Chapter 4 Physics of Bipolar Transistors. EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of Bipolar Transistor

Size: px
Start display at page:

Download "Chapter 4 Physics of Bipolar Transistors. EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of Bipolar Transistor"

Transcription

1 EE105 - Spring 2007 Microelectronic Devices and ircuits Lecture 10 Bipolar ransistors hapter 4 Physics of Bipolar ransistors 4.1 General onsiderations 4.2 Structure of Bipolar ransistor 4.3 Operation of Bipolar ransistor in Active Mode 4.4 Bipolar ransistor Models 4.5 Operation of Bipolar ransistor in Saturation Mode 4.6 he PNP ransistor 2 Structure and Symbol of Bipolar ransistor Forward Active Region Bipolar transistor can be thought of as a sandwich of three doped Si regions. he outer two regions are doped with the same polarity, while the middle region is doped with opposite polarity. 3 Forward active region: BE > 0, B < 0. Figure b) presents a wrong way of modeling Figure a). 4

2 Accurate Bipolar Representation arrier ransport in Base ollector also carries current due to carrier injection from base. 5 6 ollector urrent Simple ransistor onfiguration S 2 AqDn E n i BE 1 NW E B BE S 2 E n i AqDn NW E B Applying the law of diffusion, we can determine the charge flow across the base region into the collector. he equation above shows that the transistor is indeed a voltagecontrolled element, thus a good candidate as an amplifier. 7 Although a transistor is a voltage to current converter, output voltage can be obtained by inserting a load resistor at the output and allowing the controlled current to pass thru it. 8

3 onstant urrent Source Base urrent β B deally, the collector current does not depend on the collector to emitter voltage. his property allows the transistor to behave as a constant current source when its base-emitter voltage is fixed. 9 Base current consists of two components: Reverse injection of holes into the emitter and Recombination of holes with electrons coming from the emitter. 10 Emitter urrent Summary of urrents E E β B Applying Kirchoff s current law to the transistor, we can easily find the emitter current. + B β E B S 1 β β + 1 β S S β α β + 1 BE BE BE 11 12

4 Bipolar ransistor Large Signal Model Example: Maximum R L A diode is placed between base and emitter and a voltage controlled current source is placed between the collector and emitter. 13 As R L increases, x drops and eventually forward biases the collector-base junction. his will force the transistor out of forward active region. herefore, there exists a maximum tolerable collector resistance. 14 haracteristics of Bipolar ransistor Example: haracteristics 15 16

5 ransconductance isualization of ransconductance g g g m m m d BE S dbe 1 BE S ransconductance, g m shows a measure of how well the transistor converts voltage to current. t will later be shown that gm is one of the most important parameters in circuit design. 17 g m can be visualized as the slope of versus BE. A large has a large slope and therefore a large g m. 18 Small-Signal Model: Derivation Small-Signal Model: BE hange Small signal model is derived by perturbing voltage difference every two terminals while fixing the third terminal and analyzing the change in current of all three terminals. We then represent these changes with controlled sources or resistors

6 Small-Signal Model: E hange Small Signal Example deally, E has no effect on the collector current. hus, it will not contribute to the small signal model. t can be shown that B has no effect on the small signal model, either. 21 g r π m β g m Ω Here, small signal parameters are calculated from D operating point and are used to calculate the change in collector current due to a change in BE. Ω 22 Small Signal Example A Ground Since the power supply voltage does not vary with time, it is regarded as a ground in small-signal analysis. n this example, a resistor is placed between the power supply and collector, therefore, providing an output voltage

7 Early Effect Early Effect llustration he claim that collector current does not depend on E is not accurate. As E increases, the depletion region between base and collector increases. herefore, the effective base width decreases, which leads to an increase in the collector current. With Early effect, collector current becomes larger than usual and a function of E Early Effect Representation Early Effect and Large-Signal Model 27 Early effect can be accounted for in large-signal model by simply changing the collector current with a correction factor. n this mode, base current does not change. 28

8 Early Effect and Small-Signal Model Summary of deas Δ ro Δ E S A BE A Bipolar ransistor in Saturation Large-Signal Model for Saturation Region When collector voltage drops below base voltage and forward biases the collector-base junction, base current increases and the current gain factor, β, decreases

9 Overall / haracteristics Example: Acceptable Region R + ( 400 m) BE he speed of the BJ also drops in saturation. 33 n order to keep BJ at least in soft saturation region, the collector voltage must not fall below the base voltage by more than 400m. A linear relationship can be derived for and R and an acceptable region can be chosen. 34 Deep Saturation PNP ransistor n deep saturation region, the transistor loses its voltage-controlled current capability and E becomes constant. 35 With the polarities of emitter, collector, and base reversed, a PNP transistor is formed. All the principles that applied to NPN's also apply to PNP s, with the exception that emitter is at a higher potential than base and base at a higher potential than collector. 36

10 A omparison between NPN and PNP ransistors PNP Equations with Early Effect he figure above summarizes the direction of current flow and operation regions for both the NPN and PNP BJ s. 37 B E EB S S EB β β + 1 EB S β EB E S 1+ A 38 Large Signal Model for PNP PNP Biasing Note that the emitter is at a higher potential than both the base and collector

11 Small Signal Analysis Small-Signal Model for PNP ransistor he small signal model for PNP transistor is exactly DENAL to that of NPN. his is not a mistake because the current direction is taken care of by the polarity of BE Small Signal Model Example Small Signal Model Example Small-signal model is identical to the previous ones

12 Small Signal Model Example Small Signal Model Example Since during small-signal analysis, a constant voltage supply is considered to be A ground, the final smallsignal model is identical to the previous two

Lecture 4. Reading: Chapter EE105 Spring 2008 Lecture 4, Slide 2 Prof. Wu, UC Berkeley. Structure and Symbol of Bipolar Transistor

Lecture 4. Reading: Chapter EE105 Spring 2008 Lecture 4, Slide 2 Prof. Wu, UC Berkeley. Structure and Symbol of Bipolar Transistor Lecture 4 OULNE Bipolar Junction ransistor (BJ) General considerations Structure Operation in active mode Large signal model and characteristics ransconductance Small signal model he Early effect Reading:

More information

Lecture 4. Accurate Bipolar Representation. Forward Active Region. Structure and Symbol of Bipolar Transistor

Lecture 4. Accurate Bipolar Representation. Forward Active Region. Structure and Symbol of Bipolar Transistor Lecture 4 Structure and Symbol of ipolar ransistor OULNE ipolar Junction ransistor (J) General considerations Structure Operation in active mode Large signal model and characteristics ransconductance Small

More information

ECE 310 Microelectronics Circuits

ECE 310 Microelectronics Circuits ECE 310 Microelectronics Circuits Bipolar Transistors Dr. Vishal Saxena (vishalsaxena@boisetstate.edu) Jan 20, 2014 Vishal Saxena 1 Bipolar Transistor n the chapter, we will study the physics of bipolar

More information

Analog Electronics (Course Code: EE314) Lecture 5 7: Junction contd, BJT. Course Instructor: Shree Prakash Tiwari

Analog Electronics (Course Code: EE314) Lecture 5 7: Junction contd, BJT. Course Instructor: Shree Prakash Tiwari ndian nstitute of echnology Jodhpur, Year 2017 Analog lectronics (ourse ode: 314) Lecture 5 7: Junction contd, J ourse nstructor: Shree Prakash iwari mail: sptiwari@iitj.ac.in Webpage: http://home.iitj.ac.in/~sptiwari/

More information

Lecture 4. Reading: Chapter EE105 Fall 2007 Lecture 4, Slide 1 Prof. Liu, UC Berkeley

Lecture 4. Reading: Chapter EE105 Fall 2007 Lecture 4, Slide 1 Prof. Liu, UC Berkeley Lecture 4 OUTLNE Bipolar Junction Transistor (BJT) General considerations Structure Operation in active mode Large-signal model and - characteristics Reading: Chapter 4.1-4.4.2 EE105 Fall 2007 Lecture

More information

EE 330 Lecture 18. Characteristics of Finer Feature Size Processes. Bipolar Process

EE 330 Lecture 18. Characteristics of Finer Feature Size Processes. Bipolar Process 330 Lecture 18 haracteristics of Finer Feature Size Processes ipolar Process How does the inverter delay compare between a 0.5u process and a 0.13u process? DD IN OUT IN OUT SS How does the inverter

More information

EE 330 Lecture 19. Bipolar Devices

EE 330 Lecture 19. Bipolar Devices 330 Lecture 19 ipolar Devices Review from last lecture n-well n-well n- p- Review from last lecture Metal Mask A-A Section - Section Review from last lecture D A A D Review from last lecture Should now

More information

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline COE/EE152: Basic Electronics Lecture 5 Andrew Selasi Agbemenu 1 Outline Physical Structure of BJT Two Diode Analogy Modes of Operation Forward Active Mode of BJTs BJT Configurations Early Effect Large

More information

EE 330 Lecture 16. Comparison of MOS Processes Bipolar Process

EE 330 Lecture 16. Comparison of MOS Processes Bipolar Process 330 Lecture 16 omparison of MOS Processes ipolar Process Review from last lecture P-Select Mask p-diffusion p-diffusion A-A Section Note the gate is self aligned!! - Section Review from last lecture n-select

More information

Lecture (06) Bipolar Junction Transistor

Lecture (06) Bipolar Junction Transistor Lecture (06) Bipolar Junction Transistor By: Dr. Ahmed lshafee ١ Agenda BJT structure BJT operation BJT characteristics ٢ BJT structure The BJT is constructed with three doped semiconductor regions One

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Physics of Bipolar Transistor

Physics of Bipolar Transistor Physics of Bipolar Transistor Motivations - In many electronic applications, amplifier is the most fundamental building block. Ex Audio amplifier: amplifies electric signal to drive a speaker RF Power

More information

CO2005: Electronics I. Transistor (BJT) Electronics I, Neamen 3th Ed. 1

CO2005: Electronics I. Transistor (BJT) Electronics I, Neamen 3th Ed. 1 O2005: Electronics The Bipolar Junction Transistor (BJT) Electronics, Neamen 3th Ed. 1 Bipolar Transistor Structures N P 17 10 N D 19 10 N D 15 10 Electronics, Neamen 3th Ed. 2 Forward-Active Mode in the

More information

EE 434 Lecture 21. MOS Amplifiers Bipolar Devices

EE 434 Lecture 21. MOS Amplifiers Bipolar Devices 434 ecture MOS Amplifiers ipolar Devices Quiz 3 The quiescent voltage across the 5K resistor in the circuit shown was measured to be 3. ) Determine the quiescent output voltage ) Determine the small signal

More information

Bipolar Junction Transistors (BJTs) Overview

Bipolar Junction Transistors (BJTs) Overview 1 Bipolar Junction Transistors (BJTs) Asst. Prof. MONTREE SIRIPRUCHYANUN, D. Eng. Dept. of Teacher Training in Electrical Engineering, Faculty of Technical Education King Mongkut s Institute of Technology

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

Chapter 4 DC Biasing BJTs. BJTs

Chapter 4 DC Biasing BJTs. BJTs hapter 4 D Biasing BJTs BJTs Biasing Biasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. Operating Point The D input establishes an operating or

More information

Chapter 3. Bipolar Junction Transistors

Chapter 3. Bipolar Junction Transistors Chapter 3. Bipolar Junction Transistors Outline: Fundamental of Transistor Common-Base Configuration Common-Emitter Configuration Common-Collector Configuration Introduction The transistor is a three-layer

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT)

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT) EE105 Fall 2014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 utardja Dai Hall (DH) 1 NPN Bipolar Junction Transistor (BJT) Forward Bias Reverse Bias Hole Flow Electron

More information

Transistor Characteristics

Transistor Characteristics Transistor Characteristics Topics covered in this presentation: Transistor Construction Transistor Operation Transistor Characteristics 1 of 15 The Transistor The transistor is a semiconductor device that

More information

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 12 Bipolar Junction Transistor (BJT) BJT 1-1 Course Info Lecture hours: 4 Two Lectures weekly (Saturdays and Wednesdays) Location: K2 Time: 1:40 pm Tutorial hours: 2 One tutorial class every week

More information

Communication Microelectronics (W17)

Communication Microelectronics (W17) Communication Microelectronics (W17) Lecture 4: Bipolar Junction Transistor Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Bipolar Junction Transistor (BJT) Physical Structure and I-V

More information

ECE321 Electronics I Fall 2006

ECE321 Electronics I Fall 2006 ECE321 Electronics I Fall 2006 Professor James E. Morris Lecture 11 31 st October, 2006 Bipolar Junction Transistors (BJTs) 5.1 Device Structure & Physics 5.2 I-V Characteristics Convert 5.1 information

More information

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline:

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: Narrow-Base Diode BJT Fundamentals BJT Amplification Things you should know when you leave Key Questions How does the narrow-base diode multiply

More information

Transistors. Bipolar Junction transistors Principle of operation Characteristics. Field effect transistors Principle of operation Characteristics

Transistors. Bipolar Junction transistors Principle of operation Characteristics. Field effect transistors Principle of operation Characteristics Transistors ipolar Junction transistors Principle of operation haracteristics Field effect transistors Principle of operation haracteristics ntroduction Radio based on vacuum tubes Fundamental building

More information

Bipolar Junction Transistor

Bipolar Junction Transistor ESE 211 / Spring 2011 / Lecture 10 Bipolar Junction Transistor Let us first consider general transconductance amplifier loaded with short circuit Transconductance Obviously, power supplies are needed for

More information

An Introduction to Bipolar Junction Transistors. Prepared by Dr Yonas M Gebremichael, 2005

An Introduction to Bipolar Junction Transistors. Prepared by Dr Yonas M Gebremichael, 2005 An Introduction to Bipolar Junction Transistors Transistors Transistors are three port devices used in most integrated circuits such as amplifiers. Non amplifying components we have seen so far, such as

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-1 Transistor

More information

Bipolar Transistors. Ideal Transistor. Reading: (4-5 th edition) 8-16, Bipolar Transistor - Terminals. NPN Bipolar Transistor Physics

Bipolar Transistors. Ideal Transistor. Reading: (4-5 th edition) 8-16, Bipolar Transistor - Terminals. NPN Bipolar Transistor Physics Bipolar Transistors deal Transistor Bipolar Transistor Terminals Reading: (45 th edition) 816, 2633 P Bipolar Transistor Physics Large Signal Model Early Effect Small Signal Model Modern Electronics: F3

More information

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 14 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT iasing D analysis Fixed-bias circuit (revision) mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

Electronics I - Physics of Bipolar Transistors

Electronics I - Physics of Bipolar Transistors Chapter 5 Electronics I - Physics of Bipolar Transistors B E N+ P N- C B E C Fall 2017 claudio talarico 1 source: Sedra & Smith Thin Base Types of Bipolar Transistors n+ p n- Figure - A simplified structure

More information

Electronics Fundamentals BIPOLAR TRANSISTORS. Construction, circuit symbols and biasing examples for NPN and PNP junction transistors.

Electronics Fundamentals BIPOLAR TRANSISTORS. Construction, circuit symbols and biasing examples for NPN and PNP junction transistors. IPOLA TANSISTOS onstruction, circuit symbols and biasing examples for NPN and PNP junction transistors Slide 1 xternal bias voltages create an electric field, which pulls electrons (emitted into the base

More information

CHAPTER 3 THE BIPOLAR JUNCTION TRANSISTOR (BJT)

CHAPTER 3 THE BIPOLAR JUNCTION TRANSISTOR (BJT) HAPT 3 TH IPOLA JUNTION TANSISTO (JT) 1 In this chapter, we will: JT Discuss the physical structure and operation of the bipolar junction transistor. Understand the dc analysis of bipolar transistor circuits.

More information

PHYS225 Lecture 6. Electronic Circuits

PHYS225 Lecture 6. Electronic Circuits PHYS225 Lecture 6 Electronic Circuits Transistors History Basic physics of operation Ebers-Moll model Small signal equivalent Last lecture Introduction to Transistors A transistor is a device with three

More information

C H A P T E R 6 Bipolar Junction Transistors (BJTs)

C H A P T E R 6 Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode EBJ CBJ Cutoff Reverse Reverse Active

More information

การไบอ สทรานซ สเตอร. Transistors Biasing

การไบอ สทรานซ สเตอร. Transistors Biasing การไบอ สทรานซ สเตอร Transistors iasing iasing iasing: Applying D voltages to a transistor in order to turn it on so that it can amplify A signals. The D input establishes an operating or quiescent point

More information

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN Hanoi, 9/24/2012 Contents 2 Structure and operation of BJT Different configurations of BJT Characteristic curves DC biasing method and analysis

More information

FYSE400 ANALOG ELECTRONICS

FYSE400 ANALOG ELECTRONICS 7.9.016 YS400 ANALOG LTONS LTU 1 ntroduction to ipolar Junction Transistor ircuits 1 NTODUTON The deal urrent-controlled urrent Source efore the detailed analyzation of transistor operation, we should

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lec-5: Bipolar Junction Transistor (BJT) Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Bipolar

More information

Chapter 3: Bipolar Junction Transistors

Chapter 3: Bipolar Junction Transistors Chapter 3: Bipolar Junction Transistors Transistor Construction There are two types of transistors: pnp npn pnp The terminals are labeled: E - Emitter B - Base C - Collector npn 2 Transistor Operation

More information

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect Diode as Clamper A clamping circuit is used to place either the positive or negative peak of a signal at a desired level. The dc component is simply added or subtracted to/from the input signal. The clamper

More information

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing BJT Structure the BJT is formed by doping three semiconductor regions (emitter, base, and collector)

More information

5.1 BJT Device Structure and Physical Operation

5.1 BJT Device Structure and Physical Operation 11/28/2004 section 5_1 BJT Device Structure and Physical Operation blank 1/2 5.1 BJT Device Structure and Physical Operation Reading Assignment: pp. 377-392 Another kind of transistor is the Bipolar Junction

More information

Bipolar Junction Transistor (BJT)

Bipolar Junction Transistor (BJT) Bipolar Junction Transistor (BJT) - three terminal device - output port controlled by current flow into input port Structure - three layer sandwich of n-type and p-type material - npn and pnp transistors

More information

Biasing. Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal.

Biasing. Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal. D iasing JT iasing iasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. The D input establishes an operating or quiescent point called the Q-point.

More information

Bipolar Junction Transistors (BJTs)

Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode Cutoff Active Saturation EBJ Reverse

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS Most of the content is from the textbook: Electronic devices and circuit theory,

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Invented in 1948 at Bell Telephone laboratories Bipolar junction transistor (BJT) - one of the major three terminal devices Three terminal devices more useful than two terminal

More information

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 9 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT JT iasing D analysis Fixed-bias circuit mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback circuit

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

Chapter 5 Bipolar Amplifiers. EE105 - Spring 2007 Microelectronic Devices and Circuits. Bipolar Amplifiers. Voltage Amplifier

Chapter 5 Bipolar Amplifiers. EE105 - Spring 2007 Microelectronic Devices and Circuits. Bipolar Amplifiers. Voltage Amplifier EE05 - Spring 2007 Microelectronic Deices and ircuits hapter 5 Bipolar mplifiers 5. General onsiderations 5.2 Operating Point nalysis and Design 5.3 Bipolar mplifier Topologies 5.4 Summary and dditional

More information

ECE 442 Solid State Devices & Circuits. 6. Bipolar Transistors

ECE 442 Solid State Devices & Circuits. 6. Bipolar Transistors ECE 442 Solid State Devices & Circuits 6. Bipolar Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 342 Jose Schutt Aine 1 Bipolar Junction

More information

ET215 Devices I Unit 4A

ET215 Devices I Unit 4A ITT Technical Institute ET215 Devices I Unit 4A Chapter 3, Section 3.1-3.2 This unit is divided into two parts; Unit 4A and Unit 4B Chapter 3 Section 3.1 Structure of Bipolar Junction Transistors The basic

More information

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1 BJT Bipolar Junction Transistor Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com The Bipolar Junction Transistor is a semiconductor device which

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics nstitute for NT/JF, GAT, T-JAM, M.Sc. ntrance, JST, TF and G in Physics 3. ipolar Junction Transistors 3.1 Transistor onstruction Transistor is a three-layer semiconductor device consisting of either two

More information

Large Signal Model for Saturation Mode

Large Signal Model for Saturation Mode ndian nstitute of echnology Jodhpur, Year 2016 nalog lectronics (Course Code: 314) Lecture 8: PP J, Small Signal nalysis Course nstructor: Shree Prakash iwari mail: sptiwari@iitj.ac.in ebpage: http://home.iitj.ac.in/~sptiwari/

More information

Alexandria University Faculty of Engineering Electrical Engineering Department

Alexandria University Faculty of Engineering Electrical Engineering Department Chapter 10: Alexandria University Faculty of Engineering Electrical Engineering Department ECE 336: Semiconductor Devices Sheet 6 1. A Si pnp BJT with N AE = 5x10 17 / cm 3, N DB = 10 15 /cm 3 and N AC

More information

Transistors. electrons N P N holes. Base. An NPN device makes a transistor

Transistors. electrons N P N holes. Base. An NPN device makes a transistor NPN Transistor Theory Transistors Transistors are similar to diodes in that they are made up on ntype and ptype silicon. They differ in that Transistors are 3terminal devices (NPN or PNP), Transistors

More information

7. Bipolar Junction Transistor

7. Bipolar Junction Transistor 41 7. Bipolar Junction Transistor 7.1. Objectives - To experimentally examine the principles of operation of bipolar junction transistor (BJT); - To measure basic characteristics of n-p-n silicon transistor

More information

Electronics EECE2412 Spring 2017 Exam #2

Electronics EECE2412 Spring 2017 Exam #2 Electronics EECE2412 Spring 2017 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 30 March 2017 File:12198/exams/exam2 Name: : General Rules:

More information

Electronic Circuits Laboratory EE462G Lab #8. BJT Common Emitter Amplifier

Electronic Circuits Laboratory EE462G Lab #8. BJT Common Emitter Amplifier lectronic ircuits Laboratory 46G Lab #8 JT ommon mitter Amplifier npn ipolar Junction Transistor JT in a common-emitter configuration ase ollector V _ n p n V _ mitter For most applications the JT is operated

More information

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices EIE209 Basic Electronics Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

EBERS Moll Model. Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University

EBERS Moll Model. Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University EBERS Moll Model Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University BJT Device Models The primary function of a model is to predict the behaviour of a device in particular

More information

Capacitors, diodes, transistors

Capacitors, diodes, transistors Capacitors, diodes, transistors capacitors charging and time response filters (impedance) semi-conductor diodes rectifiers transformers transistors CHM6158C - Lecture 3 1 Capacitors Symbol 2 Capacitors

More information

Chapter 6: Transistors and Gain

Chapter 6: Transistors and Gain I. Introduction Chapter 6: Transistors and Gain This week we introduce the transistor. Transistors are three-terminal devices that can amplify a signal and increase the signal s power. The price is that

More information

(Refer Slide Time: 01:33)

(Refer Slide Time: 01:33) Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 31 Bipolar Junction Transistor (Contd ) So, we have been discussing

More information

Fundamentals of Microelectronics

Fundamentals of Microelectronics Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Junction Transistor (JT ipolar Junction Transistors JT is a three-terminal device: emitter (, collector ( and base (. There are two types: pnp-type and npn-type. npn transistor: emitter & collector

More information

ESE319 Introduction to Microelectronics BJT Intro and Large Signal Model

ESE319 Introduction to Microelectronics BJT Intro and Large Signal Model BJT Intro and Large Signal Model 1 VLSI Chip Manufacturing Process 2 0.35 mm SiGe BiCMOS Layout for RF (3.5 GHz) Two-Stage Power Amplifier Each transistor above is realized as net of four heterojunction

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

BJT as an Amplifier and Its Biasing

BJT as an Amplifier and Its Biasing Microelectronic ircuits BJT as an Amplifier and Its Biasing Slide 1 Transfer haracteristics & Biasing Slide 2 BJT urrent-oltage relationship The collector current i I i i B s e i B vbe Is e T v BE T Emitter

More information

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems lass X - Physics Semiconductor Electronics Materials, Device and Simple ircuit hapter-wise Problems Multiple hoice Question :- 14.1 The conductivity of a semiconductor increases with increase in temperature

More information

Lecture 6. OUTLINE BJT (cont d) PNP transistor (structure, operation, models) BJT Amplifiers General considerations. Reading: Chapter

Lecture 6. OUTLINE BJT (cont d) PNP transistor (structure, operation, models) BJT Amplifiers General considerations. Reading: Chapter Lecture 6 ANNOUNCMNTS HW#3, Prob. 2: Re-draw -plots for W reduced by a factor of 2. n case of a major earthquake: Try to duck/crouch on the floor in front of the seats for cover. Once the earthquake stops,

More information

ELEC 3908, Physical Electronics, Lecture 16. Bipolar Transistor Operation

ELEC 3908, Physical Electronics, Lecture 16. Bipolar Transistor Operation ELEC 3908, Physical Electronics, Lecture 16 Bipolar Transistor Operation Lecture Outline Last lecture discussed the structure and fabrication of a double diffused bipolar transistor Now examine current

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Chapter Two "Bipolar Transistor Circuits"

Chapter Two Bipolar Transistor Circuits Chapter Two "Bipolar Transistor Circuits" 1.TRANSISTOR CONSTRUCTION:- The transistor is a three-layer semiconductor device consisting of either two n- and one p-type layers of material or two p- and one

More information

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS Due Date (NOTE CHANGE): Thursday, Nov 12 th @ 5 pm; Late penalty in effect! Most active electronic devices are based on the transistor as the fundamental

More information

UNIT-III Bipolar Junction Transistor

UNIT-III Bipolar Junction Transistor DC UNT-3.xplain the construction and working of JT. UNT- ipolar Junction Transistor A bipolar (junction) transistor (JT) is a three-terminal electronic device constructed of doped semiconductor material

More information

Bipolar Junction Transistor (BJT) Basics- GATE Problems

Bipolar Junction Transistor (BJT) Basics- GATE Problems Bipolar Junction Transistor (BJT) Basics- GATE Problems One Mark Questions 1. The break down voltage of a transistor with its base open is BV CEO and that with emitter open is BV CBO, then (a) BV CEO =

More information

Electronic Circuits - Tutorial 07 BJT transistor 1

Electronic Circuits - Tutorial 07 BJT transistor 1 Electronic Circuits - Tutorial 07 BJT transistor 1-1 / 20 - T & F # Question 1 A bipolar junction transistor has three terminals. T 2 For operation in the linear or active region, the base-emitter junction

More information

Figure1: Basic BJT construction.

Figure1: Basic BJT construction. Chapter 4: Bipolar Junction Transistors (BJTs) Bipolar Junction Transistor (BJT) Structure The BJT is constructed with three doped semiconductor regions separated by two pn junctions, as in Figure 1(a).

More information

Microelectronic Circuits, Kyung Hee Univ. Spring, Bipolar Junction Transistors

Microelectronic Circuits, Kyung Hee Univ. Spring, Bipolar Junction Transistors Bipolar Junction Transistors 1 Introduction physical structure of the bipolar transistor and how it works How the voltage between two terminals of the transistor controls the current that flows through

More information

Laboratory Four - Bipolar Junction Transistor (BJT)

Laboratory Four - Bipolar Junction Transistor (BJT) M/IS 3512 ioelectronics Laboratory Four - ipolar Junction Transistor (JT) Learning Objectives: Know how to differentiate between PNP & NPN JT transistors using a multimeter. e familiar with the operation

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

MOS Field-Effect Transistors (MOSFETs)

MOS Field-Effect Transistors (MOSFETs) 6 MOS Field-Effect Transistors (MOSFETs) A three-terminal device that uses the voltages of the two terminals to control the current flowing in the third terminal. The basis for amplifier design. The basis

More information

(a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS (a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

More information

Transistor electronic technologies

Transistor electronic technologies Transistor electronic technologies Bipolar Junction Transistor discrete or integrated circuit discrete = individual component MOS (Metal-Oxide-Silicon) Field Effect Transistor mainly used in integrated

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

Basic Electronics SYLLABUS BASIC ELECTRONICS. Subject Code : 15ELN15/25 IA Marks : 20. Hrs/Week : 04 Exam Hrs. : 03. Total Hrs. : 50 Exam Marks : 80

Basic Electronics SYLLABUS BASIC ELECTRONICS. Subject Code : 15ELN15/25 IA Marks : 20. Hrs/Week : 04 Exam Hrs. : 03. Total Hrs. : 50 Exam Marks : 80 SYLLABUS BASIC ELECTRONICS Subject Code : /25 IA Marks : 20 Hrs/Week : 04 Exam Hrs. : 03 Total Hrs. : 50 Exam Marks : 80 Course objectives: The course objective is to make students of all the branches

More information

ECEG 350 Electronics I Fall 2017

ECEG 350 Electronics I Fall 2017 EEG 350 Electronics Fall 07 Final Exam General nformation Rough breakdown of topic coverage: 0-0% JT fundamentals and regions of operation 0-40% MOSFET fundamentals biasing and small-signal modeling 0-5%

More information

Lecture 16. The Bipolar Junction Transistor (I) Forward Active Regime. Outline. The Bipolar Junction Transistor (BJT): structure and basic operation

Lecture 16. The Bipolar Junction Transistor (I) Forward Active Regime. Outline. The Bipolar Junction Transistor (BJT): structure and basic operation Lecture 16 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I-V characteristics in forward active regime Reading Assignment:

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT AIM: 1) To study different BJT DC biasing circuits 2) To design voltage divider bias circuit using NPN BJT SOFTWARE TOOL: PC

More information

Transistor fundamentals Nafees Ahamad

Transistor fundamentals Nafees Ahamad Transistor fundamentals Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: www.eedofdit.weebly.com Transistor A transistor consists of two PN junctions formed by sandwiching either

More information

Physics 160 Lecture 5. R. Johnson April 13, 2015

Physics 160 Lecture 5. R. Johnson April 13, 2015 Physics 160 Lecture 5 R. Johnson April 13, 2015 Half Wave Diode Rectifiers Full Wave April 13, 2015 Physics 160 2 Note that there is no ground connection on this side of the rectifier! Output Smoothing

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Prof. Paolo olantonio a.a. 2011 12 ipolar transistors are one of the main building blocks in electronic systems They are used in both analogue and digital circuits They incorporate two pn junctions and

More information

Bipolar Junction Transistors (BJT)

Bipolar Junction Transistors (BJT) Bipolar Junction Transistors (BJT) deal Transistor Bipolar Transistor Terminals P Bipolar Transistor Physics Large Signal Model Early Effect Small Signal Model Reading: (Sedra, Smith, 7 th edition) 4.1

More information