A CMOS 79GHz PMCW Radar SoC

Size: px
Start display at page:

Download "A CMOS 79GHz PMCW Radar SoC"

Transcription

1 A CMOS 79GHz PMCW Radar SoC Jan Craninckx PUBLIC

2 Abstract High-performance, small form factor millimeter-wave radar systems are key enablers for the new smart society. Application for automotive driver assistance and even autonomous cars is obvious, but also many other systems like vital signs monitoring, gesture recognition, self-guided drones, etc are envisioned. The research presented in this talk investigates the use of nanoscale CMOS technology for 79GHz radar systems, which will be a key enabler to open up this market for cost-effective high-volume production, and allows integration of large digital processing in the same System-on-Chip. A new concept of phase-modulated radar detection is also introduced that blends perfectly with the integration capabilities of CMOS. 2

3 Why mmwave radars?

4 mmwave Sensors are Extremely Robust noise & vibration snow & rain fog smoke dust lighting 4 heat dirt

5 mmwave Sensors are Fully Sealed and Invisibly Mounted discreet monitoring perfect aesthetics privacy 5

6 fixed mobile Radar evolution yesterday automotive today tomorrow 79 GHz radar SoC module 140 GHz antenna-on-chip systems? 6

7 Radar resolution (smaller is better) Speed (improves with higher carrier) voxel Range (improves with wider bandwidth) Angle (improves with larger antenna) 24 GHz 77 GHz 79 GHz 140 GHz 7

8 10+ radars per car High-resolution, 360 degree radar coverage Medium Range Radar (MRR) up to 80m Short Range Radar (SRR) up to 30m Long Range Radar (LRR) up to 250m 8

9 79 GHz PMCW Radar System

10 New Paradigm: mmwave CMOS Radar-on-Chip high resolution low power low cost small size leveraging standard foundry technology 10

11 Waveform Possibilities TX PA VCO/PLL Fast chirp FMCW RX LNA In-phase mixer HPF (spillover cancellation, R MIN limit) LPF (R MAX limit) ADC Fast-time FFT Range processing Slow-time FFT Doppler processing Range- Doppler map TX PA Bi-phase mod Binary sequence PMCW RX LNA I,Q Quadrature mixer LO LPF 11 ADC Correlator bank Range processing Slow-time FFT Doppler processing Range- Doppler map

12 High Level Comparison: PMCW vs FMCW PMCW FMCW Ambiguity function, sidelobes + Sensitivity to phase noise, flicker noise + ADC resolution + ADC speed / IF bandwidth +++ PSD + Sensitivity to interference +/- TX orthogonality for MIMO + Communications capability ++ Industrial acceptance +++ easier market entry / limited IP and patents ++ 12

13 PMCW Radar Operating Principle 2 Gbps T chip m T chip 79 GHz LO TX Distance D RX Target G * m 0 0 Target at D = (4 * T chip * C) / 2 C = speed of light in air G = Path Loss m Correlations (multiplication and integration) 13

14 ... and TX-to-RX Spillover 2 Gbps T chip m T chip 79 GHz LO TX RX TX-to-RX spillover Target S * m G * m 0 0 Spillover produces a large response for 0 delay Target at D = (4 * T chip * C) / 2 C = speed of light in air G = Path Loss m Correlations (multiplication and integration) 14

15 PMCW Radar System Radar IC Range Bins T 2 R c Time / Doppler Correlations with delayed version of the PN sequence Determine the delay T the position R Accumulations improve SNR FFTs determine the frequency shift of every range bin the speed of the object found on that range bin (Doppler) Also improves SNR 15

16 System design, Implementation and Verification System design Validation & demonstration IC design Module & antennas 16

17 System design Matlab chain 17

18 PMCW Radar-on-Chip: SISO Block Diagram S antennas RF T C Range resolution L C Ambiguous range M Ambiguous speed N Speed resolution PRN code ADCs High-speed digital front-end Reconfigurable digital baseband ADC PRN code Lc parallel paths Lc parallel Lc parallel Integrate Lc pulses Accumulate M pulses N-point DFT Lc parallel CFAR detection - DoA estimation - Tracking 18

19 S antennas analog front-end MIMO Block Diagram PRN code... PRN code ADCs High-speed digital front-end Reconfigurable digital baseband Lc parallel paths Lc parallel Lc parallel Lc parallel Lc parallel ADC Integrate Lc pulses Accumulate M pulses N-point DFT... ADC PRN code Lc parallel paths Integrate Lc pulses Accumulate M pulses Lc parallel MIMO array synthesis... Nrx*Ntx virtual MIMO antennas Lc parallel Beamforming Peak extraction - DoA estimation - Tracking PRN code N-point DFT 19

20 IC Module - Platform IC module platform integrated circuit containing the core functionality carrier containing antennas and mounted ICs, similar form factor to product 20 carrier containing module, components and connectors, complemented with computation component (PC, FPGA or similar) for demonstration

21 SOC Implementation

22 RX1QP RX1QM VDDBB18 RX1IM RX1IP VSSBB18 PLL_Fref VSSBB18 RX2IM VDDBB18 RX2QM RX2QP NoC SL NoC SL NOC_RST NOC_CLK NOC_DI TRX1_DO TRX2_DO TRX_CLKO TRX_SYNC TRX_DA RX2IP TRX4_DO TRX3_DO NOC_CE VDD18dig VSS18dig PHADAR 2x2 SoC Integrated mmwave PLL, TRX, ADCs, digital front end PLL 2 TX NOC_TE VSSRX1dig VDDRX1dig VDDTX1 TX1P DIG TX NoC MS TXTX DIG NoC SL NOC_DO / PLL_LOCK / PLL_Fdiv VSSRX2dig VDDRX2dig VDDTX2 TX2P TX1M ADC ADC TX2M VSSTX1 PLL RF VSSTX2 MIMO PN-LEAK CANC Δ VGA ADC PRF=1/(Tc*Lc) Fc=1/Tc=2Gbps Prog. Buffer VDDRX1 VSSRX1 VDDPLL RX RX RX RX NoC SL VDDRX2 VSSRX2 VDDLO 2 RX 2 GHz CK PRN Code Prog. Delay-Line VSSPLL NoC SL VSSLO PA LNA IQ MX ILO (x5) Int-N PLL LO-PLL ILO (x5) Modulator PA 2 GHz CK PRN Code Prog. Delay-Line MIMO PN-LEAK CANC VGA ADC Fc=1/Tc=2Gbps PRF=1/(Tc*Lc) Prog. Buffer Δ 2 I/Q ADC 2 Digital Correlator/Accumulator 22

23 LO Architecture: 5x ILO A 5th Subharmonic, Inverter-Based Injection Locked Oscillator Avoid frequency distribution at 79GHz across the IC Frequency multiplication Harmonic based multipliers Wide functional range, but less damping at ω 0 /N Injection locked oscillators Oscillator must be locked 3X or 5X? 3X locks easier, but GHz 5X is only 15.8GHz PLL and frequency distribution Needs lots of 5th order distortion generation Inverters! 23

24 Inverter Based ILO for 79GHz VDD A=450mV VDD ω 0 =15.8GHz * 2π Tuned amplifier A@ω 0 Vb i out e 0 M1 Classical approach A@ω 0 A/3@3ω 0 A/5@5ω Vb Inv based approach i out e 0 M1 A>1V for i out =0.82mA, while VDD in 28nm is 0.9V Also reliability is worse 24 Input i out (ma) Θ( ) ω ω 0,3ω ω 0,3ω 0,5ω Up to 15ω

25 Implementation Inverter chain Oscillator core 20K Q ind =15 Q var =8.5~ VCO+ VCO- [3:0] L mos =35nm 12um 9um 16um 13.5um V inj+ V DC V DC2 M1 M2 M1:M2=5:1 V DC V inj- W P /W N ratio is adjusted to have duty cycle. V DC2 used to enhance self resonance Slice 25

26 Phase Noise (dbc/hz) Oscillation Frequency (GHz) Input Power (dbm) Measurements -1 10GHz Locking Tange GHz Free-running Tuning Range ± 2GHz Varactor bits Locked Phase Noise 14dB±1dB -5 SMR40@15.8GHz -6 VDC2=0.55 V ILO@79GHz VDC2=0 V Frequency (GHz) Offset Frequency 26 (Hz)

27 PLL and LO Distribution Tx_ILO Cartesian combiner Tx_ILO TX In-Phase ILOs Combiner I + I - Q + Q - I bias,i I bias,q Combiner PPF for quadrature phase shifters 2-stage PPF 15.8 GHz distribution 25MHz Subsamplig PLL SS- PD PFD/C P Gm LP F 15.8GHz VCO Poly-phase filters generate quadrature Rx_QILO Div/N (79) Div/8 CP-PLL Integer-N PLL To Dig/ADC GHz Rx_QILO RX QILOs

28 Antenna Path Details TX-to-RX Spillover cancellation Analog BB and ADCs Digital Core Transmitter side-lobe suppression RX Front-End Sub-harmonic Injection Locked Oscillators multiply the PLL frequency by 5 28 Transmitter

29 TX architecture 15.8GHz CMOS BUF IL-VCO (x5) Modulator PA CMOS28 Harmonic Rejection & Pulse shaping BPSK frequency side-lobes at least -17dBc needed! PRN Code Fc=1/Tc=2Gbps PRF=1/(Tc*Lc) No LO quadrature Psat Low side-lobes 29

30 79GHz Phase-Modulator Linear BB X Non-linear LO Lc PRN Code generator 79GHz LO 79GHz LO PRN Code generator GHz Linear LO X Non-linear BB 79GHz LO PRN Code generator Lc Lc GHz Lower 79GHz swing More power efficient 30

31 TX Sidelobe Reduction by Harmonic Rejection 79GHz LO 1 1 Σ Tc=1/Fc Lc PRN Code generator Delay Tc/3 Δ GHz Most effective side-lobe lowest cost 31

32 79GHz Modulator and PA: Schematic Detail LOp VDD LOm HR3 Mixer VSMX BBin Prog. Delay-Line MMX Prog. Buffer Gain Tuner VDD 3-stage PA MPA CnPA VGPA VDD CnPA MPA BBin Balun 32

33 Receiver Implementation Gilbert cell mixer 2dB Gain V DD Mixer I and Q VGA ADC Buffer Output Buffer To IO Pads LO- LO- LO+ 7bits ADCs 2-stage LNA 18dB Gain V DD k V BIAS k VGA stage db in 7 steps V DD R L V B V DD ADC driver -2dB gain V out V in V DD V in V out R S V BIAS k V in 33

34 RX Spillover Cancellation BB BB VDD Weighted copy of BB injected at the mixer outputs to cancel the spillover Mix OUT Mixer R BB C BB W M BB BB LO- LO- LO+ VDD LNA OUT R C W P BB Correlation (multiplication with the TX sequence and integration) In steady state the mixer output is uncorrelated with the TX BB sequence: the spillover is cancelled! C 2 C 2

35 Digital Core Block Diagram Digital core generates the sequence and performs correlation and accumulation of the ADC samples Correlator (Lc) Accumulator (M) D<6:0> (from ADC) Out interface 1+1 Data Out CK CK/4 CK/<prog> I and Q To TX CK (1.975 GHz) 1 m [k] CK gen Clock Out TRX Sync Data Available 35 Other antenna path

36 IC Realization 28nm CMOS Die size 3 x 2.63mm Supply 0.9V/1.8V Flip chip assembly 36

37 IC Floorplan 28nm CMOS Die size 3 x 2.63mm Supply 0.9V/1.8V DIG. CORE TX TX DIG. CORE Flip chip assembly SH - ILOs LO Distr. SH - ILOs ADC RX BB PLL ADC RX BB RX FE RX FE 37

38 IC Photograph 28nm CMOS Die size 3 x 2.63mm Supply 0.9V/1.8V Flip chip assembly 38

39 PLL Measurements 25 MHz reference 16GHz VCO VCO only Phase Noise MHz 2GHz VCO tuning range corresponding to 78 to 88 GHz at TX output 79GHz ILO 10 MHz CP-PLL = Charge Pump PLL SS-PLL = Sub-Sampling PLL Measured at 79 GHz with R&S FS-Z90 and FSU and Agilent E5052 Signal Analyzer 39

40 Transmitter Measurements RBW 3 MHz Marker 1 [T1 ] VBW 10 MHz dbm Ref -17 dbm EXTM IX E SWT 60 ms GHz 1 AP VIEW 2 AP CLRWR GHz BW 1 A Pout > 10dBm 4 GHz BW EXT 3DB BPSK SideLobe Supp Center 80 GHz 1 GHz/ Span 10 GHz Date: 15.DEC :19:49 Measured with SAGE E band WR12 horn antenna, R&S FS-Z90 and FSU 40

41 Receiver Measurements NF < 1 GHz Including module input transition More than 30dB gain control in VGA BW > 1 GHz Measured with NOISE COM 5112 and R&S FSU on a dedicated module with GSG pads instead of antennas Base Band Analog output before the ADC measured 41

42 Indoor Antenna Module and Evaluation Board 2 dies on the back of the module Antennas on the front Panasonic MegTron6 42

43 PMCW Demonstrator Matlab framework for data analysis Radar module (2 chips): 4 TX antennas in azimuth 4 RX antennas in elevation MIMO configuration results in 2x2 and 4x4 array Targets can be localized in both azimuth and elevation FPGA/ARM core platform for data capture and analysis 43

44 Radar Measurements RCS = 20dBs 3 targets in an anechoic environment at different distance, azimuth and elevation RCS = 15dBsm RCS = 10dBsm Radar board with antenna facing the targets 44 Lc = 511 (m-seq), M = 232

45 Range & Speed Measurements 45

46 MIMO 4x4 Measurements Angle of Arrival: 46

47 Conclusions CMOS Radar SoCs area key building block for next-generation (selfdriving) cars And smart homes, buildings, things, etc. PMCW radar system is a feasible alternative for current FMCW architectures Major advantage for large-scale radar imagers IMEC PMCW radar SoCs prototypes show functionality And are used by partner companies in various application experiments The future is still to come; we haven t seen the last innovation in radars yet 47

48 PUBLIC

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology Xiang Yi, Chirn Chye Boon, Junyi Sun, Nan Huang and Wei Meng Lim VIRTUS, Nanyang Technological

More information

Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications

Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications FTF-AUT-F0086 Patrick Morgan Director, Safety Systems Business Unit Ralf Reuter Manager, Radar Applications and Systems

More information

24 GHz ISM Band Integrated Transceiver Preliminary Technical Documentation MAIC

24 GHz ISM Band Integrated Transceiver Preliminary Technical Documentation MAIC FEATURES Millimeter-wave (mmw) integrated transceiver Direct up and down conversion architecture 24 GHz ISM band 23.5-25.5 GHz frequency of operation 1.5 Volt operation, low-power consumption LO Quadrature

More information

Ultra-small, economical and cheap radar made possible thanks to chip technology

Ultra-small, economical and cheap radar made possible thanks to chip technology Edition March 2018 Radar technology, Smart Mobility Ultra-small, economical and cheap radar made possible thanks to chip technology By building radars into a car or something else, you are able to detect

More information

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers 2017.07.03 Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers Akira Matsuzawa and Kenichi Okada Tokyo Institute of Technology Contents 1 Demand for high speed data transfer Developed high

More information

SiGe PLL design at 28 GHz

SiGe PLL design at 28 GHz SiGe PLL design at 28 GHz 2015-09-23 Tobias Tired Electrical and Information Technology Lund University May 14, 2012 Waqas Ahmad (Lund University) Presentation outline E-band wireless backhaul Beam forming

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

Package and Pin Assignment SSOP-6 (0.64mm pitch) OSCIN OSCOUT TXEN 3 VSS 4 TXOUT 5 VSS 6 7 MODIN 8 HiMARK SW DO RES RESB VREFP VSS Symbol

Package and Pin Assignment SSOP-6 (0.64mm pitch) OSCIN OSCOUT TXEN 3 VSS 4 TXOUT 5 VSS 6 7 MODIN 8 HiMARK SW DO RES RESB VREFP VSS Symbol Low Power ASK Transmitter IC HiMARK Technology, Inc. reserves the right to change the product described in this datasheet. All information contained in this datasheet is subject to change without prior

More information

Radar System Design Considerations -- System Modeling Findings (MOS-AK Conference Hangzhou 2017)

Radar System Design Considerations -- System Modeling Findings (MOS-AK Conference Hangzhou 2017) Radar System Design Considerations -- System Modeling Findings (MOS-AK Conference Hangzhou 2017) Silicon Radar GmbH Im Technologiepark 1 15236 Frankfurt (Oder) Germany Outline 1 Introduction to Short Distance

More information

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc GHz RX VRXWG Features Complete millimeter wave receiver WR-, UG-8/U flange Operates in the to GHz unlicensed band db noise figure Up to.8 GHz modulation bandwidth I/Q analog baseband interface Integrated

More information

60 GHz Receiver (Rx) Waveguide Module

60 GHz Receiver (Rx) Waveguide Module The PEM is a highly integrated millimeter wave receiver that covers the GHz global unlicensed spectrum allocations packaged in a standard waveguide module. Receiver architecture is a double conversion,

More information

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD Teerachot Siriburanon, Tomohiro Ueno, Kento Kimura, Satoshi Kondo, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN60: Network Theory Broadband Circuit Design Fall 014 Lecture 13: Frequency Synthesizer Examples Sam Palermo Analog & Mixed-Signal Center Texas A&M University Agenda Frequency Synthesizer Examples Design

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

Keysight Technologies

Keysight Technologies Keysight Technologies Generating Signals Basic CW signal Block diagram Applications Analog Modulation Types of analog modulation Block diagram Applications Digital Modulation Overview of IQ modulation

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information

60 GHz TX. Waveguide Transmitter Module. Data Sheet Features V60TXWG3. Applications. VubIQ, Inc

60 GHz TX. Waveguide Transmitter Module. Data Sheet Features V60TXWG3. Applications. VubIQ, Inc Features Complete millimeter wave transmitter WR-, UG-8/U flange Operates in the to GHz unlicensed band dbm typical output power Up to.8 GHz modulation bandwidth I/Q analog baseband interface On chip synthesizer

More information

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs.

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs. Frequency Synthesizers for RF Transceivers Domine Leenaerts Philips Research Labs. Purpose Overview of synthesizer architectures for RF transceivers Discuss the most challenging RF building blocks Technology

More information

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto 20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS Masum Hossain & Tony Chan Carusone University of Toronto masum@eecg.utoronto.ca Motivation Data Rx3 Rx2 D-FF D-FF Rx1 D-FF Clock Clock

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN 5.4: A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN David Su, Masoud Zargari, Patrick Yue, Shahriar Rabii, David Weber, Brian Kaczynski, Srenik Mehta, Kalwant Singh, Sunetra Mendis, and Bruce Wooley

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

Features. The Hmc6001LP711E is ideal for: OBSOLETE

Features. The Hmc6001LP711E is ideal for: OBSOLETE Millimeterwave Receiver Typical Applications Features The Hmc61LP711E is ideal for: WiGig Single Carrier Modulations 6 GHz ISM Band Data Transmitter Multi-Gbps Data Communications High Definition Video

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers ADI 2006 RF Seminar Chapter II RF/IF Components and Specifications for Receivers 1 RF/IF Components and Specifications for Receivers Fixed Gain and Variable Gain Amplifiers IQ Demodulators Analog-to-Digital

More information

60 GHz Transmitter (Tx) Waveguide Module

60 GHz Transmitter (Tx) Waveguide Module The is a highly integrated millimeter wave transmitter that covers the 60 GHz global unlicensed spectrum allocations packaged in a standard waveguide module. Transmitter architecture is a double conversion,

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

Bits to Antenna and Back

Bits to Antenna and Back The World Leader in High Performance Signal Processing Solutions Bits to Antenna and Back June 2012 Larry Hawkins ADL5324 400 4000 MHz Broadband ½ W RF Driver Amplifier KEY SPECIFICATIONS (5 V) Frequency

More information

DS H01 DIGITAL SYNTHESIZER MODULE SYSTEM SOLUTIONS. Features Applications 174 x 131 x 54 mm. Technical Description

DS H01 DIGITAL SYNTHESIZER MODULE SYSTEM SOLUTIONS. Features Applications 174 x 131 x 54 mm. Technical Description DS H01 The DS H01 is a high performance dual digital synthesizer with wide output bandwidth specially designed for Defense applications where generation of wideband ultra-low noise signals along with very

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

Analog and RF circuit techniques in nanometer CMOS

Analog and RF circuit techniques in nanometer CMOS Analog and RF circuit techniques in nanometer CMOS Bram Nauta University of Twente The Netherlands http://icd.ewi.utwente.nl b.nauta@utwente.nl UNIVERSITY OF TWENTE. Outline Introduction Balun-LNA-Mixer

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture

Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture Zhi Hu, Cheng Wang, and Ruonan Han Massachusetts Institute of Technology

More information

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell University of Washington, Seattle Feb. 8, 2017 International

More information

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone 26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone William W. Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, KeithOnodera, SteveJen, Susan Luschas, Justin Hwang, SuniMendis, DavidSu, BruceWooley

More information

K-MC2 RADAR TRANSCEIVER Replaced by K-MC3 Datasheet. Features. Applications. Description. Blockdiagram

K-MC2 RADAR TRANSCEIVER Replaced by K-MC3 Datasheet. Features. Applications. Description. Blockdiagram Features 24 GHz short range transceiver 90MHz sweep FM input High sensitivity, integrated RF/IF amplifier Dual 62 patch narrow beam antenna Buffered, gain adjustable I/Q IF outputs Additional DC IF outputs

More information

A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS

A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS Seitaro Kawai, Ryo Minami, Yuki Tsukui, Yasuaki Takeuchi, Hiroki Asada, Ahmed Musa, Rui Murakami, Takahiro Sato, Qinghong

More information

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application J Electr Eng Technol Vol. 9, No.?: 742-?, 2014 http://dx.doi.org/10.5370/jeet.2014.9.?.742 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband

More information

AL2230S Single Chip Transceiver for 2.4GHz b/g Applications (AIROHA)

AL2230S Single Chip Transceiver for 2.4GHz b/g Applications (AIROHA) AL2230S Single Chip Transceiver for 2.4GHz 802.11b/g Applications (AIROHA) AL2230S Datasheet MP v1.00-1 - This document is commercially confidential and must NOT be disclosed to third parties without prior

More information

AST-GPSRF. GPS / Galileo RF Downconverter GENERAL DESCRIPTION FEATURES APPLICATIONS FUNCTIONAL BLOCK DIAGRAM. Preliminary Technical Data

AST-GPSRF. GPS / Galileo RF Downconverter GENERAL DESCRIPTION FEATURES APPLICATIONS FUNCTIONAL BLOCK DIAGRAM. Preliminary Technical Data FEATURES Single chip GPS / Galileo downconverter GPS L1 band C/A code (1575.42 MHz) receiver GALILEO L1 band OS code (1575.42 MHz) receiver 2.7 V to 3.3 V power supply On-chip LNA On-chip PLL including

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

Challenges in Designing CMOS Wireless System-on-a-chip

Challenges in Designing CMOS Wireless System-on-a-chip Challenges in Designing CMOS Wireless System-on-a-chip David Su Atheros Communications Santa Clara, California IEEE Fort Collins, March 2008 Introduction Outline Analog/RF: CMOS Transceiver Building Blocks

More information

Demo board DC365A Quick Start Guide.

Demo board DC365A Quick Start Guide. August 02, 2001. Demo board DC365A Quick Start Guide. I. Introduction The DC365A demo board is intended to demonstrate the capabilities of the LT5503 RF transmitter IC. This IC incorporates a 1.2 GHz to

More information

2011/12 Cellular IC design RF, Analog, Mixed-Mode

2011/12 Cellular IC design RF, Analog, Mixed-Mode 2011/12 Cellular IC design RF, Analog, Mixed-Mode Mohammed Abdulaziz, Mattias Andersson, Jonas Lindstrand, Xiaodong Liu, Anders Nejdel Ping Lu, Luca Fanori Martin Anderson, Lars Sundström, Pietro Andreani

More information

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Matsuzawa Lab. Matsuzawa & Okada Lab. Tokyo Institute of Technology A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Kento Kimura, Kenichi Okada and Akira Matsuzawa (WE2C-2) Matsuzawa &

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion November 11, 11, 2015 2015 1 mm-wave advantage Why is mm-wave interesting now? Available Spectrum 7 GHz of virtually

More information

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver Hamid Rategh Center for Integrated Systems Stanford University OUTLINE Motivation Introduction

More information

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson Design Considerations for 5G mm-wave Receivers Stefan Andersson, Lars Sundström, and Sven Mattisson Outline Introduction to 5G @ mm-waves mm-wave on-chip frequency generation mm-wave analog front-end design

More information

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS 95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS Ekaterina Laskin, Mehdi Khanpour, Ricardo Aroca, Keith W. Tang, Patrice Garcia 1, Sorin P. Voinigescu University

More information

Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System

Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System Maxim > Design Support > Technical Documents > User Guides > APP 3910 Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System USER GUIDE 3910 User's

More information

Table of Contents. About SAGE Millimeter, Inc...1 Radar basics and related SAGE Millimeter microwave sensor technologies... 2

Table of Contents. About SAGE Millimeter, Inc...1 Radar basics and related SAGE Millimeter microwave sensor technologies... 2 A. INTRODUCTION About SAGE Millimeter, Inc.....1 Radar basics and related SAGE Millimeter microwave sensor technologies... 2 B. OSOCILLATORS (SOL Series) K band mechanically tuned Gunn oscillators......5

More information

RFIC Design for Wireless Communications

RFIC Design for Wireless Communications RFIC Design for Wireless Communications VLSI Design & Test Seminar, April 19, 2006 Foster Dai 1. An MIMO Multimode WLAN RFIC 2. A Σ Direct Digital Synthesizer IC Foster Dai, April, 2006 1 1. Dave An MIMO

More information

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN 5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE 802.11a/b/g WLAN Manolis Terrovitis, Michael Mack, Kalwant Singh, and Masoud Zargari 1 Atheros Communications, Sunnyvale, California 1 Atheros

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v01.05.00 HMC141/142 MIXER OPERATION

More information

TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design

TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design Ted Johansson, ISY ted.johansson@liu.se 2 Outline of lecture 3 Introduction RF TRX architectures (3) Superheterodyne architecture

More information

Dual-Frequency GNSS Front-End ASIC Design

Dual-Frequency GNSS Front-End ASIC Design Dual-Frequency GNSS Front-End ASIC Design Ed. 01 15/06/11 In the last years Acorde has been involved in the design of ASIC prototypes for several EU-funded projects in the fields of FM-UWB communications

More information

K-MC1 RADAR TRANSCEIVER. Features. Applications. Description. Blockdiagram. Datasheet

K-MC1 RADAR TRANSCEIVER. Features. Applications. Description. Blockdiagram. Datasheet Features 24 GHz short range transceiver 180 MHz sweep FM input High sensitivity, with integrated RF/IF amplifier Dual 30 patch antenna Buffered I/Q IF outputs Additional DC IF outputs Beam aperture 25

More information

AST-GLSRF GLONASS Downconverter

AST-GLSRF GLONASS Downconverter AST-GLSRF GLONASS Downconverter Document History Sl No. Version Changed By Changed On Change Description 1 0.1 Sudhir N S 17-Nov-2014 Created Contents Features Applications General Description Functional

More information

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau CMOS RFIC Design for Direct Conversion Receivers Zhaofeng ZHANG Supervisor: Dr. Jack Lau Outline of Presentation Background Introduction Thesis Contributions Design Issues and Solutions A Direct Conversion

More information

Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS

Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS A. Pizzarulli 1, G. Montagna 2, M. Pini 3, S. Salerno 4, N.Lofu 2 and G. Sensalari 1 (1) Fondazione Torino Wireless,

More information

A 60-GHz Digitally-Controlled Phase Modulator with Phase Error Calibration

A 60-GHz Digitally-Controlled Phase Modulator with Phase Error Calibration IEICE Society Conference A 60-GHz Digitally-Controlled Phase Modulator with Phase Error Calibration Rui WU, Ning Li, Kenichi Okada, and Akira Tokyo Institute of Technology Background 1 9-GHz unlicensed

More information

CMX994/CMX994A/CMX994E Direct Conversion Receivers

CMX994/CMX994A/CMX994E Direct Conversion Receivers CML Microcircuits COMMUNICATION SEMICONDUCTORS Direct Conversion Receivers CMX994 / CMX994A (lower power options) / CMX994E (enhanced performance) D/994_994A_994E/3 November 2016 DATASHEET Provisional

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

An Ultra Wideband Local Positioning System for Highly Complex Indoor Environments

An Ultra Wideband Local Positioning System for Highly Complex Indoor Environments An Ultra Wideband Local Positioning System for Highly Complex Indoor Environments Benjamin Waldmann, Robert Weigel Institute for Electronics Engineering University of Erlangen Nuremberg Randolf Ebelt,

More information

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc.

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc. Understanding Low Phase Noise Signals Presented by: Riadh Said Agilent Technologies, Inc. Introduction Instabilities in the frequency or phase of a signal are caused by a number of different effects. Each

More information

Ka Band Radar Transceiver

Ka Band Radar Transceiver Ka Band Radar Transceiver Ka-Band Radar Transceiver with Integrated LO Source Homodyne System with Integrated TX & LO Multiplied VCO with Phase noise

More information

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012 Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator F. Winterstein, G. Sessler, M. Montagna, M. Mendijur, G. Dauron, PM. Besso International Radar Symposium 2012 Warsaw,

More information

NEW WIRELESS applications are emerging where

NEW WIRELESS applications are emerging where IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 4, APRIL 2004 709 A Multiply-by-3 Coupled-Ring Oscillator for Low-Power Frequency Synthesis Shwetabh Verma, Member, IEEE, Junfeng Xu, and Thomas H. Lee,

More information

Unprecedented wealth of signals for virtually any requirement

Unprecedented wealth of signals for virtually any requirement Dual-Channel Arbitrary / Function Generator R&S AM300 Unprecedented wealth of signals for virtually any requirement The new Dual-Channel Arbitrary / Function Generator R&S AM300 ideally complements the

More information

Design and Implementation of Power Efficient RF-Frontends for Short Range Radio Systems

Design and Implementation of Power Efficient RF-Frontends for Short Range Radio Systems Design and Implementation of Power Efficient RF-Frontends for Short Range Radio Systems Dr.-Ing. Lei Liao Infineon Technologies AG Outline Introduction Challenges of Low Power Hardware Design The LPRF

More information

A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection

A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection Somnath Kundu 1, Bongjin Kim 1,2, Chris H. Kim 1 1

More information

K-LC2 RADAR TRANSCEIVER

K-LC2 RADAR TRANSCEIVER Features 24 GHz K-band miniature I/Q transceiver 140MHz sweep FM input 2 x 4 patch antenna 2 balanced mixer with 50MHz bandwidth Excellent noise cancelling ability though I/Q technology Beam aperture 80

More information

76-81GHz MMIC transceiver (4 RX / 3 TX) for automotive radar applications. Table 1. Device summary. Order code Package Packing

76-81GHz MMIC transceiver (4 RX / 3 TX) for automotive radar applications. Table 1. Device summary. Order code Package Packing STRADA770 76-81GHz MMIC transceiver (4 RX / 3 TX) for automotive radar applications Data brief ESD protected Scalable architecture (master/slave configuration) BIST structures Bicmos9MW, 0.13-µm SiGe:C

More information

mmw to THz ultra high data rate radio access technologies

mmw to THz ultra high data rate radio access technologies mmw to THz ultra high data rate radio access technologies Dr. Laurent HERAULT VP Europe, CEA LETI Pierre Vincent Head of RF IC design Lab, CEA LETI Outline mmw communication use cases and standards mmw

More information

This article reports on

This article reports on Millimeter-Wave FMCW Radar Transceiver/Antenna for Automotive Applications A summary of the design and performance of a 77 GHz radar unit David D. Li, Sam C. Luo and Robert M. Knox Epsilon Lambda Electronics

More information

GHz Upconverter/ Downconverter. Technical Data H HPMX-5001 YYWW XXXX ZZZ HPMX-5001

GHz Upconverter/ Downconverter. Technical Data H HPMX-5001 YYWW XXXX ZZZ HPMX-5001 1.5 2.5 GHz Upconverter/ Downconverter Technical Data HPMX-5001 Features 2.7 V Single Supply Voltage Low Power Consumption (60 ma in Transmit Mode, 39 ma in Receive Mode Typical) 2 dbm Typical Transmit

More information

PAR4CR: THE DEVELOPMENT OF A NEW SDR-BASED PLATFORM TOWARDS COGNITIVE RADIO

PAR4CR: THE DEVELOPMENT OF A NEW SDR-BASED PLATFORM TOWARDS COGNITIVE RADIO PAR4CR: THE DEVELOPMENT OF A NEW SDR-BASED PLATFORM TOWARDS COGNITIVE RADIO Olga Zlydareva Co-authors: Martha Suarez Rob Mestrom Fabian Riviere Outline 1 Introduction System Requirements Methodology System

More information

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility Integrated receivers for mid-band SKA Suzy Jackson Engineer, Australia Telescope National Facility ASKAP/SKA Special Technical Brief 23 rd October, 2009 Talk overview Mid band SKA receiver challenges ASKAP

More information

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5 20.5 An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13µm CMOS with 400mV Supply and an Integrated Passive RX Front-End Ben W. Cook, Axel D. Berny, Alyosha Molnar, Steven Lanzisera,

More information

Foundries, MMICs, systems. Rüdiger Follmann

Foundries, MMICs, systems. Rüdiger Follmann Foundries, MMICs, systems Rüdiger Follmann Content MMIC foundries Designs and trends Examples 2 Foundries and MMICs Feb-09 IMST GmbH - All rights reserved MMIC foundries Foundries IMST is a UMS certified

More information

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS FUNCTIONS OF A TRANSMITTER The basic functions of a transmitter are: a) up-conversion: move signal to desired RF carrier frequency.

More information

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED OBSOLETE

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED OBSOLETE Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK Typical Applications Features The

More information

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications Teerachot Siriburanon, Wei Deng, Ahmed Musa, Kenichi Okada, and Akira Matsuzawa Tokyo Institute

More information

FEATURES DESCRIPTION BENEFITS APPLICATIONS. Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver

FEATURES DESCRIPTION BENEFITS APPLICATIONS. Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver DESCRIPTION The PT4501 is a highly integrated wideband FSK multi-channel half-duplex transceiver operating in sub-1 GHz license-free ISM bands. The

More information

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in RTU1D-2 LAICS A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in 0.18µm CMOS L. Zhang, D. Karasiewicz, B. Ciftcioglu and H. Wu Laboratory for Advanced Integrated Circuits and Systems

More information

5G mmwave Radio design for Mobile. Kamal Sahota Vice President Engineering Qualcomm Inc.

5G mmwave Radio design for Mobile. Kamal Sahota Vice President Engineering Qualcomm Inc. 5G mmwave Radio design for Mobile Kamal Sahota Vice President Engineering Qualcomm Inc. Agenda 5G RF standard 5G mm Wave bands WAN Transceiver complexity over the last 5 years. Process technology requirements

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 010 Lecture 7: PLL Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project Preliminary Report

More information

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Test & Measurement Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Modern radar systems serve a broad range of commercial, civil, scientific and military applications.

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

Design of Wireless Transceiver in 0.18um CMOS Technology for LoRa application

Design of Wireless Transceiver in 0.18um CMOS Technology for LoRa application Design of Wireless Transceiver in 0.18um CMOS Technology for LoRa application Yoonki Lee 1, Jiyong Yoon and Youngsik Kim a Department of Information and Communication Engineering, Handong University E-mail:

More information

FA 8.1: A 115mW CMOS GPS Receiver

FA 8.1: A 115mW CMOS GPS Receiver FA 8.1: A 115mW CMOS GPS Receiver D. Shaeffer, A. Shahani, S.S. Mohan, H. Samavati, H. Rategh M. Hershenson, M. Xu, C.P. Yue, D. Eddleman, and T.H. Lee Stanford University OVERVIEW GPS Overview Architecture

More information

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1 10.1 A 77GHz 4-Element Phased Array Receiver with On-Chip Dipole Antennas in Silicon A. Babakhani, X. Guan, A. Komijani, A. Natarajan, A. Hajimiri California Institute of Technology, Pasadena, CA Achieving

More information

A Low Area, Switched-Resistor Loop Filter Technique for Fractional-N Synthesizers Applied to a MEMS-based Programmable Oscillator

A Low Area, Switched-Resistor Loop Filter Technique for Fractional-N Synthesizers Applied to a MEMS-based Programmable Oscillator A Low Area, Switched-Resistor Loop Filter Technique for Fractional-N Synthesizers Applied to a MEMS-based Programmable Oscillator ISSCC 00, Session 3. M.H. Perrott, S. Pamarti, E. Hoffman, F.S. Lee, S.

More information

RSE02401/00 24 GHz Radar Sensor

RSE02401/00 24 GHz Radar Sensor General description The RSE02401/00 is a fully integrated K-band FMCW radar sensor. It utilizes packaged low-cost components, enabling low unit prices and high volumes, using SMT assembly technology, with

More information

GET10B Radar Measurement Basics- Spectrum Analysis of Pulsed Signals. Copyright 2001 Agilent Technologies, Inc.

GET10B Radar Measurement Basics- Spectrum Analysis of Pulsed Signals. Copyright 2001 Agilent Technologies, Inc. GET10B Radar Measurement Basics- Spectrum Analysis of Pulsed Signals Copyright 2001 Agilent Technologies, Inc. Agenda: Power Measurements Module #1: Introduction Module #2: Power Measurements Module #3:

More information

Multiple Reference Clock Generator

Multiple Reference Clock Generator A White Paper Presented by IPextreme Multiple Reference Clock Generator Digitial IP for Clock Synthesis August 2007 IPextreme, Inc. This paper explains the concept behind the Multiple Reference Clock Generator

More information