1-GHz and 2.8-GHz CMOS Injection-locked Ring Oscillator Prescalers

Size: px
Start display at page:

Download "1-GHz and 2.8-GHz CMOS Injection-locked Ring Oscillator Prescalers"

Transcription

1 1-GHz and 2.8-GHz CMOS Injection-locked Ring Oscillator Prescalers Rafael J. Betancourt-Zamora, Shwetabh Verma and Thomas H. Lee Department of Electrical Engineering Stanford University

2 Outline Introduction Injection Locking Theory Circuit Implementation Measured Results Conclusion

3 Goals Understand the Injection-locking mechanism Grasp the limitations of Injectionlocked Frequency Dividers Design Injection-locked Frequency Divider using a Ring Oscillator

4 Motivation: Low-power Frequency Synthesis F REF F OUT PFD N 2µA UP DN 240µA VCO CP & LF MHz CMOS PLL [V.Kaenel 96] 10µA 800µA 50µA 500µA LNA 300µA VCO 100µA Q I 8 150µA 300µA 400µA 900 MHz CMOS RECEIVER [Darabi 00] Frequency synthesizers are implemented using PLLs. Q I Major sources of power dissipation are the VCO and Frequency Divider.

5 Frequency Divider Power Trade-off POWER INCREASES WITH DIVISION RATIO 900 MHz 450 MHz 225 MHz µA 100µA 100µA TOTAL POWER 200µA 300µA 400µA MHz [Darabi 00] We propose a technique in which power decreases with division ratio.

6 Outline Introduction Injection Locking Theory Circuit Implementation Measured Results Conclusion

7 Ring Oscillator Model V O BARKHAUSEN CRITERIA Necessary conditions for oscillation GAIN CONDITION Hjω ( O ) 1 R L PHASE CONDITION Hjω ( O ) = 180 I TAIL C L Neglect feedforward zero SMALL-SIGNAL MODEL H O H S ( jω) = jω ω P ω 1 P = R L C L

8 Ring Oscillator Model (II) V O GAIN CONDITION π H O 1 tan -- n 2 + PHASE CONDITION N-STAGE MODEL n H Hjω ( ) = O 1 j----- ω π -- + tan ω o n n ω P = ω π tan -- n n > 2 ω 0 is free-running oscillator frequency. Each stage contributes π/n to the phase.

9 Ring Oscillator Model (III) V O EXAMPLE Hjω ( ) = n H O 1 j----- ω π -- + tan ω o n n n H 0 ω p ω ω ω 0 DC gain Η 0 decreases with number of stages. Poles ω p coincide with ω 0 only for n=4.

10 Injection-locked Ring Oscillator EXAMPLE: 3-stage, Divide by 4 ω = ω RF 4 R L ω RF C L V BIAS ω RF An oscillator can be injection-locked to a harmonic of the free-running oscillation frequency.

11 Regenerative Divider [Miller 1939] EXAMPLE: Divide by 4 ω RF 3 ω RF ± ---- ωrf 4 H(jω) ω = ω RF 4 FREQ. MULT. 3 Commonly used where the frequency of operation is very high, beyond what can be achieved with flip-flop based circuits. Frequency multiplier can represent non-linearities present in the circuit. Used a model similar to Miller s, since the locking mechanisms are identical.

12 Model for Injection-locked Frequency Divider DC + ω RF RF Port Mixer n-stage LPF H(jω) -1 ω ω RF - (M+1)ω ω RF - (M-1)ω LO+ LO- ω, 3ω, 5ω... ω RF I TAIL Differential Pair s Non-linearity LO Port ω = ω RF /M MIXER Differential-pair single-balanced mixer Injected ω RF into the tail device FILTER Suppress products > ω V O is sinusoidal (small n).

13 Model for Injection-locked Frequency Divider (II) EXAMPLE: 3-stage, Divide by 4 Mixer 3-stage LPF DC + ω H(jω) RF ω -1 ω RF - 5ω RF Port ω RF - 3ω LO+ ω RF LO- I TAIL LO Port ω, 3ω, 5ω... Differential Pair s Non-linearity ω = ω RF /4 With no injection, ω = ω 0.

14 Mixer LO+ I TAIL RF Port LO- Mixer ω, 3ω, 5ω... -V SAT I BIAS I -I BIAS V SAT 2I RF V ω RF I TAIL LO Port V 0 cos(ωt) I TAIL = I RF cos(ω RF t + α) + I BIAS V SAT = ( W L) TAIL ( V W L) ODT DIFF The differential-pair is non-linear with odd symmetry. Non-linearity produces odd harmonics at 3ω, 5ω, etc. I TAIL is modulated by ω and its harmonics.

15 Mixer (II) DEFINE SWING RATIO ρ s = V 0 /V SAT >> 1 (Square Wave) I TAIL Mixer Π() t I TAIL Fourier Coefficients of Mixing Function Π(t) LO Port V 0 cos(ωt) ω, 3ω, 5ω ( 1) ( k 1) 2 C kπ k = odd k 0 otherwise

16 Filter Use Ring Oscillator Model n H Hjω ( ) = O 1 j----- ω π + tan -- ω o n n n-stage LPF H(jω) ω -1 ω RF - 5ω ω RF - 3ω Linearize Phase of H(jω) Hjω ( ) Hjω ( ) π + ω = ω ω O 2π n sin n ω ω 0 π ω Ο dφ/dω ω

17 Describing Function Analysis WRITE PHASE EXPRESSION AROUND THE LOOP η i ( C M 1 C M + 1 ) sinα atan C 1 + η i ( C M 1 + C M + 1 ) cosα MIXER I = Hjω π η RF i = I BIAS FILTER INJECTION EFFICIENCY FIND SOLUTION FOR α (-π, π]. If V O is large, then the injection locking dynamics are determined by the phase relationship around the loop (phaselimited) and therefore we can ignore the amplitude expression.

18 Locking Range of Injection-locked Ring Oscillator WHERE LR 4 k atan π n sin n 2 1 k 1 C k 0 η M 1 C M + 1 C = i k 1 η M 1 + C = M + 1 i C 1 C 1 Function of injection efficiency η i, and the magnitude of the Fourier coefficients C M-1 and C M+1. For small values of injected signal the locking range increases linearly with the injected signal strength.

19 Limited Injection Efficiency and Parasitics INJECTOR NON-IDEALITIES TAIL PARASITICS V SHORT-CHANNEL BIAS I V RF DS = K ( V RF + V ODT ) γ γ = 1-2 V BIAS V RF C PAR η i = V RF γ 2V ODT Limited injection efficiency due to short-channel effects and tail device non-linearity. Shunt path for I RF reducing the injection efficiency at high frequencies.

20 Limited Mixer Gain Normalized Coefficients C /C Swing Ratio, ρ s =V o /V sat C /C 3 1 The assumption that the mixer s switching function is a square wave is very accurate if the swing ratio ρ s >> 1. As ρ s gets smaller, the normalized coefficients C k /C 1 are significantly smaller, thus degrading the locking range.

21 Example: 5-stage, Modulo-8 Ring Oscillator Locking Range (%) a b c V RF /V OD (a)ideal (phase-limited) case (b)compression due to Injector non-linearity (square-law device) (c)effects of Injector non-linearity and tail parasitics (50% loss)

22 Outline Introduction Injection Locking Theory Circuit Implementation Measured Results Conclusion

23 5-stage Injection-locked Ring Oscillator Frequency Divider V CTL Vdd BR B1 B2 B3 B4 B5 BO ω _ + OPAMP V BIAS R BIAS REPLICA BIAS V RF INJECTION-LOCKED RING OSCILLATOR OUT BUFFER Used modified cross-coupled symmetric load buffers. RF signal injected at the tail of the first buffer (single-balanced mixer). The buffer stages behave as the H(jω) filter. V CTL V BIAS V RF

24 Die Micrograph: 5-stage Ring Oscillator Divider RING OSCILLATOR V RF BIAS OUTBUF V OUT Fabricated 3 and 5-stage ring oscillators µm CMOS mm 2 of area

25 Outline Introduction Injection Locking Theory Circuit Implementation Measured Results Conclusion

26 Results Injected Frequency Free-running Frequency Phase Input Locking Range Modulo-2 Modulo-4 Modulo-6 Modulo-8 Power dissipation Vdd Icore Ibias Core power Power efficiency 5-stage ILFD 1.0 GHz 125 MHz -110 dbc/hz 12.7 MHz (-3dBm) 32 MHz (-3dBm) 17 MHz (-3dBm) 20 MHz (-3dBm) 1.5 V 233 µa 108 µa 350 µw 2.86 GHz/mW 3-stage ILFD 2.8 GHz 700 MHz -106 dbc/hz 125 MHz (-3dBm) 56 MHz (-5dBm) no-lock no-lock 3.0 V 331 µa 661 µa 993 µw 2.82 GHz/mW

27 Power Efficiency of Injection-locked Ring Oscillator 3 [ 0] div8 Power Efficiency, GHz/mW [ 0] div4 [ 3] div8 1.5 [13] div128 1 [11] div8 [ 9] div2 0.5 [13] div128 [15] div8 [14] div Frequency, GHz [0] 5-stage (div-8) = 2.86 [0] 3-stage (div-4) = 2.82

28 What We Learned LOCKING RANGE COMPARISON 5-stage 1 GHz 3-stage 2.8 GHz THEORY 9% 34% SIMULATION 5% 17% TEST 2% 2% Large tail device (W/L=10.2/1) caused loss of I RF. Need to lower tail node parasitics to increase the injection efficiency. Resonating tail with an inductor [Wu, ISSCC 01] is not practical at sub-ghz frequencies. Small swing ratio (ρ s 3 4) caused reduction in mixer gain. Need to increase output swing and reduce V SAT.

29 Outline Introduction Injection Locking Theory Circuit Implementation Measured Results Conclusion

30 Conclusion Described the injection locking mechanism and how it applies to CMOS ring oscillators. Showed the design of frequency dividers that can operate up to 2.8-GHz by exploiting injection locking in differential CMOS ring oscillators. Showed measured results for 1-GHz and 2.8-GHz injection-locked frequency dividers fabricated in a 0.24-µm CMOS technology.

31 Acknowledgments National Semiconductor

1-GHz and 2.8-GHz CMOS Injection-locked Ring. Oscillator Prescalers. Rafael J. Betancourt-Zamora, Shwetabh Verma. and Thomas H.

1-GHz and 2.8-GHz CMOS Injection-locked Ring. Oscillator Prescalers. Rafael J. Betancourt-Zamora, Shwetabh Verma. and Thomas H. 1-GHz and 2.8-GHz CMOS Injection-locked Ring Oscillator Prescalers Rafael J. Betancourt-Zamora, Shwetabh Verma and Thomas H. Lee Department of Electrical Engineering Stanford University http://www-smirc.stanford.edu/

More information

Low Phase Noise CMOS Ring Oscillator VCOs for Frequency Synthesis

Low Phase Noise CMOS Ring Oscillator VCOs for Frequency Synthesis Low Phase Noise CMOS Ring Oscillator VCOs for Frequency Synthesis July 27, 1998 Rafael J. Betancourt Zamora and Thomas H. Lee Stanford Microwave Integrated Circuits Laboratory jeihgfdcbabakl Paul G. Allen

More information

NEW WIRELESS applications are emerging where

NEW WIRELESS applications are emerging where IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 4, APRIL 2004 709 A Multiply-by-3 Coupled-Ring Oscillator for Low-Power Frequency Synthesis Shwetabh Verma, Member, IEEE, Junfeng Xu, and Thomas H. Lee,

More information

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver Hamid Rategh Center for Integrated Systems Stanford University OUTLINE Motivation Introduction

More information

A 5GHz, 32mW CMOS Frequency Synthesizer with an Injection Locked Frequency Divider. Hamid Rategh, Hirad Samavati, Thomas Lee

A 5GHz, 32mW CMOS Frequency Synthesizer with an Injection Locked Frequency Divider. Hamid Rategh, Hirad Samavati, Thomas Lee A 5GHz, 32mW CMOS Frequency Synthesizer with an Injection Locked Frequency Divider Hamid Rategh, Hirad Samavati, Thomas Lee OUTLINE motivation introduction synthesizer architecture synthesizer building

More information

A 60-GHz Broad-Band Frequency Divider in 0.13-μm CMOS

A 60-GHz Broad-Band Frequency Divider in 0.13-μm CMOS Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 153 A 60-GHz Broad-Band Frequency Divider in 0.13-μm CMOS YUAN

More information

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN 5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE 802.11a/b/g WLAN Manolis Terrovitis, Michael Mack, Kalwant Singh, and Masoud Zargari 1 Atheros Communications, Sunnyvale, California 1 Atheros

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN60: Network Theory Broadband Circuit Design Fall 014 Lecture 13: Frequency Synthesizer Examples Sam Palermo Analog & Mixed-Signal Center Texas A&M University Agenda Frequency Synthesizer Examples Design

More information

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications Teerachot Siriburanon, Wei Deng, Ahmed Musa, Kenichi Okada, and Akira Matsuzawa Tokyo Institute

More information

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS 95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS Ekaterina Laskin, Mehdi Khanpour, Ricardo Aroca, Keith W. Tang, Patrice Garcia 1, Sorin P. Voinigescu University

More information

INJECTION-LOCKED RING OSCILLATOR FREQUENCY DIVIDERS

INJECTION-LOCKED RING OSCILLATOR FREQUENCY DIVIDERS INJECTION-LOCKED RING OSCILLATOR FREQUENCY DIVIDERS A THESIS SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF

More information

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD Teerachot Siriburanon, Tomohiro Ueno, Kento Kimura, Satoshi Kondo, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan

More information

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs.

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs. Frequency Synthesizers for RF Transceivers Domine Leenaerts Philips Research Labs. Purpose Overview of synthesizer architectures for RF transceivers Discuss the most challenging RF building blocks Technology

More information

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology Xiang Yi, Chirn Chye Boon, Junyi Sun, Nan Huang and Wei Meng Lim VIRTUS, Nanyang Technological

More information

A Unified Model for Injection-Locked Frequency Dividers

A Unified Model for Injection-Locked Frequency Dividers IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 6, JUNE 2003 1015 A Unified Model for Injection-Locked Frequency Dividers Shwetabh Verma, Student Member, IEEE, Hamid R. Rategh, and Thomas H. Lee, Member,

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

ISSCC 2002 / SESSION 17 / ADVANCED RF TECHNIQUES / 17.2

ISSCC 2002 / SESSION 17 / ADVANCED RF TECHNIQUES / 17.2 ISSCC 2002 / SESSION 17 / ADVANCED RF TECHNIQUES / 17.2 17.2 A CMOS Differential Noise-Shifting Colpitts VCO Roberto Aparicio, Ali Hajimiri California Institute of Technology, Pasadena, CA Demand for higher

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.976 High Speed Communication Circuits and Systems Spring 2003 Homework #4: Narrowband LNA s and Mixers

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 8 & 9: Oscillators

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 8 & 9: Oscillators TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 8 & 9: Oscillators Ted Johansson, EKS, ISY ted.johansson@liu.se Overview 2 Razavi: Chapter 8, pp. 505-532, 544-551, 491-498. 8.1 Performance Parameters

More information

A Divide-by-Two Injection-Locked Frequency Divider with 13-GHz Locking Range in 0.18-µm CMOS Technology

A Divide-by-Two Injection-Locked Frequency Divider with 13-GHz Locking Range in 0.18-µm CMOS Technology A Divide-by-Two Injection-Locked Frequency Divider with 13-GHz Locking Range in 0.18-µm CMOS Technology Xiang Yi, Chirn Chye Boon, Manh Anh Do, Kiat Seng Yeo, Wei Meng Lim VIRTUS, School of Electrical

More information

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators 6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband

More information

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16 320 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 56, NO. 2, FEBRUARY 2009 A 5-GHz CMOS Frequency Synthesizer With an Injection-Locked Frequency Divider and Differential Switched Capacitors

More information

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver)

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Arvin Shahani Stanford University Overview GPS Overview Frequency Conversion Frequency Synthesis Conclusion GPS Overview: Signal Structure

More information

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 2014 ISSN (online): 2321-0613 A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power

More information

A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique

A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique Lei Lu, Lingbu Meng, Liang Zou, Hao Min and Zhangwen Tang Fudan University,

More information

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Matsuzawa Lab. Matsuzawa & Okada Lab. Tokyo Institute of Technology A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Kento Kimura, Kenichi Okada and Akira Matsuzawa (WE2C-2) Matsuzawa &

More information

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03 Lecture 010 Introduction to Synthesizers (5/5/03) Page 010-1 LECTURE 010 INTRODUCTION TO FREQUENCY SYNTHESIZERS (References: [1,5,9,10]) What is a Synthesizer? A frequency synthesizer is the means by which

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator*

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* WP 23.6 A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* Christopher Lam, Behzad Razavi University of California, Los Angeles, CA New wireless local area network (WLAN) standards have recently emerged

More information

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1 19-1673; Rev 0a; 4/02 EVALUATION KIT MANUAL AVAILABLE 45MHz to 650MHz, Integrated IF General Description The are compact, high-performance intermediate-frequency (IF) voltage-controlled oscillators (VCOs)

More information

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in RTU1D-2 LAICS A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in 0.18µm CMOS L. Zhang, D. Karasiewicz, B. Ciftcioglu and H. Wu Laboratory for Advanced Integrated Circuits and Systems

More information

Design and noise analysis of a fully-differential charge pump for phase-locked loops

Design and noise analysis of a fully-differential charge pump for phase-locked loops Vol. 30, No. 10 Journal of Semiconductors October 2009 Design and noise analysis of a fully-differential charge pump for phase-locked loops Gong Zhichao( 宫志超 ) 1, Lu Lei( 卢磊 ) 1, Liao Youchun( 廖友春 ) 2,

More information

CONVENTIONAL phase-locked loops (PLL s) use frequency

CONVENTIONAL phase-locked loops (PLL s) use frequency IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 6, JUNE 1999 813 Superharmonic Injection-Locked Frequency Dividers Hamid R. Rategh, Student Member, IEEE, and Thomas H. Lee, Member, IEEE Abstract Injection-locked

More information

Hong Kong University of Science and Technology. A 2-V 900-MHz Monolithic CMOS Dual-Loop Frequency Synthesizer for GSM Receivers

Hong Kong University of Science and Technology. A 2-V 900-MHz Monolithic CMOS Dual-Loop Frequency Synthesizer for GSM Receivers Hong Kong University of Science and Technology A -V 900-MHz Monolithic CMOS Dual-Loop Frequency Synthesizer for GSM Receivers A thesis submitted to The Hong Kong University of Science and Technology in

More information

Quadrature Generation Techniques in CMOS Relaxation Oscillators. S. Aniruddhan Indian Institute of Technology Madras Chennai, India

Quadrature Generation Techniques in CMOS Relaxation Oscillators. S. Aniruddhan Indian Institute of Technology Madras Chennai, India Quadrature Generation Techniques in CMOS Relaxation Oscillators S. Aniruddhan Indian Institute of Technology Madras Chennai, India Outline Introduction & Motivation Quadrature Relaxation Oscillators (QRXO)

More information

Self-Biased PLL/DLL. ECG minute Final Project Presentation. Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas

Self-Biased PLL/DLL. ECG minute Final Project Presentation. Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas Self-Biased PLL/DLL ECG721 60-minute Final Project Presentation Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas Outline Motivation Self-Biasing Technique Differential Buffer

More information

ECE1352. Term Paper Low Voltage Phase-Locked Loop Design Technique

ECE1352. Term Paper Low Voltage Phase-Locked Loop Design Technique ECE1352 Term Paper Low Voltage Phase-Locked Loop Design Technique Name: Eric Hu Student Number: 982123400 Date: Nov. 14, 2002 Table of Contents Abstract pg. 04 Chapter 1 Introduction.. pg. 04 Chapter 2

More information

6.976 High Speed Communication Circuits and Systems Lecture 11 Voltage Controlled Oscillators

6.976 High Speed Communication Circuits and Systems Lecture 11 Voltage Controlled Oscillators 6.976 High Speed Communication Circuits and Systems Lecture 11 Voltage Controlled Oscillators Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott VCO Design for Wireless

More information

Keywords Divide by-4, Direct injection, Injection locked frequency divider (ILFD), Low voltage, Locking range.

Keywords Divide by-4, Direct injection, Injection locked frequency divider (ILFD), Low voltage, Locking range. Volume 6, Issue 4, April 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Design of CMOS

More information

Low Flicker Noise Current-Folded Mixer

Low Flicker Noise Current-Folded Mixer Chapter 4 Low Flicker Noise Current-Folded Mixer The chapter presents a current-folded mixer achieving low 1/f noise for low power direct conversion receivers. Section 4.1 introduces the necessity of low

More information

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1 10.1 A 77GHz 4-Element Phased Array Receiver with On-Chip Dipole Antennas in Silicon A. Babakhani, X. Guan, A. Komijani, A. Natarajan, A. Hajimiri California Institute of Technology, Pasadena, CA Achieving

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

Chapter 2 Architectures for Frequency Synthesizers

Chapter 2 Architectures for Frequency Synthesizers Chapter 2 Architectures for Frequency Synthesizers 2.1 Overview This chapter starts with an overview of the conventional frequency synthesis techniques as well as the hybrid architectures that can be used

More information

Fully Integrated Low Phase Noise LC VCO. Desired Characteristics of VCOs

Fully Integrated Low Phase Noise LC VCO. Desired Characteristics of VCOs Fully Integrated ow Phase Noise C VCO AGENDA Comparison with other types of VCOs. Analysis of two common C VCO topologies. Design procedure for the cross-coupled C VCO. Phase noise reduction techniques.

More information

Frequency Synthesizers

Frequency Synthesizers Phase-Locked Loops Frequency Synthesizers Ching-Yuan Yang National Chung-Hsing University epartment of Electrical Engineering One-port oscillators ecaying impulse response of a tank Adding of negative

More information

Challenges in Designing CMOS Wireless System-on-a-chip

Challenges in Designing CMOS Wireless System-on-a-chip Challenges in Designing CMOS Wireless System-on-a-chip David Su Atheros Communications Santa Clara, California IEEE Fort Collins, March 2008 Introduction Outline Analog/RF: CMOS Transceiver Building Blocks

More information

Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving

Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving Bassam Khamaisi and Eran Socher Department of Physical Electronics Faculty of Engineering Tel-Aviv University Outline Background

More information

FA 8.1: A 115mW CMOS GPS Receiver

FA 8.1: A 115mW CMOS GPS Receiver FA 8.1: A 115mW CMOS GPS Receiver D. Shaeffer, A. Shahani, S.S. Mohan, H. Samavati, H. Rategh M. Hershenson, M. Xu, C.P. Yue, D. Eddleman, and T.H. Lee Stanford University OVERVIEW GPS Overview Architecture

More information

A Fully Integrated CMOS RF Power Amplifier with Internal Frequency Doubling

A Fully Integrated CMOS RF Power Amplifier with Internal Frequency Doubling A Fully Integrated CMOS RF Power Amplifier with Internal Frequency Doubling Ellie Cijvat and Henrik Sjöland Department of Electroscience Lund University Presentation outline Introduction PA Analysis Implementation

More information

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 http://dx.doi.org/10.5573/jsts.2014.14.3.331 A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

More information

High-speed Serial Interface

High-speed Serial Interface High-speed Serial Interface Lect. 9 PLL (Introduction) 1 Block diagram Where are we today? Serializer Tx Driver Channel Rx Equalizer Sampler Deserializer PLL Clock Recovery Tx Rx 2 Clock Clock: Timing

More information

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz Ali M. Niknejad Robert G. Meyer Electronics Research Laboratory University of California at Berkeley Joo Leong Tham 1 Conexant

More information

Long Range Passive RF-ID Tag With UWB Transmitter

Long Range Passive RF-ID Tag With UWB Transmitter Long Range Passive RF-ID Tag With UWB Transmitter Seunghyun Lee Seunghyun Oh Yonghyun Shim seansl@umich.edu austeban@umich.edu yhshim@umich.edu About RF-ID Tag What is a RF-ID Tag? An object for the identification

More information

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Engineering, Technology & Applied Science Research Vol. 7, No. 2, 2017, 1473-1477 1473 A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Hamidreza Esmaeili Taheri Department of Electronics

More information

A LOW POWER CMOS TRANSCEIVER DESIGN FOR MEDICAL IMPANT COMMUNICATION SERVICE

A LOW POWER CMOS TRANSCEIVER DESIGN FOR MEDICAL IMPANT COMMUNICATION SERVICE A LOW POWER CMOS TRANSCEIVER DESIGN FOR MEDICAL IMPANT COMMUNICATION SERVICE Huseyin S Savci, Pin Ying, Zheng Wang and Prof. Numan S. Dogan North Carolina A&T State University An ultra low power CMOS transceiver

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

A W-Band Phase-Locked Loop for Millimeter-Wave Applications

A W-Band Phase-Locked Loop for Millimeter-Wave Applications A W-Band Phase-Locked Loop for Millimeter-Wave Applications Shinwon Kang Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-25 http://www.eecs.berkeley.edu/pubs/techrpts/2015/eecs-2015-25.html

More information

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto 20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS Masum Hossain & Tony Chan Carusone University of Toronto masum@eecg.utoronto.ca Motivation Data Rx3 Rx2 D-FF D-FF Rx1 D-FF Clock Clock

More information

Package and Pin Assignment SSOP-6 (0.64mm pitch) OSCIN OSCOUT TXEN 3 VSS 4 TXOUT 5 VSS 6 7 MODIN 8 HiMARK SW DO RES RESB VREFP VSS Symbol

Package and Pin Assignment SSOP-6 (0.64mm pitch) OSCIN OSCOUT TXEN 3 VSS 4 TXOUT 5 VSS 6 7 MODIN 8 HiMARK SW DO RES RESB VREFP VSS Symbol Low Power ASK Transmitter IC HiMARK Technology, Inc. reserves the right to change the product described in this datasheet. All information contained in this datasheet is subject to change without prior

More information

ISSCC 2004 / SESSION 21/ 21.1

ISSCC 2004 / SESSION 21/ 21.1 ISSCC 2004 / SESSION 21/ 21.1 21.1 Circular-Geometry Oscillators R. Aparicio, A. Hajimiri California Institute of Technology, Pasadena, CA Demand for faster data rates in wireline and wireless markets

More information

SiGe PLL design at 28 GHz

SiGe PLL design at 28 GHz SiGe PLL design at 28 GHz 2015-09-23 Tobias Tired Electrical and Information Technology Lund University May 14, 2012 Waqas Ahmad (Lund University) Presentation outline E-band wireless backhaul Beam forming

More information

Self-injection-locked Divide-by-3 Frequency Divider with Improved Locking Range, Phase Noise, and Input Sensitivity

Self-injection-locked Divide-by-3 Frequency Divider with Improved Locking Range, Phase Noise, and Input Sensitivity JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.4.492 ISSN(Online) 2233-4866 Self-injection-locked Divide-by-3 Frequency

More information

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau CMOS RFIC Design for Direct Conversion Receivers Zhaofeng ZHANG Supervisor: Dr. Jack Lau Outline of Presentation Background Introduction Thesis Contributions Design Issues and Solutions A Direct Conversion

More information

Design and Analysis of a Wide Loop-Bandwidth RF Synthesizer Using Ring oscillator For DECT Receiver

Design and Analysis of a Wide Loop-Bandwidth RF Synthesizer Using Ring oscillator For DECT Receiver University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-003 Design and Analysis of a Wide Loop-Bandwidth RF Synthesizer Using Ring oscillator

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 010 Lecture 7: PLL Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project Preliminary Report

More information

A SiGe 6 Modulus Prescaler for a 60 GHz Frequency Synthesizer

A SiGe 6 Modulus Prescaler for a 60 GHz Frequency Synthesizer A SiGe 6 Modulus Prescaler for a 6 GHz Frequency Synthesizer Noorfazila Kamal,YingboZhu, Said F. Al-Sarawi, Neil H.E. Weste,, and Derek Abbott The School of Electrical & Electronic Engineering, University

More information

Tuesday, March 22nd, 9:15 11:00

Tuesday, March 22nd, 9:15 11:00 Nonlinearity it and mismatch Tuesday, March 22nd, 9:15 11:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Last time and today, Tuesday 22nd of March:

More information

The Design and Linearization of 60GHz Injection Locked Power Amplifier

The Design and Linearization of 60GHz Injection Locked Power Amplifier Master s Thesis The Design and Linearization of 60GHz Injection Locked Power Amplifier Luhao Wang Department of Electrical and Information Technology, Faculty of Engineering, LTH, Lund University, 2016.

More information

AVoltage Controlled Oscillator (VCO) was designed and

AVoltage Controlled Oscillator (VCO) was designed and 1 EECE 457 VCO Design Project Jason Khuu, Erik Wu Abstract This paper details the design and simulation of a Voltage Controlled Oscillator using a 0.13µm process. The final VCO design meets all specifications.

More information

Ultra-Low-Power Phase-Locked Loop Design

Ultra-Low-Power Phase-Locked Loop Design Design for MOSIS Educational Program (Research) Ultra-Low-Power Phase-Locked Loop Design Prepared by: M. Shahriar Jahan, Xiaojun Tu, Tan Yang, Junjie Lu, Ashraf Islam, Kai Zhu, Song Yuan, Chandradevi Ulaganathan,

More information

DESIGN OF LOW-VOLTAGE WIDE TUNING RANGE CMOS MULTIPASS VOLTAGE-CONTROLLED RING OSCILLATOR

DESIGN OF LOW-VOLTAGE WIDE TUNING RANGE CMOS MULTIPASS VOLTAGE-CONTROLLED RING OSCILLATOR DESIGN OF LOW-VOLTAGE WIDE TUNING RANGE CMOS MULTIPASS VOLTAGE-CONTROLLED RING OSCILLATOR by Jie Ren Submitted in partial fulfilment of the requirements for the degree of Master of Applied Science at Dalhousie

More information

Design of VCOs in Global Foundries 28 nm HPP CMOS

Design of VCOs in Global Foundries 28 nm HPP CMOS Design of VCOs in Global Foundries 28 nm HPP CMOS Evan Jorgensen 33 rd Annual Microelectronics Conference Rochester Institute of Technology Department of Electrical and Microelectronic Engineering May

More information

Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators

Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 1, JANUARY 2003 141 Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators Yuping Toh, Member, IEEE, and John A. McNeill,

More information

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Mahdi Parvizi a), and Abdolreza Nabavi b) Microelectronics Laboratory, Tarbiat Modares University, Tehran

More information

Frequency Multipliers Design Techniques and Applications

Frequency Multipliers Design Techniques and Applications Frequency Multipliers Design Techniques and Applications Carlos E. Saavedra Associate Professor Electrical and Computer Engineering Queen s University Kingston, Ontario CANADA Outline Introduction applications

More information

433MHz front-end with the SA601 or SA620

433MHz front-end with the SA601 or SA620 433MHz front-end with the SA60 or SA620 AN9502 Author: Rob Bouwer ABSTRACT Although designed for GHz, the SA60 and SA620 can also be used in the 433MHz ISM band. The SA60 performs amplification of the

More information

A NOVEL ARCHITECTURE FOR SUPPLY-REGULATED VOLTAGE-CONTROLLED OSCILLATORS

A NOVEL ARCHITECTURE FOR SUPPLY-REGULATED VOLTAGE-CONTROLLED OSCILLATORS A NOVEL ARCHITECTURE FOR SUPPLY-REGULATED VOLTAGE-CONTROLLED OSCILLATORS A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio

More information

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 17, NO. 2, 98~104, APR. 2017 http://dx.doi.org/10.5515/jkiees.2017.17.2.98 ISSN 2234-8395 (Online) ISSN 2234-8409 (Print) CMOS 120 GHz Phase-Locked

More information

A Random and Systematic Jitter Suppressed DLL-Based Clock Generator with Effective Negative Feedback Loop

A Random and Systematic Jitter Suppressed DLL-Based Clock Generator with Effective Negative Feedback Loop A Random and Systematic Jitter Suppressed DLL-Based Clock Generator with Effective Negative Feedback Loop Seong-Jin An 1 and Young-Shig Choi 2 Department of Electronic Engineering, Pukyong National University

More information

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN 5.4: A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN David Su, Masoud Zargari, Patrick Yue, Shahriar Rabii, David Weber, Brian Kaczynski, Srenik Mehta, Kalwant Singh, Sunetra Mendis, and Bruce Wooley

More information

Process and Temperature Compensated Wideband Injection Locked Frequency Dividers and their Application to Low-Power 2.4-GHz Frequency Synthesizers

Process and Temperature Compensated Wideband Injection Locked Frequency Dividers and their Application to Low-Power 2.4-GHz Frequency Synthesizers University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2007 Process and Temperature Compensated Wideband Injection Locked Frequency

More information

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS FUNCTIONS OF A TRANSMITTER The basic functions of a transmitter are: a) up-conversion: move signal to desired RF carrier frequency.

More information

High-Robust Relaxation Oscillator with Frequency Synthesis Feature for FM-UWB Transmitters

High-Robust Relaxation Oscillator with Frequency Synthesis Feature for FM-UWB Transmitters JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.2, APRIL, 2015 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2015.15.2.202 ISSN(Online) 2233-4866 High-Robust Relaxation Oscillator with

More information

Gert Veale / Christo Nel Grintek Ewation

Gert Veale / Christo Nel Grintek Ewation Phase noise in RF synthesizers Gert Veale / Christo Nel Grintek Ewation Introduction & Overview Where are RF synthesizers used? What is phase noise? Phase noise eects Classic RF synthesizer architecture

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design VI. Phase-Locked Loops VI-1 Outline Introduction Basic Feedback Loop Theory Circuit Implementation VI-2 What is a PLL? A PLL is a negative feedback system where an oscillatorgenerated signal is phase and

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers Ted Johansson, EKS, ISY ted.johansson@liu.se Overview 2 Razavi: Chapter 6.1-6.3, pp. 343-398. Lee: Chapter 13. 6.1 Mixers general

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.3

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.3 ISSCC 2003 / SESSION 10 / HIGH SPEE BUILING BLOCKS / PAPER 10.3 10.3 A 2.5 to 10GHz Clock Multiplier Unit with 0.22ps RMS Jitter in a 0.18µm CMOS Technology Remco C.H. van de Beek 1, Cicero S. Vaucher

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 7: Phase Detector Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements & Agenda HW2 is due Oct 6 Exam

More information

Tuesday, March 29th, 9:15 11:30

Tuesday, March 29th, 9:15 11:30 Oscillators, Phase Locked Loops Tuesday, March 29th, 9:15 11:30 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Last time and today, Tuesday 29th of March:

More information

A 3 TO 30 MHZ HIGH-RESOLUTION SYNTHESIZER CONSISTING OF A DDS, DIVIDE-AND-MIX MODULES, AND A M/N SYNTHESIZER. Richard K. Karlquist

A 3 TO 30 MHZ HIGH-RESOLUTION SYNTHESIZER CONSISTING OF A DDS, DIVIDE-AND-MIX MODULES, AND A M/N SYNTHESIZER. Richard K. Karlquist A 3 TO 30 MHZ HIGH-RESOLUTION SYNTHESIZER CONSISTING OF A DDS, -AND-MIX MODULES, AND A M/N SYNTHESIZER Richard K. Karlquist Hewlett-Packard Laboratories 3500 Deer Creek Rd., MS 26M-3 Palo Alto, CA 94303-1392

More information

Michael S. McCorquodale, Ph.D. Founder and CTO, Mobius Microsystems, Inc.

Michael S. McCorquodale, Ph.D. Founder and CTO, Mobius Microsystems, Inc. Self-Referenced, Trimmed and Compensated RF CMOS Harmonic Oscillators as Monolithic Frequency Generators Integrating Time Michael S. McCorquodale, Ph.D. Founder and CTO, Mobius Microsystems, Inc. 2008

More information

MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator

MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator Bendik Kleveland, Carlos H. Diaz 1 *, Dieter Vook 1, Liam Madden 2, Thomas H. Lee, S. Simon Wong Stanford University, Stanford, CA 1 Hewlett-Packard

More information

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs Murat Demirkan* Solid-State Circuits Research Laboratory University of California, Davis *Now with Agilent Technologies, Santa Clara, CA 03/20/2008

More information

Designing CMOS Wireless System-on-a-chip

Designing CMOS Wireless System-on-a-chip Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications Santa Clara, California Santa Clara SSCS (c) D. Su Santa Clara SSCS September 2009 p.1 Outline Introduction

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

Something More We Should Know About VCOs

Something More We Should Know About VCOs Something More We Should Know About VCOs Name: Yung-Chung Lo Advisor: Dr. Jose Silva-Martinez AMSC-TAMU 1 Outline Noise Analysis and Models of VCOs Injection Locking Techniques Quadrature VCOs AMSC-TAMU

More information

The Effect of Substrate Noise on VCO Performance

The Effect of Substrate Noise on VCO Performance (RTU4A-1) The Effect of Substrate Noise on VCO Performance Nisha Checka, David D. Wentzloff, Anantha Chandrakasan, Rafael Reif Microsystems Technology Laboratory, MIT 60 Vassar St. Rm. 39-625 Cambridge,

More information