A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD

Size: px
Start display at page:

Download "A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD"

Transcription

1 A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD Teerachot Siriburanon, Tomohiro Ueno, Kento Kimura, Satoshi Kondo, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan 2014 Asia-Pacific Microwave Conference

2 Outline 1 Background Issues and Previous Work Proposed 60GHz Frequency Synthesizer System Architecture 20GHz-to-5GHz Dual-Step-Mixing ILFD Experimental Results Conclusions

3 Requirements for 60GHz PLLs 2 RF front-end Analog/Digital BB 60GHz RX 60GHz I 60GHz Q 20GHz PLL VGA LPF VGA LPF ADC ADC Digital BB 60GHz TX 60GHz I LPF DAC Digital BB 60GHz Q LPF DAC Out-of-band phase to support 16QAM* In-band phase noise should be lowered depending on the bandwidth of carrier-recovery circuitry** *,** K. Okada, et al., JSSC 2013

4 Issues of mm-wave PLLs 3 20GHz VCO 8mW 23mW 60GHz QILO 36MHz PFD CP LPF 24.7mW 2 (27,28, 29,30) 5 2 CML 2 CML 58.32GHz, 60.48GHz, 62.64Ghz, 64.80GHz 14mW Low out-of-band phase noise by Injection Locking -96dBc/Hz at 1MHz at 61.56GHz Large power consumption (64mW for 20GHz) Does not support channel bonding and all standards Lower REF clk. required to support all standards (N )

5 PLL Noise Transfer Function 4 Φ ref,n i CP,n Φ VCO,n [Φ ref ] α 2π PFD I CP Charge Pump H(f) Loop Filter K vco jf VCO [Φ out ] 1 N For CP Noise; Divider Φ out i CP,n N K d G(s) 1+G(s) Φ out i CP,n 1 K d G(s) 1+G(s) (G(s) is open-loop transfer function) Divide ratio N is no longer contribute to CP/PFD output noise Useful in a system with large division ratio N X.Gao, et al., JSSC 2009

6 Proposed 60GHz Frequency Synthesizer 5 Sub-sampling Loop SEL 2 36MHz/ 40MHz REF 2 MUX2 Pulser SSPD CP 1 20GHz Class-C VCO LPF 60GHz QILO SEL 3 MUX 3 3 E n PFD with DZ Var CP 2 (54, ,56,57, 58,59,60) 5 MUX1 SEL 1 4 ILFD 58.32GHz, 59.40GHz, 60.48GHz, 61.56GHz, 62.64GHz, 63.72GHz, 64.80GHz Frequency Locked Loop (E n =1)/ Phase Locked Loop (E n =0) T. Siriburanon, et. al, RFIC 2014

7 20GHz PFD/CP PLL 6 SEL 2 36MHz/ 40MHz REF SEL 3 2 MUX 3 MUX2 3 E n Pulser SSPD PFD with DZ Var CP 2 (54, ,56,57, 58,59,60) 5 MUX1 SEL 1 CP 1 20GHz Class-C VCO LPF 4 ILFD 19.44GHz, 19.80GHz, 20.16GHz, 20.52GHz, 20.88GHz, 21.24GHz, 21.60GHz N CP ~1200 Frequency Locked Loop (E n =1)/ Phase Locked Loop (E n =0) PFD and CP 2 are enabled

8 20GHz Sub-sampling PLL 7 Sub-sampling Loop SEL 2 36MHz/ 40MHz REF SEL 3 2 MUX 3 MUX2 3 E n Pulser SSPD PFD with DZ Var SEL 1 CP 1 CP 2 20GHz Class-C VCO LPF 19.44GHz, 19.80GHz, 20.16GHz, 20.52GHz, 20.88GHz, 21.24GHz, 21.60GHz (54, ,56,57, 58,59,60) 5 MUX1 4 ILFD N ss ~20 Frequency Locked Loop (E n =1)/ Phase Locked Loop (E n =0) Dead zone in PFD, SSPD and CP 1 are enabled

9 Phase noise (dbc/hz) 20GHz SS-PLL Noise Modelling REF_Noise SSPD+CP+ LF noise VCO noise SSPLL PFD/CP PLL K 10K 100K 1M 10M Frequency (Hz)

10 High-speed Divider Chains 9 30GHz 60GHz 42 ILFD 15GHz 3 ILFD 5GHz Digital Dividers Large power Locking range mismatch 30GHz 20GHz 46 ILFD 5GHz Digital Dividers Narrow locking range A technique to increase locking range of highorder-division in ILFDs is necessary

11 Conv. Single-Step Injection ILFD 10 +A (f 0 o ) 0 o 180 o +INJ 45 o 225 o 90 o 270 o 135 o 315 o -A (f 180 o ) I core I core I core I core

12 Conv. Single-Step Injection ILFD 11 +A -A ILFD output (f o ) 0 2π time Input (2f o ) (direct divide-by-2) Input (4f o ) (direct divide-by-4) 0 2π 4π Disturbing injection in grey Constructive injection in black time time

13 Dual-Step Injection ILFD 12 0 o +A 45 o -B 90 o +C 135 o -D 180 o -A 225 o +B 270 o -C 315 o +D 2f 0 o 2f 90 o 2f 180 o 2f 270 o b a c -INJ I core +INJ (+4f o ) I core I core (-4f o ) I core d T. Siriburanon, et. al, ESSCIRC 2013

14 Dual-Step Injection ILFD 13 ILFD output (+f o,-f o ) Common node signal (+2f o,-2f o ) A -B +C -D a b c d π π 2π 2π 3π 4π 5π time time +INJ (+4f o ) -INJ (-4f o ) time Only constructive injections exist

15 Measured Locking Range Injection Power [dbm] 14 Can cover required range for 60GHz Applications (19-22GHz) Injection Frequency [GHz] 2.1mW 2.45mW 2.65mW

16 ILFD Performance Comparison 15 Features Div. Ratio Locking Range* (GHz) Locking Range* (%) Power (mw) Area (mm 2 ) [1] Direct mixing [2] Direct mixing [3] Direct mixing [4] LC Direct mixing (3 rd harmonic boosting) [5] CML + LC ILFD [6] Dual-Step Mixing This Work Dual-Step Mixing (with buffers) [1] A-SSCC 07 [2] RFIC 04 [3] ISSCC 06 [4] CICC 12 [5] MTT 11 [6] A-SSCC 11

17 0.8 mm 20GHz SS-PLL Measurement 16 Freq. (GHz) (15.3%) Frequencies (GHz) Ref. Spurs (dbc) 19.44, 19.80, 20.16, 20.52, 20.88, 21.24, f REF PN@1MHz(dBc/Hz) ~ -104 Ref. freq. (MHz) 36/40 (18/20) Out Power (dbm) 0 ~ -4 Total Power (mw) 20.2 Process 65nm CMOS 0.7 mm 20GHz Buffer 20GHz ILFD 20GHz Class-C LC-VCO Loop Filter Digital Circuits PFD+DZ CP1 SSPD CP2 20GHz SS-PLL

18 Schematic of 60GHz QILO 17 K. Okada, et al., JSSC GHz Quadrature Injection-Locked Oscillator

19 60GHz QILO Measurement Summary 1.0 mm mm Process Supply Voltage (V) Tuning Range (GHz) 65nm CMOS P DC (mw) 14.0 INJ+ INJ- I+ I- ILO Buffer ILO Core Output Power (dbm) ILO Buffer Q+ Q- 60GHz QILO

20 Phase Noise Characteristics At a carrier frequency of 62.64GHz 19

21 Performance Comparison 20 Ref. REF Freq. (MHz) Frequency (GHz) Phase offset Phase offset Features Power (mw) [1] dbc/hz -108 dbc/hz Direct 60GHz QPLL 78 [2] dbc/hz -112 dbc/hz 30GHz PLL + Coupler 76 [3] dbc/hz -109 dbc/hz 60GHz AD-PLL 48 [4] dbc/hz -108 dbc/hz 60GHz SS-QPLL 42 [5] dbc/hz -117 dbc/hz This Work (normal) This (SS) 18/ dbc/hz -115 dbc/hz 18/ dbc/hz -115 dbc/hz Sub-harmonic Injection 20GHz PLL + 60GHz QILO 72 Sub-harmonic Injection 20GHz PLL + 60GHz QILO 32.8 Sub-harmonic Injection 20GHz SS-PLL + 60GHz QILO [1] K. Scheir, et al., ISSCC 2009 [2] C. Marcu, et al., JSSC 2009 [3] W. Wu, et al., ISSCC 2013 [4] V. Szortyka, et al., ISSCC 2014 [5] W. Deng, et al., JSSC

22 Conclusion 21 Low in-band and out-band phase noise have been achieved through sub-sampling and sub-harmonic injection-locked techniques, respectively With an assist of a low-power Dual-Step- Mixing ILFD, the proposed 60GHz SS-PLL achieves low power consumption while maintaining good phase noise performance

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications Teerachot Siriburanon, Wei Deng, Ahmed Musa, Kenichi Okada, and Akira Matsuzawa Tokyo Institute

More information

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology Xiang Yi, Chirn Chye Boon, Junyi Sun, Nan Huang and Wei Meng Lim VIRTUS, Nanyang Technological

More information

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Matsuzawa Lab. Matsuzawa & Okada Lab. Tokyo Institute of Technology A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Kento Kimura, Kenichi Okada and Akira Matsuzawa (WE2C-2) Matsuzawa &

More information

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN 5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE 802.11a/b/g WLAN Manolis Terrovitis, Michael Mack, Kalwant Singh, and Masoud Zargari 1 Atheros Communications, Sunnyvale, California 1 Atheros

More information

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers 2017.07.03 Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers Akira Matsuzawa and Kenichi Okada Tokyo Institute of Technology Contents 1 Demand for high speed data transfer Developed high

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN60: Network Theory Broadband Circuit Design Fall 014 Lecture 13: Frequency Synthesizer Examples Sam Palermo Analog & Mixed-Signal Center Texas A&M University Agenda Frequency Synthesizer Examples Design

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS

A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS Seitaro Kawai, Ryo Minami, Yuki Tsukui, Yasuaki Takeuchi, Hiroki Asada, Ahmed Musa, Rui Murakami, Takahiro Sato, Qinghong

More information

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs.

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs. Frequency Synthesizers for RF Transceivers Domine Leenaerts Philips Research Labs. Purpose Overview of synthesizer architectures for RF transceivers Discuss the most challenging RF building blocks Technology

More information

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility European Conference on Nanoelectronics and Embedded Systems for Electric Mobility ecocity emotion 24-25 th September 2014, Erlangen, Germany Low Power Consideration in Transceiver Design for Internet of

More information

A 5GHz, 32mW CMOS Frequency Synthesizer with an Injection Locked Frequency Divider. Hamid Rategh, Hirad Samavati, Thomas Lee

A 5GHz, 32mW CMOS Frequency Synthesizer with an Injection Locked Frequency Divider. Hamid Rategh, Hirad Samavati, Thomas Lee A 5GHz, 32mW CMOS Frequency Synthesizer with an Injection Locked Frequency Divider Hamid Rategh, Hirad Samavati, Thomas Lee OUTLINE motivation introduction synthesizer architecture synthesizer building

More information

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 17, NO. 2, 98~104, APR. 2017 http://dx.doi.org/10.5515/jkiees.2017.17.2.98 ISSN 2234-8395 (Online) ISSN 2234-8409 (Print) CMOS 120 GHz Phase-Locked

More information

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto 20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS Masum Hossain & Tony Chan Carusone University of Toronto masum@eecg.utoronto.ca Motivation Data Rx3 Rx2 D-FF D-FF Rx1 D-FF Clock Clock

More information

A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding A 64-QAM 6GHz CMOS Transceiver with 4-Channel Bonding Kenichi Okada, Ryo Minami, Yuuki Tsukui, Seitaro Kawai, Yuuki Seo, Shinji Sato, Satoshi Kondo, Tomohiro Ueno, Yasuaki Takeuchi, Tatsuya Yamaguchi,

More information

A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection

A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection Somnath Kundu 1, Bongjin Kim 1,2, Chris H. Kim 1 1

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

A 60-GHz Digitally-Controlled Phase Modulator with Phase Error Calibration

A 60-GHz Digitally-Controlled Phase Modulator with Phase Error Calibration IEICE Society Conference A 60-GHz Digitally-Controlled Phase Modulator with Phase Error Calibration Rui WU, Ning Li, Kenichi Okada, and Akira Tokyo Institute of Technology Background 1 9-GHz unlicensed

More information

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver Hamid Rategh Center for Integrated Systems Stanford University OUTLINE Motivation Introduction

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

A 0.18µm SiGe BiCMOS Receiver and Transmitter Chipset for SONET OC-768 Transmission Systems

A 0.18µm SiGe BiCMOS Receiver and Transmitter Chipset for SONET OC-768 Transmission Systems A 0.18µm SiGe BiCMOS Receiver and Transmitter Chipset for SONET OC-768 Transmission Systems M. Meghelli 1, A. Rylyakov 1, S. J. Zier 2, M. Sorna 2, D. Friedman 1 1 IBM T. J. Watson Research Center 2 IBM

More information

An HCI-Healing 60GHz CMOS Transceiver

An HCI-Healing 60GHz CMOS Transceiver An HCI-Healing 60GHz CMOS Transceiver Rui Wu, Seitaro Kawai, Yuuki Seo, Kento Kimura, Shinji Sato, Satoshi Kondo, Tomohiro Ueno, Nurul Fajri, Shoutarou Maki, Noriaki Nagashima, Yasuaki Takeuchi, Tatsuya

More information

Gert Veale / Christo Nel Grintek Ewation

Gert Veale / Christo Nel Grintek Ewation Phase noise in RF synthesizers Gert Veale / Christo Nel Grintek Ewation Introduction & Overview Where are RF synthesizers used? What is phase noise? Phase noise eects Classic RF synthesizer architecture

More information

A fully synthesizable injection-locked PLL with feedback current output DAC in 28 nm FDSOI

A fully synthesizable injection-locked PLL with feedback current output DAC in 28 nm FDSOI LETTER IEICE Electronics Express, Vol.1, No.15, 1 11 A fully synthesizable injection-locked PLL with feedback current output DAC in 8 nm FDSOI Dongsheng Yang a), Wei Deng, Aravind Tharayil Narayanan, Rui

More information

1-GHz and 2.8-GHz CMOS Injection-locked Ring. Oscillator Prescalers. Rafael J. Betancourt-Zamora, Shwetabh Verma. and Thomas H.

1-GHz and 2.8-GHz CMOS Injection-locked Ring. Oscillator Prescalers. Rafael J. Betancourt-Zamora, Shwetabh Verma. and Thomas H. 1-GHz and 2.8-GHz CMOS Injection-locked Ring Oscillator Prescalers Rafael J. Betancourt-Zamora, Shwetabh Verma and Thomas H. Lee Department of Electrical Engineering Stanford University http://www-smirc.stanford.edu/

More information

Design and Analysis of Current Starved and Differential Pair VCO for low. Power PLL Application

Design and Analysis of Current Starved and Differential Pair VCO for low. Power PLL Application Design and Analysis of Current Starved and Differential Pair VCO for low Power PLL Application Vaibhav Yadav 1 1Student, Department of Electronics Engineering, IET, Lucknow, India 226021 ------------------------------------------------------------------------***-----------------------------------------------------------------------

More information

1-GHz and 2.8-GHz CMOS Injection-locked Ring Oscillator Prescalers

1-GHz and 2.8-GHz CMOS Injection-locked Ring Oscillator Prescalers 1-GHz and 2.8-GHz CMOS Injection-locked Ring Oscillator Prescalers Rafael J. Betancourt-Zamora, Shwetabh Verma and Thomas H. Lee Department of Electrical Engineering Stanford University http://www-smirc.stanford.edu/

More information

High Performance Digital Fractional-N Frequency Synthesizers

High Performance Digital Fractional-N Frequency Synthesizers High Performance Digital Fractional-N Frequency Synthesizers Michael Perrott October 16, 2008 Copyright 2008 by Michael H. Perrott All rights reserved. Why Are Digital Phase-Locked Loops Interesting? PLLs

More information

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS 95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS Ekaterina Laskin, Mehdi Khanpour, Ricardo Aroca, Keith W. Tang, Patrice Garcia 1, Sorin P. Voinigescu University

More information

Short Course On Phase-Locked Loops and Their Applications Day 5, AM Lecture. Advanced PLL Examples (Part I)

Short Course On Phase-Locked Loops and Their Applications Day 5, AM Lecture. Advanced PLL Examples (Part I) Short Course On Phase-Locked Loops and Their Applications Day 5, AM Lecture Advanced PLL Examples (Part I) Michael Perrott August 15, 2008 Copyright 2008 by Michael H. Perrott All rights reserved. Outline

More information

Design and Implementation of High-Speed CMOS Clock and Data Recovery Circuit for Optical Interconnection Applications. Seong-Jun Song. Dec.

Design and Implementation of High-Speed CMOS Clock and Data Recovery Circuit for Optical Interconnection Applications. Seong-Jun Song. Dec. MS Thesis esign and Implementation of High-Speed CMOS Clock and ata Recovery Circuit for Optical Interconnection Applications Seong-Jun Song ec. 20, 2002 oratory, epartment of Electrical Engineering and

More information

A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation. Outline

A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation. Outline A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation Ashok Swaminathan,2, Kevin J. Wang, Ian Galton University of California, San Diego, CA 2 NextWave Broadband, San

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2012

ECEN620: Network Theory Broadband Circuit Design Fall 2012 ECEN620: Network Theory Broadband Circuit Design Fall 2012 Lecture 20: CDRs Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Exam 2 is on Friday Nov. 9 One double-sided 8.5x11

More information

Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture

Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture Zhi Hu, Cheng Wang, and Ruonan Han Massachusetts Institute of Technology

More information

AN3: Application Note

AN3: Application Note : Introduction The PE3291 fractional-n PLL is well suited for use in low data rate (narrow channel spacing) applications below 1 GHz, such as paging, remote meter reading, inventory control and RFID. It

More information

Digitally Assisted Wireless Transceivers and Synthesizers

Digitally Assisted Wireless Transceivers and Synthesizers Digitally Assisted Wireless Transceivers and Synthesizers Kenichi Okada Tokyo Institute of Technology Symposia on VLSI Technology and Circuits Outline Analog to Digital Digitization of Wireless TRX Digital

More information

AN4: Application Note

AN4: Application Note : Introduction The PE3291 fractional-n PLL is a dual VHF/UHF integrated frequency synthesizer with fractional ratios of 2, 4, 8, 16 and 32. Its low power, low phase noise and low spur content make the

More information

SiGe PLL design at 28 GHz

SiGe PLL design at 28 GHz SiGe PLL design at 28 GHz 2015-09-23 Tobias Tired Electrical and Information Technology Lund University May 14, 2012 Waqas Ahmad (Lund University) Presentation outline E-band wireless backhaul Beam forming

More information

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN 5.4: A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN David Su, Masoud Zargari, Patrick Yue, Shahriar Rabii, David Weber, Brian Kaczynski, Srenik Mehta, Kalwant Singh, Sunetra Mendis, and Bruce Wooley

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

A Low Area, Switched-Resistor Loop Filter Technique for Fractional-N Synthesizers Applied to a MEMS-based Programmable Oscillator

A Low Area, Switched-Resistor Loop Filter Technique for Fractional-N Synthesizers Applied to a MEMS-based Programmable Oscillator A Low Area, Switched-Resistor Loop Filter Technique for Fractional-N Synthesizers Applied to a MEMS-based Programmable Oscillator ISSCC 00, Session 3. M.H. Perrott, S. Pamarti, E. Hoffman, F.S. Lee, S.

More information

A Three-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique for 5dB NF

A Three-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique for 5dB NF A Three-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique for 5dB NF Ning Li 1, Kenichi Okada 1, Toshihide Suzuki 2, Tatsuya Hirose 2 and Akira 1 1. Tokyo Institute of Technology, Japan 2. Advanced

More information

A GHz Wideband Sub-harmonically Injection- Locked PLL with Adaptive Injection Timing Alignment Technique

A GHz Wideband Sub-harmonically Injection- Locked PLL with Adaptive Injection Timing Alignment Technique A 2.4 3.6-GHz Wideband Sub-harmonically Injection- Locked PLL with Adaptive Injection Timing Alignment Technique Abstract: This paper proposes a wideband sub harmonically injection-locked PLL (SILPLL)

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 010 Lecture 7: PLL Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project Preliminary Report

More information

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop J. Handique, Member, IAENG and T. Bezboruah, Member, IAENG 1 Abstract We analyzed the phase noise of a 1.1 GHz phaselocked loop system for

More information

Chapter 2 Architectures for Frequency Synthesizers

Chapter 2 Architectures for Frequency Synthesizers Chapter 2 Architectures for Frequency Synthesizers 2.1 Overview This chapter starts with an overview of the conventional frequency synthesis techniques as well as the hybrid architectures that can be used

More information

A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues

A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues Rui Wu, Yuuki Tsukui, Ryo Minami, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of

More information

A 1.2-to-1.4 GHz low-jitter frequency synthesizer for GPS application

A 1.2-to-1.4 GHz low-jitter frequency synthesizer for GPS application Journal of Chongqing University (English Edition) [ISSN 1671-8224] Vol. 12 No. 2 June 2013 doi:10.11835/j.issn.1671-8224.2013.02.008 To cite this article: HU Zheng-fei, HUANG Min-di, ZHANG Li. A 1.2-to-1.4

More information

Choosing Loop Bandwidth for PLLs

Choosing Loop Bandwidth for PLLs Choosing Loop Bandwidth for PLLs Timothy Toroni SVA Signal Path Solutions April 2012 1 Phase Noise (dbc/hz) Choosing a PLL/VCO Optimized Loop Bandwidth Starting point for setting the loop bandwidth is

More information

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers 6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Bandwidth Constraints

More information

Outline. Motivation. Design Challenges. Design of Mode-Switching VCO. Measurement Results. Conclusion 7/8/14

Outline. Motivation. Design Challenges. Design of Mode-Switching VCO. Measurement Results. Conclusion 7/8/14 Mazhareddin Taghivand, Kamal Aggarwal and Ada Poon Dept. of Electrical Engineering Stanford University Outline Motivation Design Challenges Design of Mode-Switching VCO Measurement Results Conclusion 2

More information

Design and Analysis of Quadrature Voltage Controlled Oscillator for Wireless Communication Standards

Design and Analysis of Quadrature Voltage Controlled Oscillator for Wireless Communication Standards I J C T A, 9(15), 016, pp. 6937-6949 International Science Press Design and Analysis of Quadrature Voltage Controlled Oscillator for Wireless Communication Standards Bhavana Bojanapu*, J. Selvakumar**

More information

Ten-Tec Orion Synthesizer - Design Summary. Abstract

Ten-Tec Orion Synthesizer - Design Summary. Abstract Ten-Tec Orion Synthesizer - Design Summary Lee Jones 7/21/04 Abstract Design details of the low phase noise, synthesized, 1 st local oscillator of the Ten-Tec model 565 Orion transceiver are presented.

More information

Challenges in Designing CMOS Wireless System-on-a-chip

Challenges in Designing CMOS Wireless System-on-a-chip Challenges in Designing CMOS Wireless System-on-a-chip David Su Atheros Communications Santa Clara, California IEEE Fort Collins, March 2008 Introduction Outline Analog/RF: CMOS Transceiver Building Blocks

More information

RFIC Design for Wireless Communications

RFIC Design for Wireless Communications RFIC Design for Wireless Communications VLSI Design & Test Seminar, April 19, 2006 Foster Dai 1. An MIMO Multimode WLAN RFIC 2. A Σ Direct Digital Synthesizer IC Foster Dai, April, 2006 1 1. Dave An MIMO

More information

Dedication. To Mum and Dad

Dedication. To Mum and Dad Dedication To Mum and Dad Acknowledgment Table of Contents List of Tables List of Figures A B A B 0 1 B A List of Abbreviations Abstract Chapter1 1 Introduction 1.1. Motivation Figure 1. 1 The relative

More information

Research Focus. Outline. Outline. Research and Development Activities in RF and mm-wave IC Design

Research Focus. Outline. Outline. Research and Development Activities in RF and mm-wave IC Design Research and Development Activities in RF and mm-wave IC Design Howard Luong Wireless Communications Integrated Circuits Laboratory (WIC2L) Department of Electronic and Computer Engineering Hong Kong University

More information

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs Murat Demirkan* Solid-State Circuits Research Laboratory University of California, Davis *Now with Agilent Technologies, Santa Clara, CA 03/20/2008

More information

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16 320 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 56, NO. 2, FEBRUARY 2009 A 5-GHz CMOS Frequency Synthesizer With an Injection-Locked Frequency Divider and Differential Switched Capacitors

More information

Package and Pin Assignment SSOP-6 (0.64mm pitch) OSCIN OSCOUT TXEN 3 VSS 4 TXOUT 5 VSS 6 7 MODIN 8 HiMARK SW DO RES RESB VREFP VSS Symbol

Package and Pin Assignment SSOP-6 (0.64mm pitch) OSCIN OSCOUT TXEN 3 VSS 4 TXOUT 5 VSS 6 7 MODIN 8 HiMARK SW DO RES RESB VREFP VSS Symbol Low Power ASK Transmitter IC HiMARK Technology, Inc. reserves the right to change the product described in this datasheet. All information contained in this datasheet is subject to change without prior

More information

60 GHz Receiver (Rx) Waveguide Module

60 GHz Receiver (Rx) Waveguide Module The PEM is a highly integrated millimeter wave receiver that covers the GHz global unlicensed spectrum allocations packaged in a standard waveguide module. Receiver architecture is a double conversion,

More information

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc GHz RX VRXWG Features Complete millimeter wave receiver WR-, UG-8/U flange Operates in the to GHz unlicensed band db noise figure Up to.8 GHz modulation bandwidth I/Q analog baseband interface Integrated

More information

Short Course On Phase-Locked Loops IEEE Circuit and System Society, San Diego, CA. Digital Frequency Synthesizers

Short Course On Phase-Locked Loops IEEE Circuit and System Society, San Diego, CA. Digital Frequency Synthesizers Short Course On Phase-Locked Loops IEEE Circuit and System Society, San Diego, CA Digital Frequency Synthesizers Michael H. Perrott September 6, 2009 Copyright 2009 by Michael H. Perrott All rights reserved.

More information

High Performance Digital Fractional-N Frequency Synthesizers. IEEE Distinguished Lecture Lehigh Valley SSCS Chapter

High Performance Digital Fractional-N Frequency Synthesizers. IEEE Distinguished Lecture Lehigh Valley SSCS Chapter High Performance Digital Fractional-N Frequency Synthesizers IEEE Distinguished Lecture Lehigh Valley SSCS Chapter Michael H. Perrott October 2013 Copyright 2013 by Michael H. Perrott All rights reserved.

More information

A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique

A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique Lei Lu, Lingbu Meng, Liang Zou, Hao Min and Zhangwen Tang Fudan University,

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

THE PHS 8500 FAMILY OF VERY LOW PHASE NOISE HIGH PERFORMANCE MICROWAVE SYNTHESIZERS BENCHTOP

THE PHS 8500 FAMILY OF VERY LOW PHASE NOISE HIGH PERFORMANCE MICROWAVE SYNTHESIZERS BENCHTOP SUBTITLE THE PHS 8500 FAMILY OF VERY LOW PHASE NOISE HIGH PERFORMANCE MICROWAVE SYNTHESIZERS BENCHTOP MODULAR HANDHELD The PHS 8500 Family SUBTITLE Features: Standard Range : 700 MHz to 18 GHz Extendable

More information

Military End-Use. Phased Array Applications. FMCW Radar Systems

Military End-Use. Phased Array Applications. FMCW Radar Systems Features RF Bandwidth: 9.05 ghz to 10.15 ghz Fractional or Integer Modes Ultra Low Phase Noise 9.6 ghz; 50 MHz Ref. -106 / -102 dbc/hz @ 10 khz (Int / frac) dbc/hz @ 1 MHZ (Open Loop) Figure of Merit (FOM)

More information

Sigma-Delta Fractional-N Frequency Synthesis

Sigma-Delta Fractional-N Frequency Synthesis Sigma-Delta Fractional-N Frequency Synthesis Scott Meninger Michael Perrott Massachusetts Institute of Technology June 7, 2004 Copyright 2004 by Michael H. Perrott All rights reserved. Note: Much of this

More information

A Wide Tuning Range (1 GHz-to-15 GHz) Fractional-N All-Digital PLL in 45nm SOI

A Wide Tuning Range (1 GHz-to-15 GHz) Fractional-N All-Digital PLL in 45nm SOI 7- A Wide Tuning Range ( GHz-to-5 GHz) Fractional-N All-Digital PLL in 45nm SOI Alexander Rylyakov, Jose Tierno, George English 2, Michael Sperling 2, Daniel Friedman IBM T. J. Watson Research Center Yorktown

More information

A Divide-by-Two Injection-Locked Frequency Divider with 13-GHz Locking Range in 0.18-µm CMOS Technology

A Divide-by-Two Injection-Locked Frequency Divider with 13-GHz Locking Range in 0.18-µm CMOS Technology A Divide-by-Two Injection-Locked Frequency Divider with 13-GHz Locking Range in 0.18-µm CMOS Technology Xiang Yi, Chirn Chye Boon, Manh Anh Do, Kiat Seng Yeo, Wei Meng Lim VIRTUS, School of Electrical

More information

Fabricate a 2.4-GHz fractional-n synthesizer

Fabricate a 2.4-GHz fractional-n synthesizer University of Malaya From the SelectedWorks of Professor Mahmoud Moghavvemi Summer June, 2013 Fabricate a 2.4-GHz fractional-n synthesizer H Ameri Mahmoud Moghavvemi, University of Malaya a Attaran Available

More information

2011/12 Cellular IC design RF, Analog, Mixed-Mode

2011/12 Cellular IC design RF, Analog, Mixed-Mode 2011/12 Cellular IC design RF, Analog, Mixed-Mode Mohammed Abdulaziz, Mattias Andersson, Jonas Lindstrand, Xiaodong Liu, Anders Nejdel Ping Lu, Luca Fanori Martin Anderson, Lars Sundström, Pietro Andreani

More information

High Data Rate 60 GHz CMOS Transceiver Design

High Data Rate 60 GHz CMOS Transceiver Design High Data Rate 6 GHz CMOS Transceiver Design Akira Matsuzawa Department of Physical Electronics Graduate School of Science and Electronics Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552,

More information

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Body voltage controlled

More information

Hong Kong University of Science and Technology. A 2-V 900-MHz Monolithic CMOS Dual-Loop Frequency Synthesizer for GSM Receivers

Hong Kong University of Science and Technology. A 2-V 900-MHz Monolithic CMOS Dual-Loop Frequency Synthesizer for GSM Receivers Hong Kong University of Science and Technology A -V 900-MHz Monolithic CMOS Dual-Loop Frequency Synthesizer for GSM Receivers A thesis submitted to The Hong Kong University of Science and Technology in

More information

NON-CATALOG Frequency Synthesizer

NON-CATALOG Frequency Synthesizer Frequency Synthesizer 50 700 MHz Low phase noise and spurious Fixed frequency without external programming Integrated microcontroller Robust design and construction Small size 0.80" x 0.58" x 0.15" CASE

More information

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell University of Washington, Seattle Feb. 8, 2017 International

More information

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter J. Park, F. Maloberti: "Fractional-N PLL with 90 Phase Shift Lock and Active Switched-Capacitor Loop Filter"; Proc. of the IEEE Custom Integrated Circuits Conference, CICC 2005, San Josè, 21 September

More information

Research Article A Tunable Wideband Frequency Synthesizer Using LC-VCO and Mixer for Reconfigurable Radio Transceivers

Research Article A Tunable Wideband Frequency Synthesizer Using LC-VCO and Mixer for Reconfigurable Radio Transceivers Electrical and Computer Engineering Volume 2011, Article ID 361910, 7 pages doi:10.1155/2011/361910 Research Article A Tunable Wideband Frequency Synthesizer Using LC-VCO and Mixer for Reconfigurable Radio

More information

A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique

A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique James Lin, Masaya Miyahara and Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Laḃ

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

PHASE-LOCKED OSCILLTOR TO 16 GHz PLO-SFSO/MFSO-B1-S/E/C

PHASE-LOCKED OSCILLTOR TO 16 GHz PLO-SFSO/MFSO-B1-S/E/C Datasheet PHASE-LOCKED OSCILLTOR 1.925 TO 16 GHz TMYTEK s phase-locked oscillator is a pre-configured source suitable for any RF front-end systems. The SFSO and the MFSO series offers users the choice

More information

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver)

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Arvin Shahani Stanford University Overview GPS Overview Frequency Conversion Frequency Synthesis Conclusion GPS Overview: Signal Structure

More information

All-Synthesizable 5-Phase Phase-Locked Loop for USB2.0

All-Synthesizable 5-Phase Phase-Locked Loop for USB2.0 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.3, JUNE, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.3.352 ISSN(Online) 2233-4866 All-Synthesizable 5-Phase Phase-Locked

More information

Low Phase Noise CMOS Ring Oscillator VCOs for Frequency Synthesis

Low Phase Noise CMOS Ring Oscillator VCOs for Frequency Synthesis Low Phase Noise CMOS Ring Oscillator VCOs for Frequency Synthesis July 27, 1998 Rafael J. Betancourt Zamora and Thomas H. Lee Stanford Microwave Integrated Circuits Laboratory jeihgfdcbabakl Paul G. Allen

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

THE reference spur for a phase-locked loop (PLL) is generated

THE reference spur for a phase-locked loop (PLL) is generated IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 8, AUGUST 2007 653 Spur-Suppression Techniques for Frequency Synthesizers Che-Fu Liang, Student Member, IEEE, Hsin-Hua Chen, and

More information

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Engineering, Technology & Applied Science Research Vol. 7, No. 2, 2017, 1473-1477 1473 A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Hamidreza Esmaeili Taheri Department of Electronics

More information

Proposing. An Interpolated Pipeline ADC

Proposing. An Interpolated Pipeline ADC Proposing An Interpolated Pipeline ADC Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Lab. Background 38GHz long range mm-wave system Role of long range mm-wave Current Optical

More information

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique 1 A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique Masaya Miyahara and Akira Matsuzawa Tokyo Institute of Technology, Japan 2 Outline Motivation Design Concept

More information

Available online at ScienceDirect. International Conference On DESIGN AND MANUFACTURING, IConDM 2013

Available online at  ScienceDirect. International Conference On DESIGN AND MANUFACTURING, IConDM 2013 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 64 ( 2013 ) 377 384 International Conference On DESIGN AND MANUFACTURING, IConDM 2013 A Novel Phase Frequency Detector for a

More information

Hybrid Frequency Synthesizer Combines Octave Tuning Range and Millihertz Steps

Hybrid Frequency Synthesizer Combines Octave Tuning Range and Millihertz Steps Hybrid Frequency Synthesizer Combines Octave Tuning Range and Millihertz Steps DDS and PLL techniques are combined in this high-resolution synthesizer By Benjamin Sam Analog Devices Northwest Laboratories

More information

Bits to Antenna and Back

Bits to Antenna and Back The World Leader in High Performance Signal Processing Solutions Bits to Antenna and Back June 2012 Larry Hawkins ADL5324 400 4000 MHz Broadband ½ W RF Driver Amplifier KEY SPECIFICATIONS (5 V) Frequency

More information

Dual-Frequency GNSS Front-End ASIC Design

Dual-Frequency GNSS Front-End ASIC Design Dual-Frequency GNSS Front-End ASIC Design Ed. 01 15/06/11 In the last years Acorde has been involved in the design of ASIC prototypes for several EU-funded projects in the fields of FM-UWB communications

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.3

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.3 ISSCC 2003 / SESSION 10 / HIGH SPEE BUILING BLOCKS / PAPER 10.3 10.3 A 2.5 to 10GHz Clock Multiplier Unit with 0.22ps RMS Jitter in a 0.18µm CMOS Technology Remco C.H. van de Beek 1, Cicero S. Vaucher

More information

A Modular All Digital PLL Architecture Enabling Both 1-to-2 GHz and 24-to 32-GHz Operation in 65nm CMOS

A Modular All Digital PLL Architecture Enabling Both 1-to-2 GHz and 24-to 32-GHz Operation in 65nm CMOS A Modular All Digital PLL Architecture Enabling Both 1-to-2 GHz and 24-to 32-GHz Operation in 65nm CMOS A. V. Rylyakov 1, J. A. Tierno 1, D. Z. Turker 2, J.-O. Plouchart 1 H. A. Ainspan 1, D. J. Friedman

More information

A 64Gb/s PAM-4 Transmitter with 4-Tap FFE and 2.26pJ/b Energy Efficiency in 28nm CMOS FDSOI

A 64Gb/s PAM-4 Transmitter with 4-Tap FFE and 2.26pJ/b Energy Efficiency in 28nm CMOS FDSOI A 64Gb/s PAM-4 Transmitter with 4-Tap FFE and 2.26pJ/b Energy Efficiency in 28nm CMOS FDSOI G. Steffan 1, E. Depaoli 1, E. Monaco 1, N. Sabatino 1, W. Audoglio 1, A. A. Rossi 1, S. Erba 1, M. Bassi 2,

More information