its ac component. 73 Amplifier Operation For the analysis of transistor circuits from both dc and ac perspectives, the for D values, letters and subscripts are upper case. Instantaneous values use both italicized lower case letters and subscripts

38 Amplifier Operation The boundary between cutoff and saturation is called the linear region. A transistor which operates in the linear region is called a linear amplifier. 75 Transistor quivalent ircuits The two graphs best illustrate the difference between β D and β ac. The two only differ slightly

39 The ommon-mitter Amplifier The common-emitter amplifier exhibits high voltage and current gain. The output signal is 180º out of phase with the input. 77 The ommon-mitter Amplifier The emitter bypass capacitor helps increase the gain by allowing the ac signal to pass more easily. The X (bypass) should be about ten times less than

40 The ommon-mitter Amplifier The bypass capacitor makes the gain unstable since transistor amplifier becomes more dependent on I. This effect can be swamped or somewhat alleviated by adding another emitter resistor( 1 ). 79 The ommon-ollector Amplifier The common-collector amplifier is usually referred to as the emitter follower because there is no phase inversion or voltage gain. The output is taken from the emitter. The common-collector amplifier s main advantages are its high current gain and high input resistance

41 The ommon-ase Amplifier The common-base amplifier has high voltage gain with a current gain no higher than 1. It has a low input resistance making it ideal for low impedance input sources. The ac signal is applied to the emitter and the output is taken from the collector. 81 Summary Most transistors amplifiers are designed to operate in the linear region. Transistor circuits can be view in terms of its ac equivalent for better understanding. The common-emitter amplifier has high voltage and current gain. The common-collector has a high current gain and voltage gain of 1. It has a high input impedance and low output impedance

42 Summary The common-base has a high voltage gain and a current gain of 1. It has a low input impedance and high output impedance Multistage amplifiers are amplifier circuits cascaded to increased gain. We can express gain in decibels (d). 83 JT ND OF HAPT

Biasing. Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal.

Biasing. Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal. D iasing JT iasing iasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. The D input establishes an operating or quiescent point called the Q-point.

More information

การไบอ สทรานซ สเตอร. Transistors Biasing

การไบอ สทรานซ สเตอร. Transistors Biasing การไบอ สทรานซ สเตอร Transistors iasing iasing iasing: Applying D voltages to a transistor in order to turn it on so that it can amplify A signals. The D input establishes an operating or quiescent point

More information

Chapter 4 DC Biasing BJTs. BJTs

Chapter 4 DC Biasing BJTs. BJTs hapter 4 D Biasing BJTs BJTs Biasing Biasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. Operating Point The D input establishes an operating or

More information

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 14 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT iasing D analysis Fixed-bias circuit (revision) mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback

More information

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 9 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT JT iasing D analysis Fixed-bias circuit mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback circuit

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics nstitute for NT/JF, GAT, T-JAM, M.Sc. ntrance, JST, TF and G in Physics 3. ipolar Junction Transistors 3.1 Transistor onstruction Transistor is a three-layer semiconductor device consisting of either two

More information

Chapter 3: Bipolar Junction Transistors

Chapter 3: Bipolar Junction Transistors Chapter 3: Bipolar Junction Transistors Transistor Construction There are two types of transistors: pnp npn pnp The terminals are labeled: E - Emitter B - Base C - Collector npn 2 Transistor Operation

More information

Electronic Circuits Laboratory EE462G Lab #8. BJT Common Emitter Amplifier

Electronic Circuits Laboratory EE462G Lab #8. BJT Common Emitter Amplifier lectronic ircuits Laboratory 46G Lab #8 JT ommon mitter Amplifier npn ipolar Junction Transistor JT in a common-emitter configuration ase ollector V _ n p n V _ mitter For most applications the JT is operated

More information

Lecture (06) Bipolar Junction Transistor

Lecture (06) Bipolar Junction Transistor Lecture (06) Bipolar Junction Transistor By: Dr. Ahmed lshafee ١ Agenda BJT structure BJT operation BJT characteristics ٢ BJT structure The BJT is constructed with three doped semiconductor regions One

More information

Session 4: Analog Circuits. BJT Biasing Single stage amplifier

Session 4: Analog Circuits. BJT Biasing Single stage amplifier Session 4: Analog ircuits JT iasing Single stage amplifier 1 Outline JT Amplifier 2 JT: ipolar Junction Transistor i D A p D n R F F : Forward R : Reverse V D p n p n p n 1 2 1 : F 2 : R Active V 1 : F

More information

Celso José Faria de Araújo, M.Sc.

Celso José Faria de Araújo, M.Sc. elso José Faria de Araújo, M.Sc. TH IPOLA JUNTION TANSISTOS - JT Objecties: Understand the basic principles of JT operation Interpret the transport model Identify operating regions of the JT and use simplified

More information

Electronics Fundamentals BIPOLAR TRANSISTORS. Construction, circuit symbols and biasing examples for NPN and PNP junction transistors.

Electronics Fundamentals BIPOLAR TRANSISTORS. Construction, circuit symbols and biasing examples for NPN and PNP junction transistors. IPOLA TANSISTOS onstruction, circuit symbols and biasing examples for NPN and PNP junction transistors Slide 1 xternal bias voltages create an electric field, which pulls electrons (emitted into the base

More information

FYSE400 ANALOG ELECTRONICS

FYSE400 ANALOG ELECTRONICS 7.9.016 YS400 ANALOG LTONS LTU 1 ntroduction to ipolar Junction Transistor ircuits 1 NTODUTON The deal urrent-controlled urrent Source efore the detailed analyzation of transistor operation, we should

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Junction Transistor (JT ipolar Junction Transistors JT is a three-terminal device: emitter (, collector ( and base (. There are two types: pnp-type and npn-type. npn transistor: emitter & collector

More information

Electronic Devices, 9th edition Thomas L. Floyd. Input signal. R 1 and R 2 are selected to establish V B. If the V CE

Electronic Devices, 9th edition Thomas L. Floyd. Input signal. R 1 and R 2 are selected to establish V B. If the V CE 3/9/011 lectronic Devices Ninth dition Floyd hapter 5: Transistor ias ircuits The D Operating Point ias establishes the operating point (Q-point) of a transistor amplifier; the ac signal (ma) moves above

More information

Lecture (08) Bipolar Junction Transistor (2)

Lecture (08) Bipolar Junction Transistor (2) Lecture (08) ipolar Junction Transistor (2) y: Dr. Ahmed lshafee 1 JT haracteristic ollector haracteristic urves 2 Applying fixed V, increasing V Saturation Assume that V is set to produce a certain value

More information

EE 330 Lecture 18. Characteristics of Finer Feature Size Processes. Bipolar Process

EE 330 Lecture 18. Characteristics of Finer Feature Size Processes. Bipolar Process 330 Lecture 18 haracteristics of Finer Feature Size Processes ipolar Process How does the inverter delay compare between a 0.5u process and a 0.13u process? DD IN OUT IN OUT SS How does the inverter

More information

Introduction PNP C NPN C

Introduction PNP C NPN C Introduction JT Transistors: A JT (or any transistor) can be used either as a switch with positions of on or off, or an amplifier that controls its output at all levels in between the extreme on or off

More information

EE 330 Lecture 19. Bipolar Devices

EE 330 Lecture 19. Bipolar Devices 330 Lecture 19 ipolar Devices Review from last lecture n-well n-well n- p- Review from last lecture Metal Mask A-A Section - Section Review from last lecture D A A D Review from last lecture Should now

More information

Chapter Two "Bipolar Transistor Circuits"

Chapter Two Bipolar Transistor Circuits Chapter Two "Bipolar Transistor Circuits" 1.TRANSISTOR CONSTRUCTION:- The transistor is a three-layer semiconductor device consisting of either two n- and one p-type layers of material or two p- and one

More information

Biasing of BJT IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1

Biasing of BJT IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1 HTTP://NGNS.N/ NGNS- ONSULTANTS LTU NOTS SS LTONS NGNNG 1 YA UPTU iasing of JT As we know that JT can be operated in three regions: active, saturation and cutoff by applying proper voltage condition. n

More information

EE 434 Lecture 21. MOS Amplifiers Bipolar Devices

EE 434 Lecture 21. MOS Amplifiers Bipolar Devices 434 ecture MOS Amplifiers ipolar Devices Quiz 3 The quiescent voltage across the 5K resistor in the circuit shown was measured to be 3. ) Determine the quiescent output voltage ) Determine the small signal

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Analog Electronics: Bipolar Junction Transistors

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Analog Electronics: Bipolar Junction Transistors BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Analog Electronics: Bipolar Junction Transistors Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang

More information

UNIT-III Bipolar Junction Transistor

UNIT-III Bipolar Junction Transistor DC UNT-3.xplain the construction and working of JT. UNT- ipolar Junction Transistor A bipolar (junction) transistor (JT) is a three-terminal electronic device constructed of doped semiconductor material

More information

8. Biasing Transistor Amplifiers

8. Biasing Transistor Amplifiers 8. iasing Transistor Amplifiers Lecture notes: Sec. 5 Sedra & Smith (6 th d): Sec. 5.4, 5.6 & 6.3-6.4 Sedra & Smith (5 th d): Sec. 4.4, 4.6 & 5.3-5.4 65, Winter013, F. Najmabadi ssues in developing a transistor

More information

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN Hanoi, 9/24/2012 Contents 2 Structure and operation of BJT Different configurations of BJT Characteristic curves DC biasing method and analysis

More information

Chapter 3. Bipolar Junction Transistors

Chapter 3. Bipolar Junction Transistors Chapter 3. Bipolar Junction Transistors Outline: Fundamental of Transistor Common-Base Configuration Common-Emitter Configuration Common-Collector Configuration Introduction The transistor is a three-layer

More information

N9-1. Gain. Input and Output Impedances. Amplifier Types. Z out. Z in = AH( jω)

N9-1. Gain. Input and Output Impedances. Amplifier Types. Z out. Z in = AH( jω) Amplification We have seen in earlier notes that a carbon composition resistor continuously dissipates heat to the environment. Most circuit elements do likewise to some degree, including the capacitor

More information

CO2005: Electronics I. Transistor (BJT) Electronics I, Neamen 3th Ed. 1

CO2005: Electronics I. Transistor (BJT) Electronics I, Neamen 3th Ed. 1 O2005: Electronics The Bipolar Junction Transistor (BJT) Electronics, Neamen 3th Ed. 1 Bipolar Transistor Structures N P 17 10 N D 19 10 N D 15 10 Electronics, Neamen 3th Ed. 2 Forward-Active Mode in the

More information

Chapter 2. Bipolar Junction Transistor

Chapter 2. Bipolar Junction Transistor Chapter 2 ipolar Junction Transistor 2.0 History The name bipolar is used because both types of carriers namely hole and electron are used in the transistor, as opposed to field effect transistor, which

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Invented in 1948 at Bell Telephone laboratories Bipolar junction transistor (BJT) - one of the major three terminal devices Three terminal devices more useful than two terminal

More information

Analog Electronics (Course Code: EE314) Lecture 5 7: Junction contd, BJT. Course Instructor: Shree Prakash Tiwari

Analog Electronics (Course Code: EE314) Lecture 5 7: Junction contd, BJT. Course Instructor: Shree Prakash Tiwari ndian nstitute of echnology Jodhpur, Year 2017 Analog lectronics (ourse ode: 314) Lecture 5 7: Junction contd, J ourse nstructor: Shree Prakash iwari mail: sptiwari@iitj.ac.in Webpage: http://home.iitj.ac.in/~sptiwari/

More information

Transistor Configuration

Transistor Configuration Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

More information

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect Diode as Clamper A clamping circuit is used to place either the positive or negative peak of a signal at a desired level. The dc component is simply added or subtracted to/from the input signal. The clamper

More information

DC Bias. Graphical Analysis. Script

DC Bias. Graphical Analysis. Script Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 3 Lecture Title: Analog Circuits

More information

7. Bipolar Junction Transistor

7. Bipolar Junction Transistor 41 7. Bipolar Junction Transistor 7.1. Objectives - To experimentally examine the principles of operation of bipolar junction transistor (BJT); - To measure basic characteristics of n-p-n silicon transistor

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Prof. Paolo olantonio a.a. 2011 12 ipolar transistors are one of the main building blocks in electronic systems They are used in both analogue and digital circuits They incorporate two pn junctions and

More information

Transistors and Applications

Transistors and Applications Chapter 17 Transistors and Applications DC Operation of Bipolar Junction Transistors (BJTs) The bipolar junction transistor (BJT) is constructed with three doped semiconductor regions separated by two

More information

Transistors. electrons N P N holes. Base. An NPN device makes a transistor

Transistors. electrons N P N holes. Base. An NPN device makes a transistor NPN Transistor Theory Transistors Transistors are similar to diodes in that they are made up on ntype and ptype silicon. They differ in that Transistors are 3terminal devices (NPN or PNP), Transistors

More information

I B. VCE =const. 25mV I C. V out = I C R C = β I B R C = βr C βr e

I B. VCE =const. 25mV I C. V out = I C R C = β I B R C = βr C βr e Physics 338 L 6 Spring 2016 ipolar Junction Transistors 0. (a) Load Lines and haracteristic urves The below figure shows the characteristic curves for a JT along with the load line for the simple common

More information

EE 330 Lecture 16. Comparison of MOS Processes Bipolar Process

EE 330 Lecture 16. Comparison of MOS Processes Bipolar Process 330 Lecture 16 omparison of MOS Processes ipolar Process Review from last lecture P-Select Mask p-diffusion p-diffusion A-A Section Note the gate is self aligned!! - Section Review from last lecture n-select

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS Most of the content is from the textbook: Electronic devices and circuit theory,

More information

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline COE/EE152: Basic Electronics Lecture 5 Andrew Selasi Agbemenu 1 Outline Physical Structure of BJT Two Diode Analogy Modes of Operation Forward Active Mode of BJTs BJT Configurations Early Effect Large

More information

Chapter 4 Physics of Bipolar Transistors. EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of Bipolar Transistor

Chapter 4 Physics of Bipolar Transistors. EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of Bipolar Transistor EE105 - Spring 2007 Microelectronic Devices and ircuits Lecture 10 Bipolar ransistors hapter 4 Physics of Bipolar ransistors 4.1 General onsiderations 4.2 Structure of Bipolar ransistor 4.3 Operation of

More information

(a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS (a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1 BJT Bipolar Junction Transistor Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com The Bipolar Junction Transistor is a semiconductor device which

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

BJT as an Amplifier and Its Biasing

BJT as an Amplifier and Its Biasing Microelectronic ircuits BJT as an Amplifier and Its Biasing Slide 1 Transfer haracteristics & Biasing Slide 2 BJT urrent-oltage relationship The collector current i I i i B s e i B vbe Is e T v BE T Emitter

More information

BIPOLAR JUNCTION TRANSISTORS (BJTs) Dr Derek Molloy, DCU

BIPOLAR JUNCTION TRANSISTORS (BJTs) Dr Derek Molloy, DCU IPOLAR JUNCTION TRANSISTORS (JTs) Dr Derek Molloy, DCU What are JTs? Two PN junctions joined together is a JT Simply known as a transistor! ipolar? Current carried by electrons and holes Will see FETs

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

Transistors. Bipolar Junction transistors Principle of operation Characteristics. Field effect transistors Principle of operation Characteristics

Transistors. Bipolar Junction transistors Principle of operation Characteristics. Field effect transistors Principle of operation Characteristics Transistors ipolar Junction transistors Principle of operation haracteristics Field effect transistors Principle of operation haracteristics ntroduction Radio based on vacuum tubes Fundamental building

More information

C H A P T E R 6 Bipolar Junction Transistors (BJTs)

C H A P T E R 6 Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode EBJ CBJ Cutoff Reverse Reverse Active

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 12 Bipolar Junction Transistor (BJT) BJT 1-1 Course Info Lecture hours: 4 Two Lectures weekly (Saturdays and Wednesdays) Location: K2 Time: 1:40 pm Tutorial hours: 2 One tutorial class every week

More information

An Introduction to Bipolar Junction Transistors. Prepared by Dr Yonas M Gebremichael, 2005

An Introduction to Bipolar Junction Transistors. Prepared by Dr Yonas M Gebremichael, 2005 An Introduction to Bipolar Junction Transistors Transistors Transistors are three port devices used in most integrated circuits such as amplifiers. Non amplifying components we have seen so far, such as

More information

Laboratory Four - Bipolar Junction Transistor (BJT)

Laboratory Four - Bipolar Junction Transistor (BJT) M/IS 3512 ioelectronics Laboratory Four - ipolar Junction Transistor (JT) Learning Objectives: Know how to differentiate between PNP & NPN JT transistors using a multimeter. e familiar with the operation

More information

Lecture 6. OUTLINE BJT (cont d) PNP transistor (structure, operation, models) BJT Amplifiers General considerations. Reading: Chapter

Lecture 6. OUTLINE BJT (cont d) PNP transistor (structure, operation, models) BJT Amplifiers General considerations. Reading: Chapter Lecture 6 ANNOUNCMNTS HW#3, Prob. 2: Re-draw -plots for W reduced by a factor of 2. n case of a major earthquake: Try to duck/crouch on the floor in front of the seats for cover. Once the earthquake stops,

More information

Bipolar Junction Transistors (BJTs) Overview

Bipolar Junction Transistors (BJTs) Overview 1 Bipolar Junction Transistors (BJTs) Asst. Prof. MONTREE SIRIPRUCHYANUN, D. Eng. Dept. of Teacher Training in Electrical Engineering, Faculty of Technical Education King Mongkut s Institute of Technology

More information

Bipolar Junction Transistors (BJTs)

Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode Cutoff Active Saturation EBJ Reverse

More information

Chapter 5 Transistor Bias Circuits

Chapter 5 Transistor Bias Circuits Chapter 5 Transistor Bias Circuits Objectives Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collector-feedback bias circuits. Basic

More information

Lecture 6: Transistors Amplifiers. K.K. Gan Lecture 6: Transistors Amplifiers

Lecture 6: Transistors Amplifiers. K.K. Gan Lecture 6: Transistors Amplifiers Lecture 6: Transistors Amplifiers ommon mitter Amplifier ( Simplified ): What's common (ground) a common emitter amp? The emitter! The emitter is connected (tied) to ground usually by a capacitor To an

More information

ECEG 350 Electronics I Fall 2017

ECEG 350 Electronics I Fall 2017 EEG 350 Electronics Fall 07 Final Exam General nformation Rough breakdown of topic coverage: 0-0% JT fundamentals and regions of operation 0-40% MOSFET fundamentals biasing and small-signal modeling 0-5%

More information

Electronic Troubleshooting

Electronic Troubleshooting Electronic Troubleshooting Chapter 3 Bipolar Transistors Most devices still require some individual (discrete) transistors Used to customize operations Interface to external devices Understanding their

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

BJT Amplifiers: Overview

BJT Amplifiers: Overview Indian Institute of Technology Jodhpur, Year 07 Analog lectronics (ourse ode: 34) Lecture 9 0: BJT Biasing, Amplifiers ourse Instructor: Shree Prakash Tiwari mail: sptiwari@iitj.ac.in Webpage: http://home.iitj.ac.in/~sptiwari/

More information

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN BJT AC Analysis 5 CHAPTER OBJECTIVES Become familiar with the, hybrid, and hybrid p models for the BJT transistor. Learn to use the equivalent model to find the important ac parameters for an amplifier.

More information

The first transistor. (Courtesy Bell Telephone Laboratories.)

The first transistor. (Courtesy Bell Telephone Laboratories.) Fig. 3.1 The first transistor. (Courtesy Bell Telephone Laboratories.) Fig. 3.2 Types of transistors: (a) pnp; (b) npn. : (a) pnp; : (b) npn Fig. 3.3 Forward-biased junction of a pnp transistor. Fig. 3.4

More information

Bipolar junction transistors.

Bipolar junction transistors. Bipolar junction transistors. Third Semester Course code : 15EECC202 Analog electronic circuits (AEC) Team: Dr. Nalini C Iyer, R.V. Hangal, Sujata N, Prashant A, Sneha Meti AEC Team, Faculty, School of

More information

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics BJT Structure The BJT has three regions called the emitter, base, and collector. Between the regions are junctions as indicated. The base is a thin lightly doped region compared to the

More information

The Common Emitter Amplifier Circuit

The Common Emitter Amplifier Circuit The Common Emitter Amplifier Circuit In the Bipolar Transistor tutorial, we saw that the most common circuit configuration for an NPN transistor is that of the Common Emitter Amplifier circuit and that

More information

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018 Transistor Biasing DC Biasing of BJT Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com A transistors steady state of operation depends a great deal

More information

Lecture 4. Accurate Bipolar Representation. Forward Active Region. Structure and Symbol of Bipolar Transistor

Lecture 4. Accurate Bipolar Representation. Forward Active Region. Structure and Symbol of Bipolar Transistor Lecture 4 Structure and Symbol of ipolar ransistor OULNE ipolar Junction ransistor (J) General considerations Structure Operation in active mode Large signal model and characteristics ransconductance Small

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

ET215 Devices I Unit 4A

ET215 Devices I Unit 4A ITT Technical Institute ET215 Devices I Unit 4A Chapter 3, Section 3.1-3.2 This unit is divided into two parts; Unit 4A and Unit 4B Chapter 3 Section 3.1 Structure of Bipolar Junction Transistors The basic

More information

Application Note 1293

Application Note 1293 A omparison of Various Bipolar Transistor Biasing ircuits Application Note 1293 Introduction The bipolar junction transistor (BJT) is quite often used as a low noise amplifier in cellular, PS, and pager

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-1 Transistor

More information

Course Roadmap Rectification Bipolar Junction Transistor

Course Roadmap Rectification Bipolar Junction Transistor Course oadmap ectification Bipolar Junction Transistor Acnowledgements: Neamen, Donald: Microelectronics Circuit Analysis and Design, 3 rd Edition 6.101 Spring 2017 Lecture 3 1 6.101 Spring 2017 Lecture

More information

REVIEW TRANSISTOR BIAS CIRCUIT

REVIEW TRANSISTOR BIAS CIRCUIT EVIEW TANSISTO BIAS CICUIT OBJECTIVES Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collectorfeedback bias circuits. Basic troubleshooting

More information

ELECTRONICS LAB. PART 3

ELECTRONICS LAB. PART 3 ELECTRONICS LAB. PART 3 Yrd. Doç. Dr. Taha İMECİ Arş. Gör. Ezgi YAMAÇ Arş. Gör. Ufuk ŞANVER İSTANBUL COMMERCE UNIVERSITY Contents TRANSISTORS... 2 5.1 INTRODUCTION... 2 5.2 OPERATION OF TRANSISTORS...

More information

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS Due Date (NOTE CHANGE): Thursday, Nov 12 th @ 5 pm; Late penalty in effect! Most active electronic devices are based on the transistor as the fundamental

More information

Lecture #3 BJT Transistors & DC Biasing

Lecture #3 BJT Transistors & DC Biasing November 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria J-601-1448 Electronic Principals Lecture #3 BJT Transistors & DC Biasing Instructor: Dr. Ahmad El-Banna Agenda Transistor

More information

Electronics EECE2412 Spring 2017 Exam #2

Electronics EECE2412 Spring 2017 Exam #2 Electronics EECE2412 Spring 2017 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 30 March 2017 File:12198/exams/exam2 Name: : General Rules:

More information

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward SEMICONDUCTOR PHYSICS-2 [Transistor, constructional characteristics, biasing of transistors, transistor configuration, transistor as an amplifier, transistor as a switch, transistor as an oscillator] Transistor

More information

Transistor fundamentals Nafees Ahamad

Transistor fundamentals Nafees Ahamad Transistor fundamentals Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: www.eedofdit.weebly.com Transistor A transistor consists of two PN junctions formed by sandwiching either

More information

A Very Functional Transistor Circuit to Demonstrate Biasing, Voltage and Current Gains, and Frequency Response

A Very Functional Transistor Circuit to Demonstrate Biasing, Voltage and Current Gains, and Frequency Response A Very Functional Transistor ircuit to Demonstrate iasing, Voltage and urrent Gains, and Frequency Response Robert J Scoff, P 1 Abstract - Over the last four years The ngineering Technology Department

More information

Bipolar Junction Transistor

Bipolar Junction Transistor ESE 211 / Spring 2011 / Lecture 10 Bipolar Junction Transistor Let us first consider general transconductance amplifier loaded with short circuit Transconductance Obviously, power supplies are needed for

More information

Transistor electronic technologies

Transistor electronic technologies Transistor electronic technologies Bipolar Junction Transistor discrete or integrated circuit discrete = individual component MOS (Metal-Oxide-Silicon) Field Effect Transistor mainly used in integrated

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

UNIT I - TRANSISTOR BIAS STABILITY

UNIT I - TRANSISTOR BIAS STABILITY UNIT I - TRANSISTOR BIAS STABILITY OBJECTIVE On the completion of this unit the student will understand NEED OF BIASING CONCEPTS OF LOAD LINE Q-POINT AND ITS STABILIZATION AND COMPENSATION DIFFERENT TYPES

More information

Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh

Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh Chapter 3: TRANSISTORS Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh OUTLINE Transistors Bipolar Junction Transistor (BJT) Operation of Transistor Transistor parameters Load Line Biasing

More information

Transistor Characteristics

Transistor Characteristics Transistor Characteristics Topics covered in this presentation: Transistor Construction Transistor Operation Transistor Characteristics 1 of 15 The Transistor The transistor is a semiconductor device that

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

Module 2. B.Sc. I Electronics. Developed by: Mrs. Neha S. Joshi Asst. Professor Department of Electronics Willingdon College, Sangli

Module 2. B.Sc. I Electronics. Developed by: Mrs. Neha S. Joshi Asst. Professor Department of Electronics Willingdon College, Sangli Module 2 B.Sc. I Electronics Developed by: Mrs. Neha S. Joshi Asst. Professor Department of Electronics Willingdon College, Sangli BIPOLAR JUNCTION TRANSISTOR SCOPE OF THE CHAPTER- This chapter introduces

More information

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR!

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR! Diodes: What do we use diodes for? Lecture 5: Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double

More information

Electronic Devices. Floyd. Chapter 6. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 6. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 6 Agenda BJT AC Analysis Linear Amplifier AC Load Line Transistor AC Model Common Emitter Amplifier Common Collector Amplifier Common Base Amplifier Special

More information

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

Figure1: Basic BJT construction.

Figure1: Basic BJT construction. Chapter 4: Bipolar Junction Transistors (BJTs) Bipolar Junction Transistor (BJT) Structure The BJT is constructed with three doped semiconductor regions separated by two pn junctions, as in Figure 1(a).

More information

Concepts to be Covered

Concepts to be Covered Introductory Medical Device Prototyping Analog Circuits Part 2 Semiconductors, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Semiconductors

More information