Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1

Size: px
Start display at page:

Download "Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1"

Transcription

1 Lecture 9 ipolar Junction Transistor (JT) JT 1-1

2 Outline ontinue JT JT iasing D analysis Fixed-bias circuit mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback circuit JT switching time JT 1-2

3 JT iasing Definition: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal Good ias No ias JT 1-3

4 JT ircuits at D The JT operation mode depends on the voltages at J and J The - characteristics are strongly nonlinear Simplified models and classifications are needed to speed up the hand-calculation analysis JT 1-4

5 D analysis of JT circuits Step 1: assume the operation mode Step 2: use the conditions or model for circuit analysis Step 3: verify the solution Step 4: repeat the above steps with another assumption if necessary JT 1-5

6 D iasing ircuits Fixed-bias circuit mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback circuit JT 1-6

7 Fixed-bias circuit ase-mitter Loop From Kirchhoff s voltage law: + = 0 Solving for base current: ollector-mitter Loop ollector current: / From Kirchhoff s voltage law: JT 1-7

8 xample (1) Design the following circuit so that c = 2 ma and c = 5. For this particular transistor, β =100 and =0.7 JT 1-8

9 Solution To design the circuit, we need to determine values of and We assume JT works in active mode c = 2 ma = (15- c )/ then = 5 kω = 0, = 0.7 = = = = ( -(-15))/ = (β +1)/ β c = 2.02 ma = 14.3/2.02 = 7.07 kω JT 1-9

10 Load Line Analysis The end points of the load line are: sat = / = 0 cutoff = = 0 ma The Q-point is the operating point that sets the values of and JT 1-10

11 ircuit alues Affect the Q-Point JT 1-11

12 ircuit alues Affect the Q-Point JT 1-12

13 ircuit alues Affect the Q-Point JT 1-13

14 xample (2) Given the load line and the defined Q-point, as shown in figure 2-a, determine the required values of,, and for a fixed-bias configuration as depicted at figure 2-b. Figure 2-b Figure 2-a JT 1-14

15 Solution JT 1-15

16 mitter-stabilized ias ircuit Adding a resistor ( ) to the emitter circuit The addition of the emitter resistor to the dc bias of the JT provides improved stability the dc bias currents and voltages remain closer to where they were set by the circuit when outside conditions (e.g., temperature) change JT 1-16

17 mitter-stabilized ias ircuit ase-mitter Loop From Kirchhoff s voltage law: Since = ( + 1) : - - ( 1) 0 Solving for : - - ( 1) - / JT 1-17

18 mitter-stabilized ias ircuit ollector-mitter Loop From Kirchhoff s voltage law: 0 Since : Also: ( - ) JT 1-18

19 oltage Divider ias ircuit This is a very stable bias circuit. The currents and voltages are nearly independent of any variations in. JT 1-19

20 Approximate Analysis of oltage Divider ias ircuit Where << 1 and 1 2 : Where > 10 2 : ondition to be tested From Kirchhoff s voltage law: ( ) JT 1-20

21 Problem Design the bias network for the silicon npn JT circuit such that = 1mA, 1 =22k Ω and 2 =2.2kΩ, if the transistor has β equals 100. JT 1-21

22 D ias with oltage Feedback ircuit Another way to improve the stability of a bias circuit is to add a feedback path from collector to base n this bias circuit the Q-point is only slightly dependent on the transistor beta, JT 1-22

23 D ias with oltage Feedback ircuit ase-mitter Loop From Kirchhoff s voltage law: 0 Where << : ' Knowing = and, the loop equation becomes: 0 Solving for : ( ) JT 1-23

24 D ias with oltage Feedback ircuit ollector-mitter Loop Applying Kirchoff s voltage law: + + = 0 Since and = : ( + ) + =0 Solving for : = ( + ) JT 1-24

25 Transistor Switching Networks Transistors with only the D source applied can be used as electronic switches JT 1-25

26 Switching ircuit alculations Saturation current: sat To ensure saturation: sat dc mitter-collector resistance at saturation and cutoff: sat cutoff sat sat O JT 1-26

27 Switching Time Transistor switching times: t on t r t d t off t s t f Times in range of nano-seconds xample Note: npn JT has faster switching time than pnp JT JT 1-27

28 Lecture Summary overed material ontinue JT iasing D analysis Fixed-bias circuit mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback JT switching time Material to be covered next lecture ontinue JT ontinue D analysis More examples ntroduction to ac signal analysis JT 1-28

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 14 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT iasing D analysis Fixed-bias circuit (revision) mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback

More information

Biasing. Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal.

Biasing. Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal. D iasing JT iasing iasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. The D input establishes an operating or quiescent point called the Q-point.

More information

การไบอ สทรานซ สเตอร. Transistors Biasing

การไบอ สทรานซ สเตอร. Transistors Biasing การไบอ สทรานซ สเตอร Transistors iasing iasing iasing: Applying D voltages to a transistor in order to turn it on so that it can amplify A signals. The D input establishes an operating or quiescent point

More information

Chapter 4 DC Biasing BJTs. BJTs

Chapter 4 DC Biasing BJTs. BJTs hapter 4 D Biasing BJTs BJTs Biasing Biasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. Operating Point The D input establishes an operating or

More information

CHAPTER 3 THE BIPOLAR JUNCTION TRANSISTOR (BJT)

CHAPTER 3 THE BIPOLAR JUNCTION TRANSISTOR (BJT) HAPT 3 TH IPOLA JUNTION TANSISTO (JT) 1 In this chapter, we will: JT Discuss the physical structure and operation of the bipolar junction transistor. Understand the dc analysis of bipolar transistor circuits.

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics nstitute for NT/JF, GAT, T-JAM, M.Sc. ntrance, JST, TF and G in Physics 3. ipolar Junction Transistors 3.1 Transistor onstruction Transistor is a three-layer semiconductor device consisting of either two

More information

Session 4: Analog Circuits. BJT Biasing Single stage amplifier

Session 4: Analog Circuits. BJT Biasing Single stage amplifier Session 4: Analog ircuits JT iasing Single stage amplifier 1 Outline JT Amplifier 2 JT: ipolar Junction Transistor i D A p D n R F F : Forward R : Reverse V D p n p n p n 1 2 1 : F 2 : R Active V 1 : F

More information

Electronic Devices, 9th edition Thomas L. Floyd. Input signal. R 1 and R 2 are selected to establish V B. If the V CE

Electronic Devices, 9th edition Thomas L. Floyd. Input signal. R 1 and R 2 are selected to establish V B. If the V CE 3/9/011 lectronic Devices Ninth dition Floyd hapter 5: Transistor ias ircuits The D Operating Point ias establishes the operating point (Q-point) of a transistor amplifier; the ac signal (ma) moves above

More information

8. Biasing Transistor Amplifiers

8. Biasing Transistor Amplifiers 8. iasing Transistor Amplifiers Lecture notes: Sec. 5 Sedra & Smith (6 th d): Sec. 5.4, 5.6 & 6.3-6.4 Sedra & Smith (5 th d): Sec. 4.4, 4.6 & 5.3-5.4 65, Winter013, F. Najmabadi ssues in developing a transistor

More information

Electronics Fundamentals BIPOLAR TRANSISTORS. Construction, circuit symbols and biasing examples for NPN and PNP junction transistors.

Electronics Fundamentals BIPOLAR TRANSISTORS. Construction, circuit symbols and biasing examples for NPN and PNP junction transistors. IPOLA TANSISTOS onstruction, circuit symbols and biasing examples for NPN and PNP junction transistors Slide 1 xternal bias voltages create an electric field, which pulls electrons (emitted into the base

More information

Lecture (06) Bipolar Junction Transistor

Lecture (06) Bipolar Junction Transistor Lecture (06) Bipolar Junction Transistor By: Dr. Ahmed lshafee ١ Agenda BJT structure BJT operation BJT characteristics ٢ BJT structure The BJT is constructed with three doped semiconductor regions One

More information

Celso José Faria de Araújo, M.Sc.

Celso José Faria de Araújo, M.Sc. elso José Faria de Araújo, M.Sc. TH IPOLA JUNTION TANSISTOS - JT Objecties: Understand the basic principles of JT operation Interpret the transport model Identify operating regions of the JT and use simplified

More information

Lecture (08) Bipolar Junction Transistor (2)

Lecture (08) Bipolar Junction Transistor (2) Lecture (08) ipolar Junction Transistor (2) y: Dr. Ahmed lshafee 1 JT haracteristic ollector haracteristic urves 2 Applying fixed V, increasing V Saturation Assume that V is set to produce a certain value

More information

Electronic Circuits Laboratory EE462G Lab #8. BJT Common Emitter Amplifier

Electronic Circuits Laboratory EE462G Lab #8. BJT Common Emitter Amplifier lectronic ircuits Laboratory 46G Lab #8 JT ommon mitter Amplifier npn ipolar Junction Transistor JT in a common-emitter configuration ase ollector V _ n p n V _ mitter For most applications the JT is operated

More information

Biasing of BJT IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1

Biasing of BJT IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1 HTTP://NGNS.N/ NGNS- ONSULTANTS LTU NOTS SS LTONS NGNNG 1 YA UPTU iasing of JT As we know that JT can be operated in three regions: active, saturation and cutoff by applying proper voltage condition. n

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Junction Transistor (JT ipolar Junction Transistors JT is a three-terminal device: emitter (, collector ( and base (. There are two types: pnp-type and npn-type. npn transistor: emitter & collector

More information

Chapter 5 Transistor Bias Circuits

Chapter 5 Transistor Bias Circuits Chapter 5 Transistor Bias Circuits Objectives Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collector-feedback bias circuits. Basic

More information

EE 434 Lecture 21. MOS Amplifiers Bipolar Devices

EE 434 Lecture 21. MOS Amplifiers Bipolar Devices 434 ecture MOS Amplifiers ipolar Devices Quiz 3 The quiescent voltage across the 5K resistor in the circuit shown was measured to be 3. ) Determine the quiescent output voltage ) Determine the small signal

More information

Transistors. electrons N P N holes. Base. An NPN device makes a transistor

Transistors. electrons N P N holes. Base. An NPN device makes a transistor NPN Transistor Theory Transistors Transistors are similar to diodes in that they are made up on ntype and ptype silicon. They differ in that Transistors are 3terminal devices (NPN or PNP), Transistors

More information

Lecture 6: Transistors Amplifiers. K.K. Gan Lecture 6: Transistors Amplifiers

Lecture 6: Transistors Amplifiers. K.K. Gan Lecture 6: Transistors Amplifiers Lecture 6: Transistors Amplifiers ommon mitter Amplifier ( Simplified ): What's common (ground) a common emitter amp? The emitter! The emitter is connected (tied) to ground usually by a capacitor To an

More information

FYSE400 ANALOG ELECTRONICS

FYSE400 ANALOG ELECTRONICS 7.9.016 YS400 ANALOG LTONS LTU 1 ntroduction to ipolar Junction Transistor ircuits 1 NTODUTON The deal urrent-controlled urrent Source efore the detailed analyzation of transistor operation, we should

More information

Electrical, Electronic and Digital Principles (EEDP) Lecture 3. Other BJT Biasing Techniques باسم ممدوح الحلوانى

Electrical, Electronic and Digital Principles (EEDP) Lecture 3. Other BJT Biasing Techniques باسم ممدوح الحلوانى Electrical, Electronic and Digital Principles (EEDP) Lecture 3 Other BJT Biasing Techniques د. باسم ممدوح الحلوانى Approximate Analysis Voltage-divider Bias Exact Analysis Ri = is the equivalent resistance

More information

DC Bias. Graphical Analysis. Script

DC Bias. Graphical Analysis. Script Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 3 Lecture Title: Analog Circuits

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

Electrical, Electronic and Digital Principles (EEDP) Lecture 3. Other BJT Biasing Techniques باسم ممدوح الحلوانى

Electrical, Electronic and Digital Principles (EEDP) Lecture 3. Other BJT Biasing Techniques باسم ممدوح الحلوانى Electrical, Electronic and Digital Principles (EEDP) Lecture 3 Other BJT Biasing Techniques د. باسم ممدوح الحلوانى Approximate Analysis Voltage-divider Bias Exact Analysis Ri = is the equivalent resistance

More information

ET215 Devices I Unit 4A

ET215 Devices I Unit 4A ITT Technical Institute ET215 Devices I Unit 4A Chapter 3, Section 3.1-3.2 This unit is divided into two parts; Unit 4A and Unit 4B Chapter 3 Section 3.1 Structure of Bipolar Junction Transistors The basic

More information

Lecture 6. OUTLINE BJT (cont d) PNP transistor (structure, operation, models) BJT Amplifiers General considerations. Reading: Chapter

Lecture 6. OUTLINE BJT (cont d) PNP transistor (structure, operation, models) BJT Amplifiers General considerations. Reading: Chapter Lecture 6 ANNOUNCMNTS HW#3, Prob. 2: Re-draw -plots for W reduced by a factor of 2. n case of a major earthquake: Try to duck/crouch on the floor in front of the seats for cover. Once the earthquake stops,

More information

Introduction PNP C NPN C

Introduction PNP C NPN C Introduction JT Transistors: A JT (or any transistor) can be used either as a switch with positions of on or off, or an amplifier that controls its output at all levels in between the extreme on or off

More information

Laboratory Four - Bipolar Junction Transistor (BJT)

Laboratory Four - Bipolar Junction Transistor (BJT) M/IS 3512 ioelectronics Laboratory Four - ipolar Junction Transistor (JT) Learning Objectives: Know how to differentiate between PNP & NPN JT transistors using a multimeter. e familiar with the operation

More information

Transistor Configuration

Transistor Configuration Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

More information

D.C Biasing using a Single Power Supply

D.C Biasing using a Single Power Supply 4/6/0 D Biasing using a Single Power Supply /6 D. Biasing using a Single Power Supply The general form of a single-supply BJT amplifier biasing circuit is: - - Generally, we have three goals in designing

More information

I C I E =I B = I C 1 V BE 0.7 V

I C I E =I B = I C 1 V BE 0.7 V Guide to NPN Amplifier Analysis Jason Woytowich 1. Transistor characteristics A BJT has three operating modes cutoff, active, and saturation. For applications, like amplifiers, where linear characteristics

More information

EE 330 Lecture 18. Characteristics of Finer Feature Size Processes. Bipolar Process

EE 330 Lecture 18. Characteristics of Finer Feature Size Processes. Bipolar Process 330 Lecture 18 haracteristics of Finer Feature Size Processes ipolar Process How does the inverter delay compare between a 0.5u process and a 0.13u process? DD IN OUT IN OUT SS How does the inverter

More information

6.3 BJT Circuits at DC

6.3 BJT Circuits at DC 378 Chapter 6 Bipolar Junction Transistors (BJTs) 6.3 BJT Circuits at DC We are now ready to consider the analysis of BJT circuits to which only dc voltages are applied. In the following examples we will

More information

BJT as an Amplifier and Its Biasing

BJT as an Amplifier and Its Biasing Microelectronic ircuits BJT as an Amplifier and Its Biasing Slide 1 Transfer haracteristics & Biasing Slide 2 BJT urrent-oltage relationship The collector current i I i i B s e i B vbe Is e T v BE T Emitter

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

This transistor circuit has a voltage divider circuit with an emitter resistor for bias stability.

This transistor circuit has a voltage divider circuit with an emitter resistor for bias stability. When you have completed this exercise, you will be able to describe the temperature effects on a voltage divider bias circuit by using a typical transistor circuit. You will verify your results with a

More information

BJT Amplifiers: Overview

BJT Amplifiers: Overview Indian Institute of Technology Jodhpur, Year 07 Analog lectronics (ourse ode: 34) Lecture 9 0: BJT Biasing, Amplifiers ourse Instructor: Shree Prakash Tiwari mail: sptiwari@iitj.ac.in Webpage: http://home.iitj.ac.in/~sptiwari/

More information

Transistors. Bipolar Junction transistors Principle of operation Characteristics. Field effect transistors Principle of operation Characteristics

Transistors. Bipolar Junction transistors Principle of operation Characteristics. Field effect transistors Principle of operation Characteristics Transistors ipolar Junction transistors Principle of operation haracteristics Field effect transistors Principle of operation haracteristics ntroduction Radio based on vacuum tubes Fundamental building

More information

Chapter 3: Bipolar Junction Transistors

Chapter 3: Bipolar Junction Transistors Chapter 3: Bipolar Junction Transistors Transistor Construction There are two types of transistors: pnp npn pnp The terminals are labeled: E - Emitter B - Base C - Collector npn 2 Transistor Operation

More information

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT AIM: 1) To study different BJT DC biasing circuits 2) To design voltage divider bias circuit using NPN BJT SOFTWARE TOOL: PC

More information

Early Effect & BJT Biasing

Early Effect & BJT Biasing Early Effect & BJT Biasing Early Effect DC BJT Behavior DC Biasing the BJT 1 ESE319 Introduction to Microelectronics Early Effect Saturation region Forward-Active region 4 3 Ideal NPN BJT Transfer V Characteristic

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

EEE225: Analogue and Digital Electronics

EEE225: Analogue and Digital Electronics EEE225: Analogue and Digital Electronics Lecture II James E. Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk This Lecture 1 One Transistor Circuits Continued...

More information

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers 1. Explain the purpose of a thin, lightly doped base region.

More information

EE 330 Lecture 19. Bipolar Devices

EE 330 Lecture 19. Bipolar Devices 330 Lecture 19 ipolar Devices Review from last lecture n-well n-well n- p- Review from last lecture Metal Mask A-A Section - Section Review from last lecture D A A D Review from last lecture Should now

More information

EE 330 Lecture 16. Comparison of MOS Processes Bipolar Process

EE 330 Lecture 16. Comparison of MOS Processes Bipolar Process 330 Lecture 16 omparison of MOS Processes ipolar Process Review from last lecture P-Select Mask p-diffusion p-diffusion A-A Section Note the gate is self aligned!! - Section Review from last lecture n-select

More information

Module 4 Unit 4 Feedback in Amplifiers

Module 4 Unit 4 Feedback in Amplifiers Module 4 Unit 4 Feedback in mplifiers eview Questions:. What are the drawbacks in a electronic circuit not using proper feedback? 2. What is positive feedback? Positive feedback is avoided in amplifier

More information

Chapter 3. Bipolar Junction Transistors

Chapter 3. Bipolar Junction Transistors Chapter 3. Bipolar Junction Transistors Outline: Fundamental of Transistor Common-Base Configuration Common-Emitter Configuration Common-Collector Configuration Introduction The transistor is a three-layer

More information

Chapter 4 Physics of Bipolar Transistors. EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of Bipolar Transistor

Chapter 4 Physics of Bipolar Transistors. EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of Bipolar Transistor EE105 - Spring 2007 Microelectronic Devices and ircuits Lecture 10 Bipolar ransistors hapter 4 Physics of Bipolar ransistors 4.1 General onsiderations 4.2 Structure of Bipolar ransistor 4.3 Operation of

More information

Communication Microelectronics (W17)

Communication Microelectronics (W17) Communication Microelectronics (W17) Lecture 4: Bipolar Junction Transistor Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Bipolar Junction Transistor (BJT) Physical Structure and I-V

More information

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 7 Power Amplifiers A power amplifier is a large signal amplifier that produces a replica of the input signal on its output. In the case shown here, the output

More information

I B. VCE =const. 25mV I C. V out = I C R C = β I B R C = βr C βr e

I B. VCE =const. 25mV I C. V out = I C R C = β I B R C = βr C βr e Physics 338 L 6 Spring 2016 ipolar Junction Transistors 0. (a) Load Lines and haracteristic urves The below figure shows the characteristic curves for a JT along with the load line for the simple common

More information

REVIEW TRANSISTOR BIAS CIRCUIT

REVIEW TRANSISTOR BIAS CIRCUIT EVIEW TANSISTO BIAS CICUIT OBJECTIVES Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collectorfeedback bias circuits. Basic troubleshooting

More information

BDW93C, BDW94C Series

BDW93C, BDW94C Series Features Designed for general-purpose amplifier and low speed switching applications Collector-emitter sustaining voltage- CEO (sus) = (Minimum) Collector-emitter saturation voltage- CE (sat) = 2 (Maximum)

More information

UNIT-III Bipolar Junction Transistor

UNIT-III Bipolar Junction Transistor DC UNT-3.xplain the construction and working of JT. UNT- ipolar Junction Transistor A bipolar (junction) transistor (JT) is a three-terminal electronic device constructed of doped semiconductor material

More information

Output Stage and Power Amplifiers

Output Stage and Power Amplifiers Microelectronic Circuits Output Stage and ower Amplifiers Slide 1 ntroduction Most of the challenging requirement in the design of the output stage is ower delivery to the load. ower consumption at the

More information

Chapter 2. Bipolar Junction Transistor

Chapter 2. Bipolar Junction Transistor Chapter 2 ipolar Junction Transistor 2.0 History The name bipolar is used because both types of carriers namely hole and electron are used in the transistor, as opposed to field effect transistor, which

More information

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN Hanoi, 9/24/2012 Contents 2 Structure and operation of BJT Different configurations of BJT Characteristic curves DC biasing method and analysis

More information

3. RESISTOR - TRANSISTOR LOGIC CIRCUITS 3.1 AN RTL NOT GATE

3. RESISTOR - TRANSISTOR LOGIC CIRCUITS 3.1 AN RTL NOT GATE 3. ESSTO - TANSSTO LOG UTS When a transistor is used in conjunction with resistors to create a logic circuit, it is usually referred to as a resistor-transistor logic or TL for short. n a logic circuit,

More information

MMBT2222A. SOT-23 Mark: 1P. SOT-6 Mark:.1B. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

MMBT2222A. SOT-23 Mark: 1P. SOT-6 Mark:.1B. TA = 25 C unless otherwise noted. Symbol Parameter Value Units PN2222A TO-92 MMPQ2222 SOI-6 MMT2222A SOT-23 Mark: P PZT2222A SOT-223 NMT2222 SOT-6 Mark:. 2 Discrete POWR & Signal Technologies 2 2 This device is for use as a medium power amplifier and switch requiring

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

Analog Electronics (Course Code: EE314) Lecture 5 7: Junction contd, BJT. Course Instructor: Shree Prakash Tiwari

Analog Electronics (Course Code: EE314) Lecture 5 7: Junction contd, BJT. Course Instructor: Shree Prakash Tiwari ndian nstitute of echnology Jodhpur, Year 2017 Analog lectronics (ourse ode: 314) Lecture 5 7: Junction contd, J ourse nstructor: Shree Prakash iwari mail: sptiwari@iitj.ac.in Webpage: http://home.iitj.ac.in/~sptiwari/

More information

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018 Transistor Biasing DC Biasing of BJT Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com A transistors steady state of operation depends a great deal

More information

Electronic Circuits II Laboratory 01 Voltage Divider Bias

Electronic Circuits II Laboratory 01 Voltage Divider Bias Electronic Circuits II Laboratory 01 Voltage Divider Bias # Student ID Student Name Grade (10) 1 Instructor signature 2 3 4 5 Delivery Date -1 / 8 - Objective The objective of this exercise is to examine

More information

4.7 k V C 10 V I B. (b) V ma V. 3.3 k ma. (c)

4.7 k V C 10 V I B. (b) V ma V. 3.3 k ma. (c) 380 Chapter 6 Bipolar Junction Transistors (BJTs) Example 6.4 Consider the circuit shown in Fig. 6., which is redrawn in Fig. 6. to remind the reader of the convention employed throughout this book for

More information

Lecture 9 Transistors

Lecture 9 Transistors Lecture 9 Transistors Physics Transistor/transistor logic CMOS logic CA 1947 http://www.extremetech.com/extreme/164301-graphenetransistors-based-on-negative-resistance-could-spell-theend-of-silicon-and-semiconductors

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS Due Date (NOTE CHANGE): Thursday, Nov 12 th @ 5 pm; Late penalty in effect! Most active electronic devices are based on the transistor as the fundamental

More information

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 12 Bipolar Junction Transistor (BJT) BJT 1-1 Course Info Lecture hours: 4 Two Lectures weekly (Saturdays and Wednesdays) Location: K2 Time: 1:40 pm Tutorial hours: 2 One tutorial class every week

More information

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect Diode as Clamper A clamping circuit is used to place either the positive or negative peak of a signal at a desired level. The dc component is simply added or subtracted to/from the input signal. The clamper

More information

Transistor Biasing Nafees Ahamad

Transistor Biasing Nafees Ahamad Transistor Biasing Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: www.eedofdit.weebly.com Introduction The basic function of transistor is to do amplification. (CE connection)

More information

Electronics Switches & Controls

Electronics Switches & Controls lectronics Switches & ontrols onventional controls Potentiometer switches Transistor as switches and controls FT-based JT-based ariable potentiometers -ariable resistance sometime needed (see Labs) - potentiometer

More information

Transistors as Amplifiers

Transistors as Amplifiers Transistors as Amplifiers The transistor works in the active region (a F ) around the quiescent point QP dc supply (dc voltage sources, dc current sources) asic amplifier with one transistor: S and amplifiers

More information

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8 Bipolar Junction Transistor Aim: The aim of this experiment is to investigate the DC behavior

More information

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline COE/EE152: Basic Electronics Lecture 5 Andrew Selasi Agbemenu 1 Outline Physical Structure of BJT Two Diode Analogy Modes of Operation Forward Active Mode of BJTs BJT Configurations Early Effect Large

More information

TO-92 SOT-23 Mark: 83. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

TO-92 SOT-23 Mark: 83. TA = 25 C unless otherwise noted. Symbol Parameter Value Units 2N44 MMBT44 2N44 / MMBT44 B E TO-92 SOT-23 Mark: 83 B E This device is designed for use as general purpose amplifiers and switches requiring collector currents to 5 ma. Absolute Maximum Ratings* TA = 25

More information

Transistors and Applications

Transistors and Applications Chapter 17 Transistors and Applications DC Operation of Bipolar Junction Transistors (BJTs) The bipolar junction transistor (BJT) is constructed with three doped semiconductor regions separated by two

More information

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward SEMICONDUCTOR PHYSICS-2 [Transistor, constructional characteristics, biasing of transistors, transistor configuration, transistor as an amplifier, transistor as a switch, transistor as an oscillator] Transistor

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo olantonio A.A. 2015-16 ias issues The D bias point is affected by thermal issue due to the active

More information

Some frequently used transistor parameter symbols and their meanings are given here.

Some frequently used transistor parameter symbols and their meanings are given here. When you have completed this exercise, you will be familiar with several transistor parameter symbols. You will verify your knowledge with a list of common transistor parameter symbols and meanings. Some

More information

b b Fig. 1 Transistor symbols

b b Fig. 1 Transistor symbols TRANSISTORS Transistors have three terminals which are referred to as emitter (e), base (b) and collector (c). Fig 1 shows the symbols used for the two types of transistors in common use. c c b b e e npn

More information

TO-92 SOT-23 Mark: 2A. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

TO-92 SOT-23 Mark: 2A. TA = 25 C unless otherwise noted. Symbol Parameter Value Units 2N396 / MMBT396 / MMPQ396 / PZT396 N Discrete POWER & Signal Technologies 2N396 MMBT396 E B E TO-92 SOT-23 Mark: 2A B MMPQ396 PZT396 E B E B E B E B SOI-6 SOT-223 B E This device is designed for general

More information

ECEG 350 Electronics I Fall 2017

ECEG 350 Electronics I Fall 2017 EEG 350 Electronics Fall 07 Final Exam General nformation Rough breakdown of topic coverage: 0-0% JT fundamentals and regions of operation 0-40% MOSFET fundamentals biasing and small-signal modeling 0-5%

More information

Linear electronic. Lecture No. 1

Linear electronic. Lecture No. 1 1 Lecture No. 1 2 3 4 5 Lecture No. 2 6 7 8 9 10 11 Lecture No. 3 12 13 14 Lecture No. 4 Example: find Frequency response analysis for the circuit shown in figure below. Where R S =4kR B1 =8kR B2 =4k R

More information

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS 2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS I. Objectives and Contents The goal of this experiment is to become familiar with BJT as an amplifier and to evaluate the basic configurations

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Prof. Paolo olantonio a.a. 2011 12 ipolar transistors are one of the main building blocks in electronic systems They are used in both analogue and digital circuits They incorporate two pn junctions and

More information

Concepts to be Covered

Concepts to be Covered Introductory Medical Device Prototyping Analog Circuits Part 2 Semiconductors, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Semiconductors

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 3 RTL and DTL Gates Ch06L3-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Resistor transistor logic (RTL) RTL Circuit Characteristics

More information

By: Dr. Ahmed ElShafee

By: Dr. Ahmed ElShafee Lecture (04) Transistor Bias Circuit 3 BJT Amplifiers 1 By: Dr. Ahmed ElShafee ١ Emitter Feedback Bias If an emitter resistor is added to the base bias circuit in Figure, the result is emitter feedback

More information

The collector terminal is common to the input and output signals and is connected to the dc power supply. Common Collector Circuit

The collector terminal is common to the input and output signals and is connected to the dc power supply. Common Collector Circuit Common Collector Circuit When you have completed this exercise, you will be able to determine the dc operating conditions of a common collector (CC) transistor circuit by using a typical CC circuit. You

More information

Chapter Two "Bipolar Transistor Circuits"

Chapter Two Bipolar Transistor Circuits Chapter Two "Bipolar Transistor Circuits" 1.TRANSISTOR CONSTRUCTION:- The transistor is a three-layer semiconductor device consisting of either two n- and one p-type layers of material or two p- and one

More information

Lab 2: Discrete BJT Op-Amps (Part I)

Lab 2: Discrete BJT Op-Amps (Part I) Lab 2: Discrete BJT Op-Amps (Part I) This is a three-week laboratory. You are required to write only one lab report for all parts of this experiment. 1.0. INTRODUCTION In this lab, we will introduce and

More information

Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook)

Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook) Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook) Recapitulation and Equivalent Circuit Models Previous slides present first order BJT model. Assumes npn transistor in active mode. Basic relationship

More information

Video Course on Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi

Video Course on Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Video Course on Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Module No. # 02 Transistors Lecture No. # 09 Biasing a Transistor (Contd) We continue our discussion

More information

Carleton University ELEC Lab 1. L2 Friday 2:30 P.M. Student Number: Operation of a BJT. Author: Adam Heffernan

Carleton University ELEC Lab 1. L2 Friday 2:30 P.M. Student Number: Operation of a BJT. Author: Adam Heffernan Carleton University ELEC 3509 Lab 1 L2 Friday 2:30 P.M. Student Number: 100977570 Operation of a BJT Author: Adam Heffernan October 13, 2017 Contents 1 Transistor DC Characterization 3 1.1 Calculations

More information

Analog Electronics (Course Code: EE314) Lecture 9 10: BJT Small Signal, Biasing, Amplifiers

Analog Electronics (Course Code: EE314) Lecture 9 10: BJT Small Signal, Biasing, Amplifiers Indian Institute of Technology Jodhpur, Year 08 Analog Electronics (ourse ode: EE34) Lecture 9 0: BJT Small Signal, Biasing, Amplifiers ourse Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

Lecture 4. Accurate Bipolar Representation. Forward Active Region. Structure and Symbol of Bipolar Transistor

Lecture 4. Accurate Bipolar Representation. Forward Active Region. Structure and Symbol of Bipolar Transistor Lecture 4 Structure and Symbol of ipolar ransistor OULNE ipolar Junction ransistor (J) General considerations Structure Operation in active mode Large signal model and characteristics ransconductance Small

More information

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT)

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT) ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT) Objectives: The experiments in this laboratory exercise will provide an introduction to the BJT. You will use the Bit Bucket breadboarding system

More information