6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators"

Transcription

1 6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott

2 VCO Design for Narrowband Wireless Systems From Antenna and Bandpass Filter Z in PC board Mixer trace RF in IF out Z Package o LNA To Filter Interface Reference Frequency Frequency Synthesizer VCO LO signal Design Issues - Tuning Range need to cover all frequency channels - Noise impacts receiver sensitivity performance - Power want low power dissipation - Isolation want to minimize noise pathways into VCO - Sensitivity to process/temp variations need to make it manufacturable in high volume

3 VCO Design For Broadband High Speed Data Links From Broadband Transmitter PC board trace Z o Package Interface Z in Amp In Clock and Data Recovery Data Clk Data Out Data In Phase Detector Loop Filter Clk Out VCO Design Issues - Same as wireless, but: Required noise performance is often less stringent Tuning range is often narrower

4 Popular VCO Structures VCO Amp LC oscillator -R amp V in C L R p Ring oscillator V in -1 LC Oscillator: low phase noise, large area Ring Oscillator: easy to integrate, higher phase noise

5 Barkhausen s Criteria for Oscillation x = 0 e H(jw) y Barkhausen Criteria e(t) Closed loop transfer function Asin(w o t) Self-sustaining oscillation at frequency ω o if y(t) H(jw o ) = 1 Asin(w o t) - Amounts to two conditions: Gain = 1 at frequency ω o Phase = n360 degrees (n = 0,1,2, ) at frequency ω o

6 Example 1: Ring Oscillator t (or Φ) A B C A A B Gain is set to 1 by saturating characteristic of inverters A Odd number of stages to prevent stable DC operating point Phase equals 360 degrees at frequency of oscillation (180 from inversion, another 180 from gate delays) - Assume N stages each with phase shift Φ C T - Alternately, N stages with delay t

7 Further Info on Ring Oscillators Due to their relatively poor phase noise performance, ring oscillators are rarely used in RF systems - They are used quite often in high speed data links, - We will focus on LC oscillators in this lecture Some useful info on CMOS ring oscillators - Maneatis et. al., Precise Delay Generation Using Coupled Oscillators, JSSC, Dec 1993 (look at pp for delay cell description) - Todd Weigandt s PhD thesis

8 Example 2: Resonator-Based Oscillator Z(jw) -1 V x G m V x R p C p L p V x 0-1 -G m Z(jw) Barkhausen Criteria for oscillation at frequency ω o : - Assuming G m is purely real, Z(jω o ) must also be purely real

9 A Closer Look At Resonator-Based Oscillator R p 0 G m Z(jw) Z(jw) 0 90 o 0 o Z(jw) For parallel resonator at resonance - Looks like resistor (i.e., purely real) at resonance Phase condition is satisfied -90 o Magnitude condition achieved by setting G m R p = 1 w o 10 w o 10w o w

10 Impact of Different G m Values jw S-plane Open Loop Resonator Poles and Zero Increasing G m R p σ Locus of Closed Loop Pole Locations Root locus plot allows us to view closed loop pole locations as a function of open loop poles/zero and open loop gain (G m R p ) - As gain (G m R p ) increases, closed loop poles move into right half S-plane

11 Impact of Setting G m too low G m R p < 1 jw S-plane Closed Loop Step Response Open Loop Resonator Poles and Zero σ Locus of Closed Loop Pole Locations Closed loop poles end up in the left half S-plane - Underdamped response occurs Oscillation dies out

12 Impact of Setting G m too High Open Loop Resonator Poles and Zero jw S-plane G m R p > 1 σ Closed Loop Step Response Locus of Closed Loop Pole Locations Closed loop poles end up in the right half S-plane - Unstable response occurs Waveform blows up!

13 Setting G m To Just the Right Value jw G m R p = 1 S-plane Closed Loop Step Response Open Loop Resonator Poles and Zero σ Locus of Closed Loop Pole Locations Closed loop poles end up on jw axis - Oscillation maintained Issue G m R p needs to exactly equal 1 - How do we achieve this in practice?

14 Amplitude Feedback Loop Oscillator Output Adjustment of G m Peak Detector Desired Peak Value One thought is to detect oscillator amplitude, and then adjust G m so that it equals a desired value - By using feedback, we can precisely achieve G m R p = 1 Issues - Complex, requires power, and adds noise

15 Leveraging Amplifier Nonlinearity as Feedback V x -G m 0-1 Z(jw) I x V x (w) A 0 w o W I x (w) G m A 0 w o 2w o 3w o W Practical transconductance amplifiers have saturating characteristics - Harmonics created, but filtered out by resonator - Our interest is in the relationship between the input and the fundamental of the output

16 Amplifier Nonlinearity as Amplitude Control As input amplitude is increased - Effective gain from input to fundamental of output drops - Amplitude feedback occurs! (G m R p = 1 in steady-state)

17 One-Port View of Resonator-Based Oscillators Z active Z res Active Negative Resistance Generator Resonator Active Negative Resistance Z active Z res Resonator 1 -G m = -R p R p C p L p Convenient for intuitive analysis Here we seek to cancel out loss in tank with a negative resistance element - To achieve sustained oscillation, we must have

18 One-Port Modeling Requires Parallel RLC Network Since VCO operates over a very narrow band of frequencies, we can always do series to parallel transformations to achieve a parallel network for analysis C s L s R p C p L p R sc R sl - Warning in practice, RLC networks can have secondary (or more) resonant frequencies, which cause undesirable behavior Equivalent parallel network masks this problem in hand analysis Simulation will reveal the problem

19 VCO Example Negative Resistance Oscillator L 1 L 2 Include loss in inductors and capacitors R L1 L 1 R L2 L 2 C 1 M 1 V s M 2 C 2 C 1 M 1 M 2 C 2 I bias R C1 I bias V s R C2 This type of oscillator structure is quite popular in current CMOS implementations - Advantages Simple topology Differential implementation (good for feeding differential circuits) Good phase noise performance can be achieved

20 Analysis of Negative Resistance Oscillator (Step 1) R L1 R L2 R p1 C p1 L p1 L p2 C p2 R p2 L 1 L 2 C 1 R C1 M 1 V s M 2 C 2 R C2 Narrowband parallel RLC model for tank M 1 I bias V s M 2 I bias Derive a parallel RLC network that includes the loss of the tank inductor and capacitor - Typically, such loss is dominated by series resistance in the inductor

21 Analysis of Negative Resistance Oscillator (Step 2) R p1 C p1 L p1 R p1 C p1 L p1 R p1 C p1 L p1 M 1 M 2-1 M 1 1 -G m1 V s I bias Split oscillator circuit into half circuits to simplify analysis - Leverages the fact that we can approximate V s as being incremental ground (this is not quite true, but close enough) Recognize that we have a diode connected device with a negative transconductance value - Replace with negative resistor Note: G m is large signal transconductance value

22 Design of Negative Resistance Oscillator R p1 C p1 L p1 L p2 C p2 R p2 R p1 C p1 L p1 A M 1 M 2 A 1 -G m1 V s G m1 I bias g m1 G m1 R p1 =1 Design tank components to achieve high Q - Resulting R p value is as large as possible Choose bias current (I bias ) for large swing (without going far into G m saturation) - We ll estimate swing as a function of I bias shortly Choose transistor size to achieve adequately large g m1 - Usually twice as large as 1/R p1 to guarantee startup A

23 Calculation of Oscillator Swing: Max. Sinusoidal Oscillation R p1 C p1 L p1 L p2 C p2 R p2 A I 1 (t) I 2 (t) A M 1 V s M 2 I bias If we assume the amplitude is large, I bias is fully steered to one side at the peak and the bottom of the sinusoid:

24 Calculation of Oscillator Swing: Squarewave Oscillation If amplitude is very large, we can assume I 1 (t) is a square wave - We are interested in determining fundamental component (DC and harmonics filtered by tank) I 1 (t) I bias /2 I 1 (f) I bias I bias /2 T W=T/2 - Fundamental component is T t 1 3π 1 π I bias I bias 1 T 1 W f - Resulting oscillator amplitude

25 Variations on a Theme Bottom-biased NMOS Top-biased NMOS Top-biased NMOS and PMOS I bias L 1 L 2 I bias M 3 M 4 C 1 M 1 M 2 C 2 L 1 L 2 L d V s I bias C 1 M 1 M 2 C 2 C 1 M 1 M 2 C 2 Biasing can come from top or bottom Can use either NMOS, PMOS, or both for transconductor - Use of both NMOS and PMOS for coupled pair would appear to achieve better phase noise at a given power dissipation See Hajimiri et. al, Design Issues in CMOS Differential LC Oscillators, JSSC, May 1999 and Feb, 2000 (pp )

26 Colpitts Oscillator L V bias M 1 C 1 V 1 I bias C 2 Carryover from discrete designs in which single-ended approaches were preferred for simplicity - Achieves negative resistance with only one transistor - Differential structure can also be implemented, though Good phase noise can be achieved, but not apparent there is an advantage of this design over negative resistance design for CMOS applications

27 Analysis of Cap Transformer used in Colpitts Voltage drop across R L is reduced by capacitive voltage divider - Assume that impedances of caps are less than R L at resonant frequency of tank (simplifies analysis) Ratio of V 1 to set by caps and not R L Power conservation leads to transformer relationship shown (See Lecture 4)

28 Simplified Model of Colpitts Purpose of cap transformer - Reduces loading on tank - Reduces swing at source node (important for bipolar version) Transformer ratio set to achieve best noise performance

29 Design of Colpitts Oscillator Design tank for high Q Choose bias current (I bias ) for large swing (without going far into G m saturation) Choose transformer ratio for best noise - Rule of thumb: choose N = 1/5 according to Tom Lee Choose transistor size to achieve adequately large g m1

30 Calculation of Oscillator Swing as a Function of I bias I 1 (t) consists of pulses whose shape and width are a function of the transistor behavior and transformer ratio - Approximate as narrow square wave pulses with width W I 1 (t) I bias I bias I 1 (f) W average = I bias - Fundamental component is T T t 1 T 1 W f - Resulting oscillator amplitude

31 Clapp Oscillator L L large C 3 V bias M 1 C 1 1/G m V 1 I bias C 2 Same as Colpitts except that inductor portion of tank is isolated from the drain of the device - Allows inductor voltage to achieve a larger amplitude without exceeded the max allowable voltage at the drain Good for achieving lower phase noise

32 Simplified Model of Clapp Oscillator Looks similar to Colpitts model - Be careful of parasitic resonances!

33 Hartley Oscillator C L 2 V 1 V bias M 1 L 1 C big I bias Same as Colpitts, but uses a tapped inductor rather than series capacitors to implement the transformer portion of the circuit - Not popular for IC implementations due to the fact that capacitors are easier to realize than inductors

34 Simplified Model of Hartley Oscillator C L 2 V 1 R p C C L 1 +L 2 R p 1/G m N 2 V bias M 1 L 1 C big i d1 M 1 v 1 v out L 1 +L 2 1/G m N 2 v out -G m Nv out I bias Nv out N= L 2 L 1 +L 2 C L 1 +L 2 R p 1/G m N 2 Similar to Colpitts, again be wary of parasitic resonances v out -1/G m N

35 Integrated Resonator Structures Inductor and capacitor tank - Lateral caps have high Q (> 50) - Spiral inductors have moderate Q (5 to 10), but completely integrated and have tight tolerance (< ± 10%) - Bondwire inductors have high Q (> 40), but not as integrated and have poor tolerance (> ± 20%) - Note: see Lecture 6 for more info on these Lateral Capacitor Spiral Inductor Bondwire Inductor A A package A A B die C 1 L m B B B

36 Integrated Resonator Structures Integrated transformer - Leverages self and mutual inductance for resonance to achieve higher Q - See Straayer et. al., A low-noise transformer-based 1.7 GHz CMOS VCO, ISSCC 2002, pp A B C par1 k C D L 1 L 2 C C par2 D A B

37 Quarter Wave Resonator λ 0 /4 Z L y x Z(λ 0 /4) z z L 0 Impedance calculation (from Lecture 4) - Looks like parallel LC tank! Benefit very high Q can be achieved with fancy dielectric Negative relatively large area (external implementation in the past), but getting smaller with higher frequencies!

38 Other Types of Resonators Quartz crystal - Very high Q, and very accurate and stable resonant frequency Confined to low frequencies (< 200 MHz) Non-integrated - Used to create low noise, accurate, reference oscillators SAW devices - Wide range of frequencies, cheap (see Lecture 9) MEMS devices - Cantilever beams promise high Q, but non-tunable and haven t made it to the GHz range, yet, for resonant frequency - FBAR Q > 1000, but non-tunable and poor accuracy - Other devices are on the way!

6.976 High Speed Communication Circuits and Systems Lecture 11 Voltage Controlled Oscillators

6.976 High Speed Communication Circuits and Systems Lecture 11 Voltage Controlled Oscillators 6.976 High Speed Communication Circuits and Systems Lecture 11 Voltage Controlled Oscillators Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott VCO Design for Wireless

More information

Chapter 13 Oscillators and Data Converters

Chapter 13 Oscillators and Data Converters Chapter 3 Oscillators and Data Converters 3. General Considerations 3.2 Ring Oscillators 3.3 LC Oscillators 3.4 Phase Shift Oscillator 3.5 Wien-Bridge Oscillator 3.6 Crystal Oscillators 3.7 Chapter Summary

More information

Chapter 13 Oscillators and Data Converters

Chapter 13 Oscillators and Data Converters Chapter 13 Oscillators and Data Converters 13.1 General Considerations 13.2 Ring Oscillators 13.3 LC Oscillators 13.4 Phase Shift Oscillator 13.5 Wien-Bridge Oscillator 13.6 Crystal Oscillators 13.7 Chapter

More information

Lecture 20: Passive Mixers

Lecture 20: Passive Mixers EECS 142 Lecture 20: Passive Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture 20 p.

More information

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers 6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers Massachusetts Institute of Technology February 17, 2005 Copyright 2005

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 8 & 9: Oscillators

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 8 & 9: Oscillators TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 8 & 9: Oscillators Ted Johansson, EKS, ISY ted.johansson@liu.se Overview 2 Razavi: Chapter 8, pp. 505-532, 544-551, 491-498. 8.1 Performance Parameters

More information

High Speed Communication Circuits and Systems Lecture 14 High Speed Frequency Dividers

High Speed Communication Circuits and Systems Lecture 14 High Speed Frequency Dividers High Speed Communication Circuits and Systems Lecture 14 High Speed Frequency Dividers Michael H. Perrott March 19, 2004 Copyright 2004 by Michael H. Perrott All rights reserved. 1 High Speed Frequency

More information

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi 2.1 INTRODUCTION An electronic circuit which is designed to generate a periodic waveform continuously at

More information

CHAPTER 3: OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS

CHAPTER 3: OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS CHAPTER 3: OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS In the design of electronic systems, the need frequently arises for signals having prescribed standard waveforms (e.g., sinusoidal, square, triangle,

More information

ISSCC 2002 / SESSION 17 / ADVANCED RF TECHNIQUES / 17.2

ISSCC 2002 / SESSION 17 / ADVANCED RF TECHNIQUES / 17.2 ISSCC 2002 / SESSION 17 / ADVANCED RF TECHNIQUES / 17.2 17.2 A CMOS Differential Noise-Shifting Colpitts VCO Roberto Aparicio, Ali Hajimiri California Institute of Technology, Pasadena, CA Demand for higher

More information

Fully Integrated Low Phase Noise LC VCO. Desired Characteristics of VCOs

Fully Integrated Low Phase Noise LC VCO. Desired Characteristics of VCOs Fully Integrated ow Phase Noise C VCO AGENDA Comparison with other types of VCOs. Analysis of two common C VCO topologies. Design procedure for the cross-coupled C VCO. Phase noise reduction techniques.

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

Figure 1: Closed Loop System

Figure 1: Closed Loop System SIGNAL GENERATORS 3. Introduction Signal sources have a variety of applications including checking stage gain, frequency response, and alignment in receivers and in a wide range of other electronics equipment.

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

Owner. Dale Nelson. Design Team. Chief Scientist. Business Manager. Dale Nelson. Dale Nelson Dale Nelson. Dale Nelson. Dale Nelson

Owner. Dale Nelson. Design Team. Chief Scientist. Business Manager. Dale Nelson. Dale Nelson Dale Nelson. Dale Nelson. Dale Nelson DHN Integrated Circuit Design Designing Crystal Oscillators Dale Nelson, Ph.D. DHN Integrated Circuit Design Established in Sept. 2005 Design Expertise: Crystal Oscillators Phase Locked Loops General Analog/Mixed

More information

Feedback and Oscillator Circuits

Feedback and Oscillator Circuits Chapter 14 Chapter 14 Feedback and Oscillator Circuits Feedback Concepts The effects of negative feedback on an amplifier: Disadvantage Lower gain Advantages Higher input impedance More stable gain Improved

More information

ECE1352. Term Paper Low Voltage Phase-Locked Loop Design Technique

ECE1352. Term Paper Low Voltage Phase-Locked Loop Design Technique ECE1352 Term Paper Low Voltage Phase-Locked Loop Design Technique Name: Eric Hu Student Number: 982123400 Date: Nov. 14, 2002 Table of Contents Abstract pg. 04 Chapter 1 Introduction.. pg. 04 Chapter 2

More information

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator*

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* WP 23.6 A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* Christopher Lam, Behzad Razavi University of California, Los Angeles, CA New wireless local area network (WLAN) standards have recently emerged

More information

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers 6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication

More information

ISSCC 2004 / SESSION 21/ 21.1

ISSCC 2004 / SESSION 21/ 21.1 ISSCC 2004 / SESSION 21/ 21.1 21.1 Circular-Geometry Oscillators R. Aparicio, A. Hajimiri California Institute of Technology, Pasadena, CA Demand for faster data rates in wireline and wireless markets

More information

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell 1 Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell Yee-Huan Ng, Po-Chia Lai, and Jia Ruan Abstract This paper presents a GPS receiver front end design that is based on the single-stage quadrature

More information

Case Study: Osc2 Design of a C-Band VCO

Case Study: Osc2 Design of a C-Band VCO MICROWAVE AND RF DESIGN Case Study: Osc2 Design of a C-Band VCO Presented by Michael Steer Reading: Chapter 20, 20.5,6 Index: CS_Osc2 Based on material in Microwave and RF Design: A Systems Approach, 2

More information

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 2014 ISSN (online): 2321-0613 A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power

More information

6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers

6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers 6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers Massachusetts Institute of Technology February 24, 2005 Copyright 2005 by Hae-Seung Lee and Michael H. Perrott High

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

NEW WIRELESS applications are emerging where

NEW WIRELESS applications are emerging where IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 4, APRIL 2004 709 A Multiply-by-3 Coupled-Ring Oscillator for Low-Power Frequency Synthesis Shwetabh Verma, Member, IEEE, Junfeng Xu, and Thomas H. Lee,

More information

High Speed Communication Circuits and Systems Lecture 10 Mixers

High Speed Communication Circuits and Systems Lecture 10 Mixers High Speed Communication Circuits and Systems Lecture Mixers Michael H. Perrott March 5, 24 Copyright 24 by Michael H. Perrott All rights reserved. Mixer Design or Wireless Systems From Antenna and Bandpass

More information

Chapter.8: Oscillators

Chapter.8: Oscillators Chapter.8: Oscillators Objectives: To understand The basic operation of an Oscillator the working of low frequency oscillators RC phase shift oscillator Wien bridge Oscillator the working of tuned oscillator

More information

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo-

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo- From July 2005 High Frequency Electronics Copyright 2005 Summit Technical Media Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques By Andrei Grebennikov M/A-COM Eurotec Figure

More information

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1 19-1673; Rev 0a; 4/02 EVALUATION KIT MANUAL AVAILABLE 45MHz to 650MHz, Integrated IF General Description The are compact, high-performance intermediate-frequency (IF) voltage-controlled oscillators (VCOs)

More information

Understanding VCO Concepts

Understanding VCO Concepts Understanding VCO Concepts OSCILLATOR FUNDAMENTALS An oscillator circuit can be modeled as shown in Figure 1 as the combination of an amplifier with gain A (jω) and a feedback network β (jω), having frequency-dependent

More information

Berkeley. Mixers: An Overview. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad

Berkeley. Mixers: An Overview. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad Berkeley Mixers: An Overview Prof. Ali M. U.C. Berkeley Copyright c 2014 by Ali M. Mixers Information PSD Mixer f c The Mixer is a critical component in communication circuits. It translates information

More information

Feedback (and control) systems

Feedback (and control) systems Feedback (and control) systems Stability and performance Copyright 2007-2008 Stevens Institute of Technology - All rights reserved 22-1/23 Behavior of Under-damped System Y() s s b y 0 M s 2n y0 2 2 2

More information

V out A v. Feedback Circuit

V out A v. Feedback Circuit Oscillators V out A v Feedback Circuit Figure.: Positive Feed Back The feedback network in an oscillator an input to the amplifier, which in turn an input to the feedback network. Since positive feedback

More information

Dr.-Ing. Ulrich L. Rohde

Dr.-Ing. Ulrich L. Rohde Dr.-Ing. Ulrich L. Rohde Noise in Oscillators with Active Inductors Presented to the Faculty 3 : Mechanical engineering, Electrical engineering and industrial engineering, Brandenburg University of Technology

More information

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY Oscillators Table of Contents Lesson One Lesson Two Lesson Three Introduction to Oscillators...3 Flip-Flops...19 Logic Clocks...37 Lesson Four Filters and Waveforms...53 Lesson Five Troubleshooting Oscillators...69

More information

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004 Designing a 960 MHz CMOS LNA and Mixer using ADS EE 5390 RFIC Design Michelle Montoya Alfredo Perez April 15, 2004 The University of Texas at El Paso Dr Tim S. Yao ABSTRACT Two circuits satisfying the

More information

Preface... Chapter 1. Nonlinear Two-terminal Devices... 1

Preface... Chapter 1. Nonlinear Two-terminal Devices... 1 Preface........................................... xi Chapter 1. Nonlinear Two-terminal Devices.................... 1 1.1. Introduction..................................... 1 1.2. Example of a nonlinear

More information

Test Your Understanding

Test Your Understanding 074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switched-capacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the

More information

OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS

OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS OSILLATORS AND WAVEFORM-SHAPING IRUITS Signals having prescribed standard waveforms (e.g., sinusoidal, square, triangle, pulse, etc). To generate sinusoidal waveforms: o Positive feedback loop with non-linear

More information

High Frequency VCO Design and Schematics

High Frequency VCO Design and Schematics High Frequency VCO Design and Schematics Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul/ This note will review the process by which VCO (Voltage Controlled Oscillator) designers choose their oscillator

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT III TUNED AMPLIFIERS PART A (2 Marks) 1. What is meant by tuned amplifiers? Tuned amplifiers are amplifiers that are designed to reject a certain

More information

Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent

Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent feedback path. Figure 12-2 (p. 579) General circuit for a transistor oscillator. The transistor

More information

Fully integrated CMOS transmitter design considerations

Fully integrated CMOS transmitter design considerations Semiconductor Technology Fully integrated CMOS transmitter design considerations Traditionally, multiple IC chips are needed to build transmitters (Tx) used in wireless communications. The difficulty with

More information

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses:

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses: TUNED AMPLIFIERS 5.1 Introduction: To amplify the selective range of frequencies, the resistive load R C is replaced by a tuned circuit. The tuned circuit is capable of amplifying a signal over a narrow

More information

Analog Circuits and Systems

Analog Circuits and Systems Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 31: Waveform Generation 1 Review Phase Locked Loop (self tuned filter) 2 nd order High Q low-pass output phase compared with the input 90 phase

More information

6.776 High Speed Communication Circuits Lecture 11 Noise Figure, Impact of Amplifier Nonlinearities

6.776 High Speed Communication Circuits Lecture 11 Noise Figure, Impact of Amplifier Nonlinearities 6.776 High Speed Communication Circuits Lecture 11 Noise Figure, Impact of Amplifier Nonlinearities Michael Perrott Massachusetts Institute of Technology March 10, 2005 Copyright 2005 by Michael H. Perrott

More information

Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications

Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications M. Ikram Malek, Suman Saini National Institute of technology, Kurukshetra Kurukshetra, India Abstract Many architectures

More information

High Speed Communication Circuits and Systems Lecture 15 VCO Examples Mixers

High Speed Communication Circuits and Systems Lecture 15 VCO Examples Mixers 6. 776 High Speed Communication Circuits and Systems Lecture 15 VCO Examples Mixers Massachusetts Institute o Technology March 31, 2005 Copyright 2005 by Hae-Seung Lee and Michael H. Perrott Voltage Controlled

More information

Feedback Amplifier & Oscillators

Feedback Amplifier & Oscillators 256 UNIT 5 Feedback Amplifier & Oscillators 5.1 Learning Objectives Study definations of positive /negative feedback. Study the camparions of positive and negative feedback. Study the block diagram and

More information

Lecture # 12 Oscillators (LC Circuits)

Lecture # 12 Oscillators (LC Circuits) December 2014 Benha University Faculty of Engineering at Shoubra ECE-312 Electronic Circuits (A) Lecture # 12 Oscillators (LC Circuits) Instructor: Dr. Ahmad El-Banna Agenda The Colpitts Oscillator The

More information

Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators

Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 1, JANUARY 2003 141 Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators Yuping Toh, Member, IEEE, and John A. McNeill,

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune

More information

6.976 High Speed Communication Circuits and Systems Lecture 8 Noise Figure, Impact of Amplifier Nonlinearities

6.976 High Speed Communication Circuits and Systems Lecture 8 Noise Figure, Impact of Amplifier Nonlinearities 6.976 High Speed Communication Circuits and Systems Lecture 8 Noise Figure, Impact of Amplifier Nonlinearities Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott

More information

EMT212 Analog Electronic II. Chapter 4. Oscillator

EMT212 Analog Electronic II. Chapter 4. Oscillator EMT Analog Electronic II Chapter 4 Oscillator Objectives Describe the basic concept of an oscillator Discuss the basic principles of operation of an oscillator Analyze the operation of RC, LC and crystal

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #5 Fall 2011 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 11.9 A Single-Chip Linear CMOS Power Amplifier for 2.4 GHz WLAN Jongchan Kang 1, Ali Hajimiri 2, Bumman Kim 1 1 Pohang University of Science

More information

ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya opovic, University of Colorado, Boulder LECTURE 3 MICROWAVE AMLIFIERS: INTRODUCTION L3.1. TRANSISTORS AS BILATERAL MULTIORTS Transistor

More information

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY 19-1248; Rev 1; 5/98 EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated General Description The combines a low-noise oscillator with two output buffers in a low-cost, plastic surface-mount, ultra-small

More information

A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell

A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell Devi Singh Baghel 1, R.C. Gurjar 2 M.Tech Student, Department of Electronics and Instrumentation, Shri G.S. Institute of

More information

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03 Lecture 010 Introduction to Synthesizers (5/5/03) Page 010-1 LECTURE 010 INTRODUCTION TO FREQUENCY SYNTHESIZERS (References: [1,5,9,10]) What is a Synthesizer? A frequency synthesizer is the means by which

More information

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN OBJECTIVES 1. To design and DC bias the JFET transistor oscillator for a 9.545 MHz sinusoidal signal. 2. To simulate JFET transistor oscillator using MicroCap

More information

Lecture 2: Non-Ideal Amps and Op-Amps

Lecture 2: Non-Ideal Amps and Op-Amps Lecture 2: Non-Ideal Amps and Op-Amps Prof. Ali M. Niknejad Department of EECS University of California, Berkeley Practical Op-Amps Linear Imperfections: Finite open-loop gain (A 0 < ) Finite input resistance

More information

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network Kyle Holzer and Jeffrey S. Walling University of Utah PERFIC Lab, Salt Lake City, UT 84112, USA Abstract Integration

More information

The Hartley Oscillator

The Hartley Oscillator The Hartley Oscillator One of the main disadvantages of the basic LC Oscillator circuit we looked at in the previous tutorial is that they have no means of controlling the amplitude of the oscillations

More information

Expect to be successful, expect to be liked,

Expect to be successful, expect to be liked, Thought of the Day Expect to be successful, expect to be liked, expect to be popular everywhere you go. Oscillators 1 Oscillators D.C. Kulshreshtha Oscillators 2 Need of an Oscillator An oscillator circuit

More information

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 46 CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 3.1 INTRODUCTION The Low Noise Amplifier (LNA) plays an important role in the receiver design. LNA serves as the first block in the RF receiver. It is a critical

More information

Transistor Digital Circuits

Transistor Digital Circuits Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET

More information

WITH advancements in submicrometer CMOS technology,

WITH advancements in submicrometer CMOS technology, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005 881 A Complementary Colpitts Oscillator in CMOS Technology Choong-Yul Cha, Member, IEEE, and Sang-Gug Lee, Member, IEEE

More information

Department of Electrical Engineering and Computer Sciences, University of California

Department of Electrical Engineering and Computer Sciences, University of California Chapter 8 NOISE, GAIN AND BANDWIDTH IN ANALOG DESIGN Robert G. Meyer Department of Electrical Engineering and Computer Sciences, University of California Trade-offs between noise, gain and bandwidth are

More information

Application Note SAW-Components

Application Note SAW-Components Application Note SAW-Components Comparison between negative impedance oscillator (Colpitz oscillator) and feedback oscillator (Pierce structure) App.: Note #13 Author: Alexander Glas EPCOS AG Updated:

More information

IC design for wireless system

IC design for wireless system IC design for wireless system Lecture 6 Dr. Ahmed H. Madian Ahmed.madian@guc.edu.eg 1 outlines Introduction to mixers Mixer metrics Mixer topologies Mixer performance analysis Mixer design issues Dr. Ahmed

More information

Oscillator Principles

Oscillator Principles Oscillators Introduction Oscillators are circuits that generates a repetitive waveform of fixed amplitude and frequency without any external input signal. The function of an oscillator is to generate alternating

More information

Radio Frequency Electronics

Radio Frequency Electronics Radio Frequency Electronics Tuned Amplifiers John Battiscombe Gunn Born in 1928 in Egypt (father was a famous Egyptologist), and was Educated in England Worked at IBM s Thomas J. Watson Research Center

More information

Communication Circuit Lab Manual

Communication Circuit Lab Manual German Jordanian University School of Electrical Engineering and IT Department of Electrical and Communication Engineering Communication Circuit Lab Manual Experiment 3 Crystal Oscillator Eng. Anas Alashqar

More information

Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik

Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik 1 Chapter 10 Feedback Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4. Ch 10: Feedback 5. Ch 11: Output

More information

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT PRADEEP G CHAGASHETTI Mr. H.V. RAVISH ARADHYA Department of E&C Department of E&C R.V.COLLEGE of ENGINEERING R.V.COLLEGE of ENGINEERING Bangalore

More information

AVoltage Controlled Oscillator (VCO) was designed and

AVoltage Controlled Oscillator (VCO) was designed and 1 EECE 457 VCO Design Project Jason Khuu, Erik Wu Abstract This paper details the design and simulation of a Voltage Controlled Oscillator using a 0.13µm process. The final VCO design meets all specifications.

More information

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Mahdi Parvizi a), and Abdolreza Nabavi b) Microelectronics Laboratory, Tarbiat Modares University, Tehran

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

A 3-10GHz Ultra-Wideband Pulser

A 3-10GHz Ultra-Wideband Pulser A 3-10GHz Ultra-Wideband Pulser Jan M. Rabaey Simone Gambini Davide Guermandi Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-136 http://www.eecs.berkeley.edu/pubs/techrpts/2006/eecs-2006-136.html

More information

STABILITY ANALYSIS OF NEGATIVE RESISTANCE-BASED SOURCE COMBINING POWER AMPLIFIERS

STABILITY ANALYSIS OF NEGATIVE RESISTANCE-BASED SOURCE COMBINING POWER AMPLIFIERS STABILITY ANALYSIS OF NEGATIVE RESISTANCE-BASED SOURCE COMBINING POWER AMPLIFIERS A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of

More information

i. At the start-up of oscillation there is an excess negative resistance (-R)

i. At the start-up of oscillation there is an excess negative resistance (-R) OSCILLATORS Andrew Dearn * Introduction The designers of monolithic or integrated oscillators usually have the available process dictated to them by overall system requirements such as frequency of operation

More information

Low Phase Noise Gm-Boosted Differential Gate-to-Source Feedback Colpitts CMOS VCO Jong-Phil Hong, Student Member, IEEE, and Sang-Gug Lee, Member, IEEE

Low Phase Noise Gm-Boosted Differential Gate-to-Source Feedback Colpitts CMOS VCO Jong-Phil Hong, Student Member, IEEE, and Sang-Gug Lee, Member, IEEE IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 11, NOVEMBER 2009 3079 Low Phase Noise Gm-Boosted Differential Gate-to-Source Feedback Colpitts CMOS VCO Jong-Phil Hong, Student Member, IEEE, and Sang-Gug

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

A New Topology of Load Network for Class F RF Power Amplifiers

A New Topology of Load Network for Class F RF Power Amplifiers A New Topology of Load Network for Class F RF Firas Mohammed Ali Al-Raie Electrical Engineering Department, University of Technology/Baghdad. Email: 30204@uotechnology.edu.iq Received on:12/1/2016 & Accepted

More information

EE133 - Prelab 3 The Low-Noise Amplifier

EE133 - Prelab 3 The Low-Noise Amplifier Prelab 3 - EE33 - Prof. Dutton - Winter 2004 EE33 - Prelab 3 The Low-Noise Amplifier Transmitter Receiver Audio Amp XO BNC to ANT BNC to ANT XO CO (LM566) Mixer (SA602) Power Amp LNA Mixer (SA602) IF Amp

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Matsuzawa Lab. Matsuzawa & Okada Lab. Tokyo Institute of Technology A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Kento Kimura, Kenichi Okada and Akira Matsuzawa (WE2C-2) Matsuzawa &

More information

Analysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II)

Analysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II) Analysis and Design of Analog Integrated Circuits Lecture 20 Advanced Opamp Topologies (Part II) Michael H. Perrott April 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Outline of Lecture

More information

Chapter 6. FM Circuits

Chapter 6. FM Circuits Chapter 6 FM Circuits Topics Covered 6-1: Frequency Modulators 6-2: Frequency Demodulators Objectives You should be able to: Explain the operation of an FM modulators and demodulators. Compare and contrast;

More information

Introduction to Microeletromechanical Systems (MEMS) Lecture 12 Topics. MEMS Overview

Introduction to Microeletromechanical Systems (MEMS) Lecture 12 Topics. MEMS Overview Introduction to Microeletromechanical Systems (MEMS) Lecture 2 Topics MEMS for Wireless Communication Components for Wireless Communication Mechanical/Electrical Systems Mechanical Resonators o Quality

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 10.8 10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering

More information

Practical Testing Techniques For Modern Control Loops

Practical Testing Techniques For Modern Control Loops VENABLE TECHNICAL PAPER # 16 Practical Testing Techniques For Modern Control Loops Abstract: New power supply designs are becoming harder to measure for gain margin and phase margin. This measurement is

More information

Low-power design techniques and CAD tools for analog and RF integrated circuits

Low-power design techniques and CAD tools for analog and RF integrated circuits Low-power design techniques and CAD tools for analog and RF integrated circuits Low-power design techniques and CAD tools for analog and RF integrated circuits Contents 1 Practical Harmonic Oscillator

More information

for use Supervisor: on chip

for use Supervisor: on chip Local Oscillator for use in FM Broadcast Radio Receiver ETI 041: Radio Project Supervisor: Göran Jönsson Student: Yelin Wang and Hao Cai Master Program: System on chip Lund University Abstract Oscillator

More information

Design of Low Phase Noise and Wide Tuning Range Voltage Controlled Oscillator for Modern Communication System

Design of Low Phase Noise and Wide Tuning Range Voltage Controlled Oscillator for Modern Communication System RESEARCH ARTICLE OPEN ACCESS Design of Low Phase Noise and Wide Tuning Range Voltage Controlled Oscillator for Modern Communication System Rachita Singh*, Rajat Dixit** *(Department of Electronics and

More information

A 5 GHz DIGITALLY CONTROLLED SYNTHESIZER IN 90NM CMOS

A 5 GHz DIGITALLY CONTROLLED SYNTHESIZER IN 90NM CMOS A 5 GHz DIGITALLY CONTROLLED SYNTHESIZER IN 90NM CMOS By Bill Hamon A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING WASHINGTON

More information