Output Stage and Power Amplifiers

Size: px
Start display at page:

Download "Output Stage and Power Amplifiers"

Transcription

1 Microelectronic Circuits Output Stage and ower Amplifiers Slide 1

2 ntroduction Most of the challenging requirement in the design of the output stage is ower delivery to the load. ower consumption at the output stage must be as low as possible. ower dissipated in a transistor raises its internal junction temperature C (imit 150 to 00 ) High power means generally more than 1W BJTs used in the design of high power output stage called as ower transistor. ower amplifier is a simply an amplifier with a high power output. Slide

3 Classification (a) class A (b) class B (c) class AB (d) class C Slide 3

4 Class A power Amplifier Emitter follower Q1 biased with a content current supplied by transistor Q. Current must be must be greater then the largest negative load current. v v v 0 BE1 Slide 4

5 Class A power Amplifier v v v 0 BE1 This linear characteristic is obtained by neglecting the change in v BE1 with i. The maximum positive output is determined by the saturation of Q 1. n the negative direction, the limit of the linear region is determined either by Q 1 turning off or by Q saturating, depending on the values of and R. Slide 5

6 Class A power Amplifier ower Conversion Efficiency The power conversion Efficiencyof oad ower 0 4R oad ower Supply ower S 0 / As 0 4 R Maximum Efficiencywill be S R R R 5% an output stage is given as Because of the low efficiency, class A output stage is rarely used in high power applications. The output voltage swing is limited to the lower value results into distortion. 0 Slide 6

7 Class A power Amplifier For the emitter follower = 10, = 100mA and R = 100 Ω. f the output voltage is 8 peak sinusoid, find the following: (a) ower delivered to the load (b) Average power drawn from the supplies (c) ower conversion Efficiency. Slide 7

8 Class A power Amplifier To improve the efficiency Transformer Coupled power Class A amplifier is used. ower DC power loss due to less resistance of primary coil. The relationship between the primary and secondary values of voltage, current and impedance are summarized as: Slide 8

9 Class A power Amplifier Efficiency Transformer Coupled power Class A amplifier ac power deliverd to the load dc power supplied (dc) i (ac) 0 rms rms m m ac dc ac dc 50% m m X100 Here Efficiency of transformer coupled amplifier is 50% just doubled to RC coupled class A power amplifier. m and m Slide 9

10 Class A power Amplifier A transformer coupled class A power amplifier supplies power to an 80Ω load connected across the secondary of the transformer having turn ratio 5:1. Determine maximum power output for 10mA collector current. oad Rsistance R N1 Turn Ratio 5 N oad on the primary side of R ' rms N1 N C R Maximum power output transformer 000 out( ac ) rms R ' Slide 10

11 Class B power Amplifier A transformer coupled class B power amplifier n class B amplifier, the operating point is located in cut-off region and hence transistor conducts for 180 that is half cycle making the amplifier more efficient than class A power amplifier. t consist of complementary pair of pnp and npn transistors. Case 1: When vi = 0, Qp and QN cutoff and v0 = 0 Case : when vi > 0.5 QN conducts act as emitter follower and Q off Case 3: When vi < Q conducts act as emitter follower and QN off QN pushes the current into the load and Q pull the current from the load, Hence it is called as pushpull amplifier Slide 11

12 Class B power Amplifier Transfer Characteristics Slide 1

13 Class B power Amplifier Crossover Distortion (dead band) Slide 13

14 Class B power Amplifier ower Conversion Efficiency: ac power deliverd to the load dc power supplied s (ac) s- 1 R Total supply ac dc rms 1 0 R rms 0 ac 1 / R R 0 0 R Hence max 78. 5% ac dc Slide 14

15 Class B power Amplifier Reducing the Crossover Distortion: Class B circuit with an op amp connected in a negative-feedback loop to reduce crossover distortion. Slide 15

16 Class AB power Amplifier The crossover distortion can be eliminated by AB configuration. Small BB is applied to bases of transistors. Slide 16

Power Amplifiers. Class B Class AB

Power Amplifiers. Class B Class AB ower Amplifiers Class B Class AB Class B he circuit each transistor conducts for a half of every signal period complementary pair push-pull arrangement peration vi ( 0.6; 0.6) (off), (off) v 0 vi v 0.6

More information

Chapter 11 Output Stages

Chapter 11 Output Stages 1 Chapter 11 Output Stages Learning Objectives 2 1) The classification of amplifier output stages 2) Analysis and design of a variety of output-stage types 3) Overview of power amplifiers Introduction

More information

Linear electronic. Lecture No. 1

Linear electronic. Lecture No. 1 1 Lecture No. 1 2 3 4 5 Lecture No. 2 6 7 8 9 10 11 Lecture No. 3 12 13 14 Lecture No. 4 Example: find Frequency response analysis for the circuit shown in figure below. Where R S =4kR B1 =8kR B2 =4k R

More information

Small signal Amplifier stages. Figure 5.2 Classification of power amplifiers

Small signal Amplifier stages. Figure 5.2 Classification of power amplifiers 5.1 Introduction When the power requirement to drive the load is in terms of several Watts rather than mili-watts the power amplifiers are used. Power amplifiers form the last stage of multistage amplifiers.

More information

Transistors and Applications

Transistors and Applications Chapter 17 Transistors and Applications DC Operation of Bipolar Junction Transistors (BJTs) The bipolar junction transistor (BJT) is constructed with three doped semiconductor regions separated by two

More information

Microelectronics Circuit Analysis and Design. Interdigitated BJT: Top and Cross-Sectional Views. Power Amps 10/11/2013. In this chapter, we will:

Microelectronics Circuit Analysis and Design. Interdigitated BJT: Top and Cross-Sectional Views. Power Amps 10/11/2013. In this chapter, we will: Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 8 Output Stages and Power Amplifiers In this chapter, we will: Describe the characteristics of BJT and MOSFET power transistors Define

More information

Exercise 2: AC Voltage and Power Gains

Exercise 2: AC Voltage and Power Gains Exercise 2: AC Voltage and Power Gains When you have completed this exercise, you will be able to determine voltage and power gains by using oscilloscope. The ac operation schematic for the COMPLEMENTARY

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

PHYS225 Lecture 10. Electronic Circuits

PHYS225 Lecture 10. Electronic Circuits PHYS225 Lecture 10 Electronic Circuits Last lecture Operational Amplifiers Many applications Use feedback for control Negative feedback Ideal case rules Output is whatever is needed to make inputs equal

More information

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 7 Power Amplifiers A power amplifier is a large signal amplifier that produces a replica of the input signal on its output. In the case shown here, the output

More information

BJT Amplifier Power Amp Overview(H.21)

BJT Amplifier Power Amp Overview(H.21) BJT Amplifier Power Amp Overview(H.21) 20170616-2 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

Chapter 13 Output Stages and Power Amplifiers

Chapter 13 Output Stages and Power Amplifiers Chapter 13 Output Stages and Power Amplifiers 13.1 General Considerations 13.2 Emitter Follower as Power Amplifier 13.3 Push-Pull Stage 13.4 Improved Push-Pull Stage 13.5 Large-Signal Considerations 13.6

More information

Electronic Circuits. Power Amplifiers. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Power Amplifiers. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Power Amplifiers Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of the Precedent Lecture Explain the Amplifier Operation Explain the BJT AC Models

More information

Electronics I Circuit Drawings. Robert R. Krchnavek Rowan University Spring, 2018

Electronics I Circuit Drawings. Robert R. Krchnavek Rowan University Spring, 2018 Electronics I Circuit Drawings Robert R. Krchnavek Rowan University Spring, 2018 Ideal Diode Piecewise Linear Models of a Diode Piecewise Linear Models of a Diode 1 r d Piecewise Linear Models of a Diode

More information

Output Stages and Power Amplifiers

Output Stages and Power Amplifiers CHAPTER 11 Output Stages and Power Amplifiers Introduction 11.7 Power BJTs 911 11.1 Classification of Output Stages 11. Class A Output Stage 913 11.3 Class B Output Stage 918 11.4 Class AB Output Stage

More information

Exercise 2: AC Voltage and Power Gains

Exercise 2: AC Voltage and Power Gains Exercise 2: AC Voltage and Power Gains an oscilloscope. Signals of equal magnitude but opposite polarity are needed for each transistor (Q1 and Q2). Center-tapped input transformer T1 is used as a phase

More information

Figure 1. Block diagram of system incorporating power amplification.

Figure 1. Block diagram of system incorporating power amplification. It is often necessary use a circuit which has very low power capabilities to drive a system which has relatively high power requirements. This is typically accomplished by using an amplifier as an intermediate

More information

ECE 454 Homework #1 Due 11/28/2018 This Wednesday In Lab

ECE 454 Homework #1 Due 11/28/2018 This Wednesday In Lab ECE 454 Homework #1 Due 11/28/2018 This Wednesday In Lab Design the Darlington push-pull amplifier specified in Lab 1: You will build this amplifier for Lab 1 so use parts that are available in the lab.

More information

Power Amplifiers. Class A Amplifier

Power Amplifiers. Class A Amplifier Power Amplifiers The Power amplifiers amplify the power level of the signal. This amplification is done in the last stage in audio applications. The applications related to radio frequencies employ radio

More information

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT AIM: 1) To study different BJT DC biasing circuits 2) To design voltage divider bias circuit using NPN BJT SOFTWARE TOOL: PC

More information

Discrete Op-Amp Kit MitchElectronics 2019

Discrete Op-Amp Kit MitchElectronics 2019 Discrete Op-Amp Kit MitchElectronics 2019 www.mitchelectronics.co.uk CONTENTS Introduction 3 Schematic 4 How It Works 5 Materials 9 Construction 10 Important Information 11 Page 2 INTRODUCTION Even if

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK Subject with Code : Electronic Circuit Analysis (16EC407) Year & Sem: II-B.Tech & II-Sem

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

Low Distortion Design 3

Low Distortion Design 3 Low Distortion Design 3 TIPL 1323 TI Precision Labs Op Amps Presented by Collin Wells Prepared by John Caldwell Prerequisites: Noise 1 3 (TIPL1311 TIPL1313) Output Stage Topologies Most op amps use a Class-AB

More information

The first transistor. (Courtesy Bell Telephone Laboratories.)

The first transistor. (Courtesy Bell Telephone Laboratories.) Fig. 3.1 The first transistor. (Courtesy Bell Telephone Laboratories.) Fig. 3.2 Types of transistors: (a) pnp; (b) npn. : (a) pnp; : (b) npn Fig. 3.3 Forward-biased junction of a pnp transistor. Fig. 3.4

More information

Video Course on Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi

Video Course on Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Video Course on Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Module No. # 02 Transistors Lecture No. # 09 Biasing a Transistor (Contd) We continue our discussion

More information

Chapter 4 DC Biasing BJTs. BJTs

Chapter 4 DC Biasing BJTs. BJTs hapter 4 D Biasing BJTs BJTs Biasing Biasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. Operating Point The D input establishes an operating or

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210404 Set No. 1 II B.Tech I Semester Supplimentary Examinations, February 2008 ELECTRONIC CIRCUIT ANALYSIS ( Common to Electronics & Communication Engineering and Electronics & Telematics)

More information

10. SINGLE-SUPPLY PUSH-PULL AMPLIFIER

10. SINGLE-SUPPLY PUSH-PULL AMPLIFIER 0. SNGE-SUY USH-U AMFE The push-pull amplifier circuit as discussed in section-9 requires a dual power supply. t can be tailored to operate on a single supply as illustrated in Figure 0.. n this case the

More information

EEE225: Analogue and Digital Electronics

EEE225: Analogue and Digital Electronics EEE225: Analogue and Digital Electronics Lecture II James E. Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk This Lecture 1 One Transistor Circuits Continued...

More information

Module 4 Unit 4 Feedback in Amplifiers

Module 4 Unit 4 Feedback in Amplifiers Module 4 Unit 4 Feedback in mplifiers eview Questions:. What are the drawbacks in a electronic circuit not using proper feedback? 2. What is positive feedback? Positive feedback is avoided in amplifier

More information

Chapter 12 Power Amplifier

Chapter 12 Power Amplifier Chapter 12 Power Amplifier Definitions In small-signal amplifiers the main factors are: Amplification Linearity Gain Since large-signal, or power, amplifiers handle relatively large voltage signals and

More information

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN Hanoi, 9/24/2012 Contents 2 Structure and operation of BJT Different configurations of BJT Characteristic curves DC biasing method and analysis

More information

DC Bias. Graphical Analysis. Script

DC Bias. Graphical Analysis. Script Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 3 Lecture Title: Analog Circuits

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

Physics 116A Notes Fall 2004

Physics 116A Notes Fall 2004 Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 beta Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second

More information

Electronics Fundamentals BIPOLAR TRANSISTORS. Construction, circuit symbols and biasing examples for NPN and PNP junction transistors.

Electronics Fundamentals BIPOLAR TRANSISTORS. Construction, circuit symbols and biasing examples for NPN and PNP junction transistors. IPOLA TANSISTOS onstruction, circuit symbols and biasing examples for NPN and PNP junction transistors Slide 1 xternal bias voltages create an electric field, which pulls electrons (emitted into the base

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 9 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT JT iasing D analysis Fixed-bias circuit mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback circuit

More information

Concepts to be Covered

Concepts to be Covered Introductory Medical Device Prototyping Analog Circuits Part 2 Semiconductors, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Semiconductors

More information

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 12 Bipolar Junction Transistor (BJT) BJT 1-1 Course Info Lecture hours: 4 Two Lectures weekly (Saturdays and Wednesdays) Location: K2 Time: 1:40 pm Tutorial hours: 2 One tutorial class every week

More information

Chapter 6: Transistors and Gain

Chapter 6: Transistors and Gain I. Introduction Chapter 6: Transistors and Gain This week we introduce the transistor. Transistors are three-terminal devices that can amplify a signal and increase the signal s power. The price is that

More information

HOME ASSIGNMENT. Figure.Q3

HOME ASSIGNMENT. Figure.Q3 HOME ASSIGNMENT 1. For the differential amplifier circuit shown below in figure.q1, let I=1 ma, V CC =5V, v CM = -2V, R C =3kΩ and β=100. Assume that the BJTs have v BE =0.7 V at i C =1 ma. Find the voltage

More information

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10 Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 base-emitter voltage, 16, 50 base-emitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar

More information

Homework Assignment 10

Homework Assignment 10 Homework Assignment 10 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Communication Microelectronics (W17)

Communication Microelectronics (W17) Communication Microelectronics (W17) Lecture 4: Bipolar Junction Transistor Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Bipolar Junction Transistor (BJT) Physical Structure and I-V

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

Electronic Troubleshooting

Electronic Troubleshooting Electronic Troubleshooting Chapter 3 Bipolar Transistors Most devices still require some individual (discrete) transistors Used to customize operations Interface to external devices Understanding their

More information

Microelectronic Circuits

Microelectronic Circuits SECOND EDITION ISHBWHBI \ ' -' Microelectronic Circuits Adel S. Sedra University of Toronto Kenneth С Smith University of Toronto HOLT, RINEHART AND WINSTON HOLT, RINEHART AND WINSTON, INC. New York Chicago

More information

Electronic Circuits - Tutorial 07 BJT transistor 1

Electronic Circuits - Tutorial 07 BJT transistor 1 Electronic Circuits - Tutorial 07 BJT transistor 1-1 / 20 - T & F # Question 1 A bipolar junction transistor has three terminals. T 2 For operation in the linear or active region, the base-emitter junction

More information

Audio Amplifier. November 27, 2017

Audio Amplifier. November 27, 2017 Audio Amplifier November 27, 2017 1 Pre-lab No pre-lab calculations. 2 Introduction In this lab, you will build an audio power amplifier capable of driving a 8 Ω speaker the way it was meant to be driven...

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

LARGE SIGNAL AMPLIFIERS

LARGE SIGNAL AMPLIFIERS LARGE SIGNAL AMPLIFIERS One method used to distinguish the electrical characteristics of different types of amplifiers is by class, and as such amplifiers are classified according to their circuit configuration

More information

In-Class Exercises for Lab 2: Input and Output Impedance

In-Class Exercises for Lab 2: Input and Output Impedance In-Class Exercises for Lab 2: Input and Output Impedance. What is the output resistance of the output device below? Suppose that you want to select an input device with which to measure the voltage produced

More information

UNIT 1 MULTI STAGE AMPLIFIES

UNIT 1 MULTI STAGE AMPLIFIES UNIT 1 MULTI STAGE AMPLIFIES 1. a) Derive the equation for the overall voltage gain of a multistage amplifier in terms of the individual voltage gains. b) what are the multi-stage amplifiers? 2. Describe

More information

Electronics EECE2412 Spring 2017 Exam #2

Electronics EECE2412 Spring 2017 Exam #2 Electronics EECE2412 Spring 2017 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 30 March 2017 File:12198/exams/exam2 Name: : General Rules:

More information

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers 1. Explain the purpose of a thin, lightly doped base region.

More information

Lecture (10) Power Amplifiers (2)

Lecture (10) Power Amplifiers (2) Lecture (10) Power Amplifiers (2) By: Dr. Ahmed ElShafee ١ Class B/AB Power the ideal maximum peak output current for both dual supply and single supply push pull amplifiers is approximately Ic(sat), and

More information

Chapter.8: Oscillators

Chapter.8: Oscillators Chapter.8: Oscillators Objectives: To understand The basic operation of an Oscillator the working of low frequency oscillators RC phase shift oscillator Wien bridge Oscillator the working of tuned oscillator

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

More information

A 3-STAGE 5W AUDIO AMPLIFIER

A 3-STAGE 5W AUDIO AMPLIFIER ECE 2201 PRELAB 7x BJT APPLICATIONS A 3-STAGE 5W AUDIO AMPLIFIER UTILIZING NEGATIVE FEEDBACK INTRODUCTION Figure P7-1 shows a simplified schematic of a 3-stage audio amplifier utilizing three BJT amplifier

More information

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER 1. What is feedback? What are the types of feedback? 2. Define positive feedback. What are its merits and demerits? 3. Define negative feedback.

More information

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses:

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses: TUNED AMPLIFIERS 5.1 Introduction: To amplify the selective range of frequencies, the resistive load R C is replaced by a tuned circuit. The tuned circuit is capable of amplifying a signal over a narrow

More information

Page 1 of 7. Power_AmpFal17 11/7/ :14

Page 1 of 7. Power_AmpFal17 11/7/ :14 ECE 3274 Power Amplifier Project (Push Pull) Richard Cooper 1. Objective This project will introduce two common power amplifier topologies, and also illustrate the difference between a Class-B and a Class-AB

More information

PartIIILectures. Multistage Amplifiers

PartIIILectures. Multistage Amplifiers University of missan Electronic II, Second year 2015-2016 PartIIILectures Assistant Lecture: 1 Multistage and Compound Amplifiers Basic Definitions: 1- Gain of Multistage Amplifier: Fig.(1-1) A general

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Output Stages and Power Amplifiers Sections of Chapter 8 A. Kruger Power + Output Stages1 Power Amplifiers, Power FETS & BJTs Audio (stereo) MP3 Players Motor controllers Servo

More information

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018 Transistor Biasing DC Biasing of BJT Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com A transistors steady state of operation depends a great deal

More information

AN increasing number of video and communication applications

AN increasing number of video and communication applications 1470 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 9, SEPTEMBER 1997 A Low-Power, High-Speed, Current-Feedback Op-Amp with a Novel Class AB High Current Output Stage Jim Bales Abstract A complementary

More information

Push-Pull Amplifiers

Push-Pull Amplifiers NDSU PushPull Amplifiers ECE 321 JSG Background: PushPull Amplifiers The amplifiers we have been looking at are termed CassA amplifiers. They bias the transistor in the active region, and vary the operating

More information

Ham Radio 101 SOARA Workshop 3 Stage General Purpose Amplifier By Hal Silverman WB6WXO SOARA Education Director

Ham Radio 101 SOARA Workshop 3 Stage General Purpose Amplifier By Hal Silverman WB6WXO SOARA Education Director Ham Radio 101 SOARA Workshop 3 Stage General Purpose Amplifier By Hal Silverman WB6WXO SOARA Education Director Several months ago I started to put together a workshop where students could breadboard and

More information

So far we have dealt with only small-signal ampliers. In small-signal ampliers the main factors were amplication linearity gain

So far we have dealt with only small-signal ampliers. In small-signal ampliers the main factors were amplication linearity gain Contents Power Amplier Types Class A Operation Class B Operation Class AB Operation Class C Operation Class D Operation Amplier Eciency Series-Fed Class A Amplier AC-DC Load Lines Maximum Eciency Figure

More information

Chapter 5 Transistor Bias Circuits

Chapter 5 Transistor Bias Circuits Chapter 5 Transistor Bias Circuits Objectives Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collector-feedback bias circuits. Basic

More information

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 14. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 14 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT iasing D analysis Fixed-bias circuit (revision) mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback

More information

Designing an Audio Amplifier Using a Class B Push-Pull Output Stage

Designing an Audio Amplifier Using a Class B Push-Pull Output Stage Designing an Audio Amplifier Using a Class B Push-Pull Output Stage Angel Zhang Electrical Engineering The Cooper Union for the Advancement of Science and Art Manhattan, NY Jeffrey Shih Electrical Engineering

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Chapter 6: Power Amplifiers

Chapter 6: Power Amplifiers Chapter 6: Power Amplifiers Contents Class A Class B Class C Power Amplifiers Class A, B and C amplifiers are used in transmitters Tuned with a band width wide enough to pass all information sidebands

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

BJT as an Amplifier and Its Biasing

BJT as an Amplifier and Its Biasing Microelectronic ircuits BJT as an Amplifier and Its Biasing Slide 1 Transfer haracteristics & Biasing Slide 2 BJT urrent-oltage relationship The collector current i I i i B s e i B vbe Is e T v BE T Emitter

More information

Week 12: Output Stages, Frequency Response

Week 12: Output Stages, Frequency Response ELE 2110A Electronic Circuits Week 12: Output Stages, Frequency esponse (2 hours only) Lecture 12-1 Output Stages Topics to cover Amplifier Frequency esponse eading Assignment: Chap 15.3, 16.1 of Jaeger

More information

Boosting output in high-voltage op-amps with a current buffer

Boosting output in high-voltage op-amps with a current buffer Boosting output in high-voltage op-amps with a current buffer Author: Joe Kyriakakis, Apex Microtechnology Date: 02/18/2014 Categories: Current, Design Tools, High Voltage, MOSFETs & Power MOSFETs, Op

More information

Some frequently used transistor parameter symbols and their meanings are given here.

Some frequently used transistor parameter symbols and their meanings are given here. When you have completed this exercise, you will be familiar with several transistor parameter symbols. You will verify your knowledge with a list of common transistor parameter symbols and meanings. Some

More information

Learning Objectives:

Learning Objectives: Learning Objectives: At the end of this topic you will be able to; recall the conditions for maximum voltage transfer between sub-systems; analyse a unity gain op-amp voltage follower, used in impedance

More information

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT)

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT) ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT) Objectives: The experiments in this laboratory exercise will provide an introduction to the BJT. You will use the Bit Bucket breadboarding system

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

4.7 k V C 10 V I B. (b) V ma V. 3.3 k ma. (c)

4.7 k V C 10 V I B. (b) V ma V. 3.3 k ma. (c) 380 Chapter 6 Bipolar Junction Transistors (BJTs) Example 6.4 Consider the circuit shown in Fig. 6., which is redrawn in Fig. 6. to remind the reader of the convention employed throughout this book for

More information

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

More information

REVIEW TRANSISTOR BIAS CIRCUIT

REVIEW TRANSISTOR BIAS CIRCUIT EVIEW TANSISTO BIAS CICUIT OBJECTIVES Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collectorfeedback bias circuits. Basic troubleshooting

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Output Stages and Power Amplifiers Sections of Chapter 8 A. Kruger Power + Output Stages1 Power Amplifiers, Power FETS & BJTs Audio (stereo) MP3 Players Motor controllers Servo

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

THE HONG KONG POLYTECHNIC UNIVERSITY EN107/1 Department of Electronic and Information Engineering. EN107: OCL Class AB Power Amplifier Objective

THE HONG KONG POLYTECHNIC UNIVERSITY EN107/1 Department of Electronic and Information Engineering. EN107: OCL Class AB Power Amplifier Objective THE HONG KONG POLYTECHNIC UNIVERSITY EN107/1 EN107: OCL Class AB Power Amplifier Objective 1. To study the circuit performance of an OCL amplifier. 2. To study the effects of biasing on cross-over distortion

More information

Chapter 3: Bipolar Junction Transistors

Chapter 3: Bipolar Junction Transistors Chapter 3: Bipolar Junction Transistors Transistor Construction There are two types of transistors: pnp npn pnp The terminals are labeled: E - Emitter B - Base C - Collector npn 2 Transistor Operation

More information

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect Diode as Clamper A clamping circuit is used to place either the positive or negative peak of a signal at a desired level. The dc component is simply added or subtracted to/from the input signal. The clamper

More information

PHYS225 Lecture 6. Electronic Circuits

PHYS225 Lecture 6. Electronic Circuits PHYS225 Lecture 6 Electronic Circuits Transistors History Basic physics of operation Ebers-Moll model Small signal equivalent Last lecture Introduction to Transistors A transistor is a device with three

More information

Lecture (01) Transistor operating point & DC Load line

Lecture (01) Transistor operating point & DC Load line Lecture (01) Transistor operating point & DC Load line By: Dr. Ahmed ElShafee ١ BJT Characteristic Collector Characteristic Curves B C E ٢ BJT modes of operation Conditions in Cutoff Conditions in Saturation

More information

Chip Name Min VolT. Max Volt. Min. Out Power Typ. Out Power. LM386N-1 4 Volts 12 Volts 250 mw 325 mw. LM386N-3 4 Volts 12 Volts 500 mw 700 mw

Chip Name Min VolT. Max Volt. Min. Out Power Typ. Out Power. LM386N-1 4 Volts 12 Volts 250 mw 325 mw. LM386N-3 4 Volts 12 Volts 500 mw 700 mw LM386 Audio Amplifier Analysis The LM386 Voltage Audio Power Amplifier by National Semiconductor and also manufactured by JRC/NJM, is an old chip (mid 70 s) that has been a popular choice for low-power

More information

Subject Code: Model Answer Page No: / N

Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad - 00 0 ELECTRONICS AND COMMUNICATION ENGINEERING ASSIGNMENT Name : ELECTRONIC CIRCUIT ANALYSIS Code : A0 Class : II - B. Tech nd semester

More information