Communication Microelectronics (W17)

Size: px
Start display at page:

Download "Communication Microelectronics (W17)"

Transcription

1 Communication Microelectronics (W17) Lecture 4: Bipolar Junction Transistor Assistant Professor Office: C

2 Bipolar Junction Transistor (BJT) Physical Structure and I-V Characteristics 2

3 BJT Physical Structure Two back to back PN Junctions NPN or PNP Transistor Three terminal device, for NPN: Base (P-Type), Emitter and Collector (N-Type) Base-Emitter Junction Base-Collector Junction Emitter doping is higher than Collector doping NPN BJT Transistor PNP BJT Transistor 3

4 BJT NPN I-V characteristics 1. BJT NPN Transistor in Cutoff Mode Base-Emitter Junction is biased Base-Collector Junction is biased BEJ BCJ Cutoff Mode I I I 0 C B E 4

5 BJT NPN I-V characteristics 2. BJT NPN Transistor in Active Mode Base-Emitter Junction is biased Base-Collector Junction is biased BEJ Forwar d BCJ Revers e Active Mode 5

6 BJT NPN I-V characteristics 2. BJT NPN Transistor in Active Mode Base-Emitter Junction is biased and electrons pass through the Base to the collector due to the Base small area Electrons from the Emitter are collected at the Collector side The transistor s Collector current can be modeled by a current dependent current source I s depends on doping and width of the Base V I I exp V C s BE T I C I F B V BE 0.7V 6

7 BJT NPN I-V characteristics 3. NPN Transistor in Active mode Base-Collector Junction is biased Base-Emitter Junction is reverse biased Emitter and collector reverse their roles However, BJT has an asymmetrical physical structure The current gain from Base to Emitter is very small V BC 0.5V BEJ BCJ Active Mode R F I E I R B 7

8 BJT NPN I-V characteristics 4. NPN Transistor in Saturation Mode Both junctions are biased The total current is the EBJ diffusion current subtracted from CBJ diffusion current V BE = 0.7V V BC = 0.5V BEJ BCJ Saturation Mode BJT could be used as a closed switch in Saturation mode I C I F B V 0.2V CE 8

9 BJT NPN I-V characteristics I C = I s exp V BE V T For Active ONLY I C versus V BE and V CE 9

10 BJT NPN I-V characteristics V BE ic ISexp( ) 1 VT v V CE A r o i v C CE V I A C I C versus V CE The Early effect 10

11 BJT Large Signal Model in Active Mode 11

12 BJT PNP Physical Structure BJT PNP Transistor PNP is the NPN Complementary structure Two back to back PN Junctions Three terminal device: Base (Ntype), Emitter and Collector (Ptype) Emitter-Base Junction Collector-Base Junction Emitter doping is higher than Collector doping Same I-V Characteristics as NPN Transistor PNP BJT Transistor 12

13 BJT PNP Physical Structure BJT PNP Transistor in Active Mode EBJ Forwar d CBJ Active Mode 13

14 BJT Modes of Operation Electrical Equations of BJT 14

15 BJT NPN Modes of Operation Mode BEJ BCJ Equations Condition Cutoff I C = I E = I B =0 Active () Saturation Active V BE = 0.7 I E = I C + I B I C = β F I B = α F I E β F α F = 1 + β F V BE = 0.7 V BC = 0.5 V CE = 0.2 I E = I C + I B V BC = 0.5 I C = I E + I B I E = β R I B = α R I C β R α R = 1 + β R V BE < 0.7 V BC < 0.5 V BC < 0.5 Or V CE > 0.2 I C < β F I B V BE <

16 BJT PNP Modes of Operation Mode EBJ CBJ Equations Condition Cutoff I C = I E = I B =0 Active () Saturation Active V EB = 0.7 I E = I C + I B I C = β F I B = α F I E β F α F = 1 + β F V EB = 0.7 V CB = 0.5 V EC = 0.2 I E = I C + I B V CB = 0.5 I C = I E + I B I E = β R I B = α R I C β R α R = 1 + β R V EB < 0.7 V CB < 0.5 V CB < 0.5 Or V EC > 0.2 I C < β F I B V EB <

17 Calculating DC operating point Solved Exercise 17

18 Solved Example Find the DC Operating point of the Transistors? Given: V BE =0.7V,β=10 (Ans.: I B =0.023mA, I C =0.23mA, I E =0.253mA, V CE =9.54V, Active ) 18

19 Solution Steps: 1. Identify the BJT Type 2. Place the terminals name on the circuit 3. Write a KVL in the INPUT Loop Input loop for BJT is any loop containing V BE 4. Assume the BJT mode (most of the time active) 5. Calculate the currents and voltages 6. Write KVL in the OUTPUT loop Output loop for BJT is any loop containing V CE 7. Verify your assumption! 19

20 Example Find the DC Operating point of the Transistors? Given: V EB =0.7V,β=10 (Ans.: I B =93µA, I C =0.93mA, I E =1.023mA, V EC =8.14V, Active ) 20

Electronic Circuits ELCT604 (Spring 2018) Lecture 2 BJT Amplifiers

Electronic Circuits ELCT604 (Spring 2018) Lecture 2 BJT Amplifiers Electronic Circuits ELCT604 (Spring 2018) Lecture 2 BJT Amplifiers Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Analog Voltage Amplifiers Circuit Design and Configurations 2 Objective

More information

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 12 Bipolar Junction Transistor (BJT) BJT 1-1 Course Info Lecture hours: 4 Two Lectures weekly (Saturdays and Wednesdays) Location: K2 Time: 1:40 pm Tutorial hours: 2 One tutorial class every week

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers

Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 BJT Modes of Operation Electrical Equations of BJT 2 BJT

More information

ECE321 Electronics I Fall 2006

ECE321 Electronics I Fall 2006 ECE321 Electronics I Fall 2006 Professor James E. Morris Lecture 11 31 st October, 2006 Bipolar Junction Transistors (BJTs) 5.1 Device Structure & Physics 5.2 I-V Characteristics Convert 5.1 information

More information

Bipolar Junction Transistors (BJTs)

Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode Cutoff Active Saturation EBJ Reverse

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

C H A P T E R 6 Bipolar Junction Transistors (BJTs)

C H A P T E R 6 Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode EBJ CBJ Cutoff Reverse Reverse Active

More information

Physics of Bipolar Transistor

Physics of Bipolar Transistor Physics of Bipolar Transistor Motivations - In many electronic applications, amplifier is the most fundamental building block. Ex Audio amplifier: amplifies electric signal to drive a speaker RF Power

More information

5.1 BJT Device Structure and Physical Operation

5.1 BJT Device Structure and Physical Operation 11/28/2004 section 5_1 BJT Device Structure and Physical Operation blank 1/2 5.1 BJT Device Structure and Physical Operation Reading Assignment: pp. 377-392 Another kind of transistor is the Bipolar Junction

More information

Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook)

Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook) Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook) Recapitulation and Equivalent Circuit Models Previous slides present first order BJT model. Assumes npn transistor in active mode. Basic relationship

More information

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline COE/EE152: Basic Electronics Lecture 5 Andrew Selasi Agbemenu 1 Outline Physical Structure of BJT Two Diode Analogy Modes of Operation Forward Active Mode of BJTs BJT Configurations Early Effect Large

More information

Bipolar Junction Transistors (BJTs) Overview

Bipolar Junction Transistors (BJTs) Overview 1 Bipolar Junction Transistors (BJTs) Asst. Prof. MONTREE SIRIPRUCHYANUN, D. Eng. Dept. of Teacher Training in Electrical Engineering, Faculty of Technical Education King Mongkut s Institute of Technology

More information

ECE 442 Solid State Devices & Circuits. 6. Bipolar Transistors

ECE 442 Solid State Devices & Circuits. 6. Bipolar Transistors ECE 442 Solid State Devices & Circuits 6. Bipolar Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 342 Jose Schutt Aine 1 Bipolar Junction

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT)

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT) EE105 Fall 2014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 utardja Dai Hall (DH) 1 NPN Bipolar Junction Transistor (BJT) Forward Bias Reverse Bias Hole Flow Electron

More information

ECE 310 Microelectronics Circuits

ECE 310 Microelectronics Circuits ECE 310 Microelectronics Circuits Bipolar Transistors Dr. Vishal Saxena (vishalsaxena@boisetstate.edu) Jan 20, 2014 Vishal Saxena 1 Bipolar Transistor n the chapter, we will study the physics of bipolar

More information

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect Diode as Clamper A clamping circuit is used to place either the positive or negative peak of a signal at a desired level. The dc component is simply added or subtracted to/from the input signal. The clamper

More information

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing BJT Structure the BJT is formed by doping three semiconductor regions (emitter, base, and collector)

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lec-5: Bipolar Junction Transistor (BJT) Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Bipolar

More information

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN Hanoi, 9/24/2012 Contents 2 Structure and operation of BJT Different configurations of BJT Characteristic curves DC biasing method and analysis

More information

6.3 BJT Circuits at DC

6.3 BJT Circuits at DC 378 Chapter 6 Bipolar Junction Transistors (BJTs) 6.3 BJT Circuits at DC We are now ready to consider the analysis of BJT circuits to which only dc voltages are applied. In the following examples we will

More information

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT)

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT) ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT) Objectives: The experiments in this laboratory exercise will provide an introduction to the BJT. You will use the Bit Bucket breadboarding system

More information

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1 BJT Bipolar Junction Transistor Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com The Bipolar Junction Transistor is a semiconductor device which

More information

ECEN 325 Lab 7: Characterization and DC Biasing of the BJT

ECEN 325 Lab 7: Characterization and DC Biasing of the BJT ECEN 325 Lab 7: Characterization and DC Biasing of the BJT 1 Objectives The purpose of this lab is to characterize NPN and PNP bipolar junction transistors (BJT), and to analyze and design DC biasing circuits

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

Figure1: Basic BJT construction.

Figure1: Basic BJT construction. Chapter 4: Bipolar Junction Transistors (BJTs) Bipolar Junction Transistor (BJT) Structure The BJT is constructed with three doped semiconductor regions separated by two pn junctions, as in Figure 1(a).

More information

Structure of Actual Transistors

Structure of Actual Transistors 4.1.3. Structure of Actual Transistors Figure 4.7 shows a more realistic BJT cross-section Collector virtually surrounds entire emitter region This makes it difficult for electrons injected into base to

More information

4.1.3 Structure of Actual Transistors

4.1.3 Structure of Actual Transistors 4.1.3 Structure of Actual Transistors Figure 4.7 shows a more realistic BJT cross-section Collector virtually surrounds entire emitter region This makes it difficult for electrons injected into base to

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

ET215 Devices I Unit 4A

ET215 Devices I Unit 4A ITT Technical Institute ET215 Devices I Unit 4A Chapter 3, Section 3.1-3.2 This unit is divided into two parts; Unit 4A and Unit 4B Chapter 3 Section 3.1 Structure of Bipolar Junction Transistors The basic

More information

Chapter 3. Bipolar Junction Transistors

Chapter 3. Bipolar Junction Transistors Chapter 3. Bipolar Junction Transistors Outline: Fundamental of Transistor Common-Base Configuration Common-Emitter Configuration Common-Collector Configuration Introduction The transistor is a three-layer

More information

Microelectronic Circuits, Kyung Hee Univ. Spring, Bipolar Junction Transistors

Microelectronic Circuits, Kyung Hee Univ. Spring, Bipolar Junction Transistors Bipolar Junction Transistors 1 Introduction physical structure of the bipolar transistor and how it works How the voltage between two terminals of the transistor controls the current that flows through

More information

Transistors and Applications

Transistors and Applications Chapter 17 Transistors and Applications DC Operation of Bipolar Junction Transistors (BJTs) The bipolar junction transistor (BJT) is constructed with three doped semiconductor regions separated by two

More information

Chapter 3: Bipolar Junction Transistors

Chapter 3: Bipolar Junction Transistors Chapter 3: Bipolar Junction Transistors Transistor Construction There are two types of transistors: pnp npn pnp The terminals are labeled: E - Emitter B - Base C - Collector npn 2 Transistor Operation

More information

ESE319 Introduction to Microelectronics BJT Intro and Large Signal Model

ESE319 Introduction to Microelectronics BJT Intro and Large Signal Model BJT Intro and Large Signal Model 1 VLSI Chip Manufacturing Process 2 0.35 mm SiGe BiCMOS Layout for RF (3.5 GHz) Two-Stage Power Amplifier Each transistor above is realized as net of four heterojunction

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Invented in 1948 at Bell Telephone laboratories Bipolar junction transistor (BJT) - one of the major three terminal devices Three terminal devices more useful than two terminal

More information

4.7 k V C 10 V I B. (b) V ma V. 3.3 k ma. (c)

4.7 k V C 10 V I B. (b) V ma V. 3.3 k ma. (c) 380 Chapter 6 Bipolar Junction Transistors (BJTs) Example 6.4 Consider the circuit shown in Fig. 6., which is redrawn in Fig. 6. to remind the reader of the convention employed throughout this book for

More information

Alexandria University Faculty of Engineering Electrical Engineering Department

Alexandria University Faculty of Engineering Electrical Engineering Department Chapter 10: Alexandria University Faculty of Engineering Electrical Engineering Department ECE 336: Semiconductor Devices Sheet 6 1. A Si pnp BJT with N AE = 5x10 17 / cm 3, N DB = 10 15 /cm 3 and N AC

More information

Unit 3 The Bipolar Junc3on Transistor

Unit 3 The Bipolar Junc3on Transistor Unit 3 The Bipolar Junc3on Transistor Bipolar junc-on transistors (BJTs) Contents Basic Bipolar Junc3on Transistor, Transistor Structures (NPN and PNP ) Modes of Opera3on Symbol and Conven3ons Current

More information

Lecture (06) Bipolar Junction Transistor

Lecture (06) Bipolar Junction Transistor Lecture (06) Bipolar Junction Transistor By: Dr. Ahmed lshafee ١ Agenda BJT structure BJT operation BJT characteristics ٢ BJT structure The BJT is constructed with three doped semiconductor regions One

More information

ELEC 3908, Physical Electronics, Lecture 16. Bipolar Transistor Operation

ELEC 3908, Physical Electronics, Lecture 16. Bipolar Transistor Operation ELEC 3908, Physical Electronics, Lecture 16 Bipolar Transistor Operation Lecture Outline Last lecture discussed the structure and fabrication of a double diffused bipolar transistor Now examine current

More information

Electronic Circuits - Tutorial 07 BJT transistor 1

Electronic Circuits - Tutorial 07 BJT transistor 1 Electronic Circuits - Tutorial 07 BJT transistor 1-1 / 20 - T & F # Question 1 A bipolar junction transistor has three terminals. T 2 For operation in the linear or active region, the base-emitter junction

More information

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers 1. Explain the purpose of a thin, lightly doped base region.

More information

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source Output from Collector Start with bias DC analysis make sure BJT is in FA, then calculate small signal parameters for AC analysis.

More information

Bipolar junction transistors.

Bipolar junction transistors. Bipolar junction transistors. Third Semester Course code : 15EECC202 Analog electronic circuits (AEC) Team: Dr. Nalini C Iyer, R.V. Hangal, Sujata N, Prashant A, Sneha Meti AEC Team, Faculty, School of

More information

Single-Stage BJT Amplifiers and BJT High-Frequency Model. Single-Stage BJT Amplifier Configurations

Single-Stage BJT Amplifiers and BJT High-Frequency Model. Single-Stage BJT Amplifier Configurations 1 Single-Stage BJT Amplifiers and BJT High-Frequency Model Asst. Prof. MONTREE SIRIPRUCHYANUN, D. Eng. Dept. of Teacher Training in Electrical Engineering, Faculty of Technical Education King Mongkut s

More information

Early Effect & BJT Biasing

Early Effect & BJT Biasing Early Effect & BJT Biasing Early Effect DC BJT Behavior DC Biasing the BJT 1 ESE319 Introduction to Microelectronics Early Effect Saturation region Forward-Active region 4 3 Ideal NPN BJT Transfer V Characteristic

More information

ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร

ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร EN2042102 วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 7 ทรานซ สเตอร Bipolar Junction Transistor สาขาว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร Objectives Describe

More information

Bipolar Junction Transistor (BJT) Basics- GATE Problems

Bipolar Junction Transistor (BJT) Basics- GATE Problems Bipolar Junction Transistor (BJT) Basics- GATE Problems One Mark Questions 1. The break down voltage of a transistor with its base open is BV CEO and that with emitter open is BV CBO, then (a) BV CEO =

More information

Lecture 16. The Bipolar Junction Transistor (I) Forward Active Regime. Outline. The Bipolar Junction Transistor (BJT): structure and basic operation

Lecture 16. The Bipolar Junction Transistor (I) Forward Active Regime. Outline. The Bipolar Junction Transistor (BJT): structure and basic operation Lecture 16 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I-V characteristics in forward active regime Reading Assignment:

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

Electronics II Lecture 2(a): Bipolar Junction Transistors

Electronics II Lecture 2(a): Bipolar Junction Transistors Lecture 2(a): Bipolar Junction Transistors A/Lectr. Khalid Shakir Dept. Of Engineering Engineering by Pearson Transistor! Transistor=Transfer+Resistor. When Transistor operates in active region its input

More information

EBERS Moll Model. Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University

EBERS Moll Model. Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University EBERS Moll Model Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University BJT Device Models The primary function of a model is to predict the behaviour of a device in particular

More information

Electronics EECE2412 Spring 2017 Exam #2

Electronics EECE2412 Spring 2017 Exam #2 Electronics EECE2412 Spring 2017 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 30 March 2017 File:12198/exams/exam2 Name: : General Rules:

More information

Transistor Characteristics

Transistor Characteristics Transistor Characteristics Topics covered in this presentation: Transistor Construction Transistor Operation Transistor Characteristics 1 of 15 The Transistor The transistor is a semiconductor device that

More information

Chapter 4 Physics of Bipolar Transistors. EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of Bipolar Transistor

Chapter 4 Physics of Bipolar Transistors. EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of Bipolar Transistor EE105 - Spring 2007 Microelectronic Devices and ircuits Lecture 10 Bipolar ransistors hapter 4 Physics of Bipolar ransistors 4.1 General onsiderations 4.2 Structure of Bipolar ransistor 4.3 Operation of

More information

MOS Field-Effect Transistors (MOSFETs)

MOS Field-Effect Transistors (MOSFETs) 6 MOS Field-Effect Transistors (MOSFETs) A three-terminal device that uses the voltages of the two terminals to control the current flowing in the third terminal. The basis for amplifier design. The basis

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

Experiment 9 Bipolar Junction Transistor Characteristics

Experiment 9 Bipolar Junction Transistor Characteristics Experiment 9 Bipolar Junction Transistor Characteristics W.T. Yeung, W.Y. Leung, and R.T. Howe UC Berkeley EE 105 Fall 2005 1.0 Objective In this lab, you will determine the I C - V CE characteristics

More information

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay Week - 08 Module - 04 BJT DC Circuits Hello, welcome to another module of this course

More information

Transistors. electrons N P N holes. Base. An NPN device makes a transistor

Transistors. electrons N P N holes. Base. An NPN device makes a transistor NPN Transistor Theory Transistors Transistors are similar to diodes in that they are made up on ntype and ptype silicon. They differ in that Transistors are 3terminal devices (NPN or PNP), Transistors

More information

Bipolar Junction Transistors (BJT)

Bipolar Junction Transistors (BJT) Bipolar Junction Transistors (BJT) deal Transistor Bipolar Transistor Terminals P Bipolar Transistor Physics Large Signal Model Early Effect Small Signal Model Reading: (Sedra, Smith, 7 th edition) 4.1

More information

Transistor fundamentals Nafees Ahamad

Transistor fundamentals Nafees Ahamad Transistor fundamentals Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: www.eedofdit.weebly.com Transistor A transistor consists of two PN junctions formed by sandwiching either

More information

Lecture 4. Reading: Chapter EE105 Fall 2007 Lecture 4, Slide 1 Prof. Liu, UC Berkeley

Lecture 4. Reading: Chapter EE105 Fall 2007 Lecture 4, Slide 1 Prof. Liu, UC Berkeley Lecture 4 OUTLNE Bipolar Junction Transistor (BJT) General considerations Structure Operation in active mode Large-signal model and - characteristics Reading: Chapter 4.1-4.4.2 EE105 Fall 2007 Lecture

More information

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline:

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: Narrow-Base Diode BJT Fundamentals BJT Amplification Things you should know when you leave Key Questions How does the narrow-base diode multiply

More information

Transistor Configuration

Transistor Configuration Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

More information

Chapter 5 Transistor Bias Circuits

Chapter 5 Transistor Bias Circuits Chapter 5 Transistor Bias Circuits Objectives Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collector-feedback bias circuits. Basic

More information

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Analog Electronics: Bipolar Junction Transistors

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Analog Electronics: Bipolar Junction Transistors BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Analog Electronics: Bipolar Junction Transistors Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang

More information

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics BJT Structure The BJT has three regions called the emitter, base, and collector. Between the regions are junctions as indicated. The base is a thin lightly doped region compared to the

More information

REVIEW TRANSISTOR BIAS CIRCUIT

REVIEW TRANSISTOR BIAS CIRCUIT EVIEW TANSISTO BIAS CICUIT OBJECTIVES Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collectorfeedback bias circuits. Basic troubleshooting

More information

I E I C since I B is very small

I E I C since I B is very small Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

More information

Chapter 4 DC Biasing BJTs. BJTs

Chapter 4 DC Biasing BJTs. BJTs hapter 4 D Biasing BJTs BJTs Biasing Biasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. Operating Point The D input establishes an operating or

More information

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018 Transistor Biasing DC Biasing of BJT Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com A transistors steady state of operation depends a great deal

More information

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT AIM: 1) To study different BJT DC biasing circuits 2) To design voltage divider bias circuit using NPN BJT SOFTWARE TOOL: PC

More information

The collector terminal is common to the input and output signals and is connected to the dc power supply. Common Collector Circuit

The collector terminal is common to the input and output signals and is connected to the dc power supply. Common Collector Circuit Common Collector Circuit When you have completed this exercise, you will be able to determine the dc operating conditions of a common collector (CC) transistor circuit by using a typical CC circuit. You

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 6: MOS-FET Transistor

Electronic Circuits for Mechatronics ELCT 609 Lecture 6: MOS-FET Transistor Electronic Circuits for Mechatronics ELCT 609 Lecture 6: MOS-FET Transistor Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Introduction Why we call it Transistor? The name came as an

More information

ELECTRONICS LAB. PART 3

ELECTRONICS LAB. PART 3 ELECTRONICS LAB. PART 3 Yrd. Doç. Dr. Taha İMECİ Arş. Gör. Ezgi YAMAÇ Arş. Gör. Ufuk ŞANVER İSTANBUL COMMERCE UNIVERSITY Contents TRANSISTORS... 2 5.1 INTRODUCTION... 2 5.2 OPERATION OF TRANSISTORS...

More information

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS Due Date (NOTE CHANGE): Thursday, Nov 12 th @ 5 pm; Late penalty in effect! Most active electronic devices are based on the transistor as the fundamental

More information

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8 Bipolar Junction Transistor Aim: The aim of this experiment is to investigate the DC behavior

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Lecture 17: Transistor Switches. Voltage Regulators.

Lecture 17: Transistor Switches. Voltage Regulators. Whites, EE 322 Lecture 17 Page 1 of 8 Lecture 17: Transistor Switches. Voltage Regulators. Of the four regions for transistor operation discussed in the last lecture, only cutoff and saturation play important

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-1 Transistor

More information

Lecture 9 Transistors

Lecture 9 Transistors Lecture 9 Transistors Physics Transistor/transistor logic CMOS logic CA 1947 http://www.extremetech.com/extreme/164301-graphenetransistors-based-on-negative-resistance-could-spell-theend-of-silicon-and-semiconductors

More information

Electronics I - Physics of Bipolar Transistors

Electronics I - Physics of Bipolar Transistors Chapter 5 Electronics I - Physics of Bipolar Transistors B E N+ P N- C B E C Fall 2017 claudio talarico 1 source: Sedra & Smith Thin Base Types of Bipolar Transistors n+ p n- Figure - A simplified structure

More information

BJT Characteristics & Common Emitter Transistor Amplifier

BJT Characteristics & Common Emitter Transistor Amplifier LAB #07 Objectives 1. To graph the collector characteristics of a transistor. 2. To measure AC and DC voltages in a common-emitter amplifier. Theory BJT A bipolar (junction) transistor (BJT) is a three-terminal

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

(Refer Slide Time: 01:33)

(Refer Slide Time: 01:33) Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 31 Bipolar Junction Transistor (Contd ) So, we have been discussing

More information

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 14 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT iasing D analysis Fixed-bias circuit (revision) mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback

More information

Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh

Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh Chapter 3: TRANSISTORS Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh OUTLINE Transistors Bipolar Junction Transistor (BJT) Operation of Transistor Transistor parameters Load Line Biasing

More information

EE 330 Lecture 21. Bipolar Process Flow

EE 330 Lecture 21. Bipolar Process Flow EE 330 Lecture 21 Bipolar Process Flow Exam 2 Friday March 9 Exam 3 Friday April 13 Review from Last Lecture Simplified Multi-Region Model I C βi B JSA IB β V 1 V E e V CE BE V t AF V BE >0.4V V BC

More information

Chapter Two "Bipolar Transistor Circuits"

Chapter Two Bipolar Transistor Circuits Chapter Two "Bipolar Transistor Circuits" 1.TRANSISTOR CONSTRUCTION:- The transistor is a three-layer semiconductor device consisting of either two n- and one p-type layers of material or two p- and one

More information

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 2

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 2 Mechatronics and Measurement Lecturer:Dung-An Wang Lecture 2 Lecture outline Reading:Ch3 of text Today s lecture Semiconductor 2 Diode 3 4 Zener diode Voltage-regulator diodes. This family of diodes exhibits

More information

7. Bipolar Junction Transistor

7. Bipolar Junction Transistor 41 7. Bipolar Junction Transistor 7.1. Objectives - To experimentally examine the principles of operation of bipolar junction transistor (BJT); - To measure basic characteristics of n-p-n silicon transistor

More information

Laboratory #5 BJT Basics and MOSFET Basics

Laboratory #5 BJT Basics and MOSFET Basics Laboratory #5 BJT Basics and MOSFET Basics I. Objectives 1. Understand the physical structure of BJTs and MOSFETs. 2. Learn to measure I-V characteristics of BJTs and MOSFETs. II. Components and Instruments

More information

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 9 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT JT iasing D analysis Fixed-bias circuit mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback circuit

More information

ENEE 306: Electronics Analysis and Design Laboratory

ENEE 306: Electronics Analysis and Design Laboratory ENEE 306: Electronics Analysis and Design Laboratory Neil Goldsman Department of Electrical and Computer Engineering University of Maryland College Park, MD 20742 Spring 2005 Instructor: Professor Neil

More information

Capacitors, diodes, transistors

Capacitors, diodes, transistors Capacitors, diodes, transistors capacitors charging and time response filters (impedance) semi-conductor diodes rectifiers transformers transistors CHM6158C - Lecture 3 1 Capacitors Symbol 2 Capacitors

More information

Bipolar Junction Transistor (BJT)

Bipolar Junction Transistor (BJT) Bipolar Junction Transistor (BJT) - three terminal device - output port controlled by current flow into input port Structure - three layer sandwich of n-type and p-type material - npn and pnp transistors

More information

Chapter 6: Transistors and Gain

Chapter 6: Transistors and Gain I. Introduction Chapter 6: Transistors and Gain This week we introduce the transistor. Transistors are three-terminal devices that can amplify a signal and increase the signal s power. The price is that

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information