CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau

Size: px
Start display at page:

Download "CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau"

Transcription

1 CMOS RFIC Design for Direct Conversion Receivers Zhaofeng ZHANG Supervisor: Dr. Jack Lau

2 Outline of Presentation Background Introduction Thesis Contributions Design Issues and Solutions A Direct Conversion Pager Receiver Conclusion

3 Research Goal Low Cost Process: CMOS Device is good enough Improved passive components Integration level Minimize external components Minimize IC area and pin numbers Low Power High integration = low power Low power individual block design System architecture is important

4 Heterodyne Receivers High IF: more than 2 down-conversions Best sensitivity Need off-chip image-rejection SAW filters and channel-selection filters Highest cost, high power, low integration Low IF Relaxed image-rejection requirement compared to high-if No DC offset problem Quadrature LO is required Flicker noise may be a problem High integration level, low cost

5 Homodyne Receivers I Pros LNA! Simple architecture! No image problem! No 50ohm interfaces! High integration level! Lowest cost, low power 90º Cons Q! DC offsets! Flicker noise! LO leakage! Even-order distortion

6 Outline of Presentation Background Introduction Thesis Contributions Design Issues and Solutions A Direct Conversion Pager Receiver Conclusion

7 Thesis Contribution (I) On-chip cross-talk and substrate noise was studied and shielding schemes were proposed [RFIC1998, Baltimore]. Flicker noise under switching conditions was studied experimentally for the first time and a simple flicker noise model was proposed [CICC2001, San Diego]. Square-law based harmonic mixing technique was proposed to solve DC offset and LO leakage problem in a CMOS process [RAWCON2000, Denver].

8 Thesis Contribution (II) A lateral bipolar harmonic mixer was developed for solving both DC-offset and flicker noise problem [RAWCON2001, Boston]. A direct-conversion RF front-end was developed [ISCAS2001, Sydney]. Fully-integrated single-chip pager in a CMOS process was demonstrated [ISSCC2001, SFO].

9 Outline of Presentation Thesis Contributions Background Introduction Design Issues and Solutions A Direct Conversion Pager Receiver Conclusion

10 Origin of Problem! DC offsets! Flicker noise! LO leakage! Even-order distortion! Linearity requirement! Noise requirement! IQ mismatch All problems are limited by the mixer design! The mixer: the most critical component! Our research focus!

11 DC Offsets & LO LO Leakage Leakage Zero IF + Offset The offset originates from self-mixing. It can be as large as mv range at the mixer output. It varies with the environment and moving speed of the mobile and changes with time. The maximum bandwidth can be as large as khz range. LO leakage forms an interference to other receivers.

12 Spectrum Illustration Power Narrow Band DC offset Power Broad Band High-pass corner DC Offsets Frequency Frequency Power Flicker noise Frequency Power Signal Frequency Offset-Free

13 Existing Solutions on DC Offset AC coupling or high pass filtering Autozeroing or double sampling Offset cancellation in digital domain Double LO frequency method [ISSCC99] Adaptive dual-loop algorithm combined with the mixer [RAWCON00] Pulse-width-modulation based bipolar harmonic mixer [CICC97] However, these methods are either not so effective or very complicated, or not suitable for CMOS process.

14 Proposed Harmonic Mixing RF Signal LO Leakage f rf f lo =f rf BB Signal DC Offset 0 Conventional RF Signal LO Leakage f lo =f rf /2 f rf 2f lo =f rf BB Signal 0 f lo Our Work

15 Square-law Based Mixer RF Voltage No Coupling Current 2 IF Vrf+ 3V Vrf- Voltage LO Vlo+ Vlo- LO leakage free. Ideally self-mixing free. Current controlled switching. No noise contribution from LO stage.

16 Flicker Noise Reduction 3V Vrf+ I 0 Vlo- Vrf- Vlo+ Flicker noise is proportional to the current. Current injection is used to reduce flicker noise. No noise contribution from current source too.

17 Offset Cancellation Gain (db) TSMC0.35µ >35dB LO Input Power (dbm)

18 Noise Performance Noise 10kHz (db) Injected Current I 0 (µa)

19 How to improve more? However, flicker noise is still too large due to CMOS devices, minimum noise figure achieved is larger than 10kHz for CMOS harmonic mixer. It requires a high gain and low noise LNA to overcome flicker noise while the front-end linearity suffers. For a narrow-band communication system such as FLEX pager, the noise requirement at low frequency is very tough. It is well known that bipolar device is a good candidate to eliminate flicker noise. But, can we do it in a CMOS process and how good is the device? YES!

20 Lateral Bipolar Transistor in a Bulk CMOS Process Base W.T. Holman95 Emitter Gate Emitter P+ N+ Collector Ground Gate Vertical Collector Base Lateral Collector

21 Physical Model of LBJT Gate D. Mac98 Collector M1 Q1 Emitter Base Q3 Q2 Base P-Sub P-Sub Pure LBJT: M1, Q3 off, Q1, Q2 on.

22 Gummel Plot of LBJT TSMC0.35µ β>40 at mas max f T 4GHz

23 LBJT Harmonic Mixer VDD VLO+ M1 M2 VLO- VRF+ Q1 I i Q2 VRF- OUT- OUT+ RL RL

24 Noise Performance Large LO improves noise.

25 Even Order Distortion RF Signal a 1 x+a 2 x 2 +a 3 x 3 + BB Signal Interference IM2 (f 2 -f 1 ) f 1 f 2 f rf 0 It is mainly introduced by layout asymmetry and device mismatch. Since direct-conversion, the intermodulation components IM2 will fall into the demodulated signal spectrum. Therefore, good IIP2 is required for homodyne receivers. It is found that varying the loading resister or voltage bias can compensate the device mismatch and improve IIP2 significantly.

26 IIP2 Improvement Same DC bias IIP2=18dBm Compensation IIP2>40dBm

27 LBJT Mixer Performance Technology VDD Signal Gain DC offset suppression Noise 10kHz 1dB compression point Input-referred IP3 Input-referred IP2 Power consumption TSMC 3M2P 0.35µm 3V +15dB >30dB <18dB >-20dBm >-9dBm >+40dBm <2.2mW

28 Summary on Mixer Flicker noise free, corner frequency is below 10kHz. DC offset free, more than 30dB DC offset suppression is achieved. No LO leakage problem. Sufficient IIP2 after bias compensation. High gain and low power consumption. Complete CMOS process. Suitable for CMOS direct conversion applications.

29 Outline of Presentation Background Introduction Thesis Contributions Design Issues and Solutions A Direct Conversion Pager Receiver Conclusion

30 db Difficulties in FLEX Pager FLEX 6400, 4FSK khz Big Challenges Narrow band modulation Significant energy near DC High pass filtering is not viable DC offset problem Flicker noise is significant 12dB Eb/N0 10 BER High pass corner (Hz) Eb/N0 (db) DC Offset Effect High pass effect

31 4-FSK Pager Receiver AGC LNA 45 VCO RF: Zhaofeng BB: Zhiheng DEMOD AGC Fully differential architecture to reject substrate noise. Harmonic mixers are used to solve time-varying DC offset. Peak detectors are used to cancel static DC offset. High front-end gain and current injection to reduce flicker noise.

32 LNA Non-quasi-static phenomenon makes it unnecessary to do on-chip matching. Off-chip matching by a single inductor and a balun. S11 930MHz Both on-chip and off-chip inductive loads were tried.

33 Double Balanced Mixer Improve the linearity; Provide constant impedance to LNA; Current injection provides more than 20dB flicker noise reduction.

34 Ring Oscillator Half RF frequency, Provide 45 phase.

35 AGC Gain: -14.5dB~18.6dB. The linear resistor R0 is used to improve the linearity. The signal level is sensed by the peak detector.

36 Static DC Offset Cancellation Zero-IF 4-FSK Signal Peak Detector Fmin 200Hz

37 Low Pass Filter 0-20 Gain [db] Frequency [khz] 5 th order elliptic gyrator-c filter Pass-band gain 6.2dB, ripple 0.5dB ( 9kHz) Stop-band attenuation 63dB ( 17.8kHz)

38 Noise Performance Front End Base Band

39 Performance Summary Front-End Off-chip ind On-chip ind Pager receiver with off-chip ind RF/BB gain: 51.13dB 40.33dB Maximum Gain: 62dB IIP3: 11.5dB 5.8dB -26dBm 24.0dB 15.0dB -20.7dBm Noise 14.5dB Overall DC offset at LPF output: <1mV (Signal: 400mV) IIP2: -10dBm -5.6dBm Power dissipation: 58mW Operating frequency: 930.1MHz Technology: TSMC0.35µm 4M2P LO frequency: 465MHz Die area: 4.6 mm 2 IQ gain mismatch: < 0.3dB Baseband (Zhiheng) IQ phase mismatch: < 5 RF/BB over LO/BB: > 54dB Self-mixing free Input matching: < -20dB Power dissipation: 52.76mW AGC gain: -14.5dB~18.6dB LPF: Pass-band gain-6.2db, ripple 0.5dB ( 9kHz) Stop-band attenuation 63dB ( 17.8kHz) Offset cancellation: <2mV (under ±100mV input offset) Input Referred Noise: 600nV/ 10kHz Clock Recovery: Capture range > 550Hz Power dissipation: 5.4mW (including all testing buffers)

40 OSC DEMOD LNA OSC LNA Die Photo AGC LNA 45 VCO DEMOD AGC RF Front-End Mixer Mixer AGC LPF Base Band Circuitry [Zhiheng] RF Front-End

41 Summary on Pager Receiver Feasibility of direct conversion has been demonstrated. Proposed harmonic mixing technique solves selfmixing induced DC offset problem successfully. With the help of static DC offset cancellation, the total DC offset is less than 1mV at the receiver output. The modified ZIFZCD 4-FSK demodulator functions correctly. A 4-FSK FLEX pager receiver in a single chip has been implemented successfully.

42 Outline of Presentation Background Introduction Thesis Contributions Design Issues and Solutions A Direct Conversion Pager Receiver Conclusion

43 Conclusion Circuit design for direct-conversion has been discussed. DC offset: more than 30dB improvement LO leakage: no longer a problem Flicker noise: corner frequency is less than khz due to lateral bipolar device. IIP2: larger than +40dBm after bias compensation. System on chip has been successfully demonstrated using CMOS direct conversion architecture. Crosstalk has been studied and can be improved more than 20dB with proposed shielding method. Flicker noise under switching has been studied and a flicker noise model has been proposed.

44 Crosstalk & Substrate Noise Signal Leakage Switching noise Substrate noise Device noise Interference Inductive coupling Capacitive coupling Inductor induced noise Line-line crosstalk Very bad for high-level integration!

45 Crosstalk in RFPCB Near end crosstalk S21 (db) Thickness-distance ratio (h/d)

46 Crosstalk in RFIC Near end crosstalk S21 (db) Separation distance (µm)

47 Shielding Schemes Air w d w SiO2 P- Epi (~20 Ω-cm) Method I P+ Bulk (~0.05 Ω-cm) Air w d w P- Epi (~20 Ω-cm) Method II P+ Bulk (~0.05 Ω-cm) Air w d w Air w d w P- Epi (~20 Ω-cm) Method III P+ Bulk (~0.05 Ω-cm) P- Epi (~20 Ω-cm) Method IV P+ Bulk (~0.05 Ω-cm)

48 Crosstalk Comparison Near end crosstalk S21 (db) Separation distance (µm) No shielding Method I Method II Method III Method IV

49 Summary on Crosstalk Crosstalk in RFIC: about -30~-40dB at GHz range. Separation is pointless. Proper shielding provides excellent crosstalk immunity, crosstalk can be improved by 20~40dB. Receiver gain can be improved due to reduced feedback effect through substrate. Penalty: One metal layer may be sacrificed.

50 Flicker Noise CMOS is the best candidate for low cost and high integration, but flicker noise may be a problem in homodyne receivers, how to reduce it? Flicker noise under static bias was well studied and modeled, but how about under switching conditions, such as in mixers? Will this correlated noise respond to the switching signal? If yes, how and how much? The flicker noise performance usually depends on measurements. Is it possible to optimize the flicker noise in the circuits without any measurements?

51 Measurement Setup Dynamic Signal Analyzer 3V RL 512 SR780 RL /2 DS345 84/2

52 Methodology Complicated Non-linear System Assumption Frequency Independent Non-linear System Enough Output Bandwidth High Frequency Switching Low Frequency Switching + Frequency Dependent Linear System Low Pass Filtering Solution Fortunately, the assumption is true, we will see.

53 Output PSD (dbm/hz) Fast Switching (Switching frequency > 100kHz) Switching frequency independent. 1MHz Switching 500kHz Switching 200kHz Switching Square Wave VGS=0.6V VPK=0.5V Frequency (KHz)

54 Slow Switching (Switching frequency < 100kHz) -132 Output PSD (dbm/hz) Frequency (KHz)

55 Base Band Output Noise Output 1kHz (dbm/hz) VGS(V)

56 Proposed Noise Model 1/f v 2 G(t)v G( t) = k =0 g k cos( kω t) 0 Gate voltage noise is used. Linearized model: AM modulations and noise superposition. Valid for most cases except LIN-OFF switching! Where g 0 reflects base band noise, g 1 reflects noise at switching frequency. They are important to mixers and VCOs.

57 Model Verification (With different switching) Noise ratio g 0 /g 1 (db) Line: Simulation Symbol: Measured Swing amplitude VPK (V) 0.6

58 Summary on Flicker Noise Flicker noise mechanism under switching conditions has been explored experimentally. Flicker noise should be modeled as a gate voltage noise. Not-so-hard switched flicker noise can be modeled by AM modulations and output noise is the superposition of up-converted flicker noise. Noise optimization through simple simulations becomes possible with the proposed model. Results can be used directly in harmonic mixer design.

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR DESCRIPTION QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A LT5517 Demonstration circuit 678A is a 40MHz to 900MHz Direct Conversion Quadrature Demodulator featuring the LT5517. The LT 5517 is a direct

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

Analog and RF circuit techniques in nanometer CMOS

Analog and RF circuit techniques in nanometer CMOS Analog and RF circuit techniques in nanometer CMOS Bram Nauta University of Twente The Netherlands http://icd.ewi.utwente.nl b.nauta@utwente.nl UNIVERSITY OF TWENTE. Outline Introduction Balun-LNA-Mixer

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers ADI 2006 RF Seminar Chapter II RF/IF Components and Specifications for Receivers 1 RF/IF Components and Specifications for Receivers Fixed Gain and Variable Gain Amplifiers IQ Demodulators Analog-to-Digital

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

Low Distortion Mixer AD831

Low Distortion Mixer AD831 a FEATURES Doubly-Balanced Mixer Low Distortion +2 dbm Third Order Intercept (IP3) + dbm 1 db Compression Point Low LO Drive Required: dbm Bandwidth MHz RF and LO Input Bandwidths 2 MHz Differential Current

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Design of TSV-Based 3D IC Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues

More information

CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz

CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz By : Dhruvang Darji 46610334 Transistor integrated Circuit A Dual-Band Receiver implemented with a weaver architecture with two frequency stages operating

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS Introduction As wireless system designs have moved from carrier frequencies at approximately 9 MHz to wider bandwidth applications like Personal Communication System (PCS) phones at 1.8 GHz and wireless

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

NTE7047 Integrated Circuit TV Color Small Signal Sub System

NTE7047 Integrated Circuit TV Color Small Signal Sub System NTE7047 Integrated Circuit TV Color Small Signal Sub System Features: Vision IF Amplifier with Synchronous Demodulator Automatic Gain Control (AGC) Detector Suitable for Negative Modulation AGC Tuner Automatic

More information

CMOS Radio Frequency Integrated Circuit Design for Direct Conversion Receivers

CMOS Radio Frequency Integrated Circuit Design for Direct Conversion Receivers CMOS Radio Frequency Integrated Circuit Design for Direct Conversion Receivers A thesis submitted to The Hong Kong University of Science and Technology in partial fulfillment of the requirements for the

More information

PART 20 IF_IN LO_V CC 10 TANK 11 TANK 13 LO_GND I_IN 5 Q_IN 6 Q_IN 7 Q_IN 18 V CC

PART 20 IF_IN LO_V CC 10 TANK 11 TANK 13 LO_GND I_IN 5 Q_IN 6 Q_IN 7 Q_IN 18 V CC 19-0455; Rev 1; 9/98 EALUATION KIT AAILABLE 3, Ultra-Low-Power Quadrature General Description The combines a quadrature modulator and quadrature demodulator with a supporting oscillator and divide-by-8

More information

PVD5870R. IQ Demodulator/ Modulator IQ Demodulator/ Modulator

PVD5870R. IQ Demodulator/ Modulator IQ Demodulator/ Modulator PVD5870R IQ Demodulator/ Modulator IQ Demodulator/ Modulator The PVD5870R is a direct conversion quadrature demodulator designed for communication systems requiring The PVD5870R is a direct conversion

More information

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator 19-1296; Rev 2; 1/1 EVALUATION KIT MANUAL FOLLOWS DATA SHEET Low-Voltage IF Transceiver with General Description The is a highly integrated IF transceiver for digital wireless applications. It operates

More information

1GHz low voltage LNA, mixer and VCO

1GHz low voltage LNA, mixer and VCO DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance low-power communication systems from 800-1200MHz. The low-noise preamplifier has a

More information

Mixer. General Considerations V RF VLO. Noise. nonlinear, R ON

Mixer. General Considerations V RF VLO. Noise. nonlinear, R ON 007/Nov/7 Mixer General Considerations LO S M F F LO L Noise ( a) nonlinearity (b) Figure 6.5 (a) Simple switch used as mixer (b) implementation of switch with an NMOS device. espect to espect to It is

More information

PROJECT ON MIXED SIGNAL VLSI

PROJECT ON MIXED SIGNAL VLSI PROJECT ON MXED SGNAL VLS Submitted by Vipul Patel TOPC: A GLBERT CELL MXER N CMOS AND BJT TECHNOLOGY 1 A Gilbert Cell Mixer in CMOS and BJT technology Vipul Patel Abstract This paper describes a doubly

More information

Low Flicker Noise Current-Folded Mixer

Low Flicker Noise Current-Folded Mixer Chapter 4 Low Flicker Noise Current-Folded Mixer The chapter presents a current-folded mixer achieving low 1/f noise for low power direct conversion receivers. Section 4.1 introduces the necessity of low

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

Type Ordering Code Package TDA Q67000-A5168 P-DIP-18-5

Type Ordering Code Package TDA Q67000-A5168 P-DIP-18-5 Video Modulator for FM-Audio TDA 5666-5 Preliminary Data Bipolar IC Features FM-audio modulator Sync level clamping of video input signal Controlling of peak white value Continuous adjustment of modulation

More information

Low voltage LNA, mixer and VCO 1GHz

Low voltage LNA, mixer and VCO 1GHz DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance low-power communication systems from 800-1200MHz. The low-noise preamplifier has a

More information

Low-Noise Amplifiers

Low-Noise Amplifiers 007/Oct 4, 31 1 General Considerations Noise Figure Low-Noise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1455A 5MHZ TO 1600MHZ HIGH LINEARITY DIRECT QUADRATURE MODULATOR LTC5598 DESCRIPTION

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1455A 5MHZ TO 1600MHZ HIGH LINEARITY DIRECT QUADRATURE MODULATOR LTC5598 DESCRIPTION LTC5598 DESCRIPTION Demonstration circuit 1455A is a high linearity direct quadrature modulator featuring the LTC5598. The LTC 5598 is a direct I/Q modulator designed for high performance wireless applications,

More information

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS FUNCTIONS OF A TRANSMITTER The basic functions of a transmitter are: a) up-conversion: move signal to desired RF carrier frequency.

More information

FA 8.1: A 115mW CMOS GPS Receiver

FA 8.1: A 115mW CMOS GPS Receiver FA 8.1: A 115mW CMOS GPS Receiver D. Shaeffer, A. Shahani, S.S. Mohan, H. Samavati, H. Rategh M. Hershenson, M. Xu, C.P. Yue, D. Eddleman, and T.H. Lee Stanford University OVERVIEW GPS Overview Architecture

More information

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell University of Washington, Seattle Feb. 8, 2017 International

More information

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver Hamid Rategh Center for Integrated Systems Stanford University OUTLINE Motivation Introduction

More information

Dual-Frequency GNSS Front-End ASIC Design

Dual-Frequency GNSS Front-End ASIC Design Dual-Frequency GNSS Front-End ASIC Design Ed. 01 15/06/11 In the last years Acorde has been involved in the design of ASIC prototypes for several EU-funded projects in the fields of FM-UWB communications

More information

433MHz front-end with the SA601 or SA620

433MHz front-end with the SA601 or SA620 433MHz front-end with the SA60 or SA620 AN9502 Author: Rob Bouwer ABSTRACT Although designed for GHz, the SA60 and SA620 can also be used in the 433MHz ISM band. The SA60 performs amplification of the

More information

Optimizing the Performance of Very Wideband Direct Conversion Receivers

Optimizing the Performance of Very Wideband Direct Conversion Receivers Optimizing the Performance of Very Wideband Direct Conversion Receivers Design Note 1027 John Myers, Michiel Kouwenhoven, James Wong, Vladimir Dvorkin Introduction Zero-IF receivers are not new; they have

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference Large dynamic range required Many receivers must be capable

More information

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 93 CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 4.1 INTRODUCTION Ultra Wide Band (UWB) system is capable of transmitting data over a wide spectrum of frequency bands with low power and high data

More information

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver)

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Arvin Shahani Stanford University Overview GPS Overview Frequency Conversion Frequency Synthesis Conclusion GPS Overview: Signal Structure

More information

Introduction to Surface Acoustic Wave (SAW) Devices

Introduction to Surface Acoustic Wave (SAW) Devices May 31, 2018 Introduction to Surface Acoustic Wave (SAW) Devices Part 7: Basics of RF Circuits Ken-ya Hashimoto Chiba University k.hashimoto@ieee.org http://www.te.chiba-u.jp/~ken Contents Noise Figure

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 46 CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 3.1 INTRODUCTION The Low Noise Amplifier (LNA) plays an important role in the receiver design. LNA serves as the first block in the RF receiver. It is a critical

More information

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz Ali M. Niknejad Robert G. Meyer Electronics Research Laboratory University of California at Berkeley Joo Leong Tham 1 Conexant

More information

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs.

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs. Frequency Synthesizers for RF Transceivers Domine Leenaerts Philips Research Labs. Purpose Overview of synthesizer architectures for RF transceivers Discuss the most challenging RF building blocks Technology

More information

A-1.8V Operation Switchable Direct-Conversion Receiver with sub-harmonic mixer

A-1.8V Operation Switchable Direct-Conversion Receiver with sub-harmonic mixer , pp.94-98 http://dx.doi.org/1.14257/astl.216.135.24 A-1.8V Operation Switchable Direct-Conversion Receiver with sub-harmonic mixer Mi-young Lee 1 1 Dept. of Electronic Eng., Hannam University, Ojeong

More information

W-CDMA Upconverter and PA Driver with Power Control

W-CDMA Upconverter and PA Driver with Power Control 19-2108; Rev 1; 8/03 EVALUATION KIT AVAILABLE W-CDMA Upconverter and PA Driver General Description The upconverter and PA driver IC is designed for emerging ARIB (Japan) and ETSI-UMTS (Europe) W-CDMA applications.

More information

Low Distortion Mixer AD831

Low Distortion Mixer AD831 Low Distortion Mixer AD831 FEATURES Doubly Balanced Mixer Low Distortion +24 dbm Third Order Intercept (IP3) +1 dbm 1 db Compression Point Low LO Drive Required: 1 dbm Bandwidth 5 MHz RF and LO Input Bandwidths

More information

T. Taris, H. Kraïmia, JB. Begueret, Y. Deval. Bordeaux, France. 12/15-16, 2011 Lauzanne, Switzerland

T. Taris, H. Kraïmia, JB. Begueret, Y. Deval. Bordeaux, France. 12/15-16, 2011 Lauzanne, Switzerland 1 MOSFET Modeling for Ultra Low-Power RF Design T. Taris, H. Kraïmia, JB. Begueret, Y. Deval Bordeaux, France 2 Context More services in Environment survey Energy management Process optimisation Aging

More information

MGM 3000X Q67000-A5179 P-DSO-20-1 (SMD) MGM 3000X Q67006-A5179 P-DSO-20-1 Tape & Reel (SMD)

MGM 3000X Q67000-A5179 P-DSO-20-1 (SMD) MGM 3000X Q67006-A5179 P-DSO-20-1 Tape & Reel (SMD) Video Modulator for FM/AM-Audio MGM 3000X Bipolar IC Features FM- and AM-audio modulator Audio carrier output for suppression of harmonics Sync level clamping of video input signal Controlling of peak

More information

SA620 Low voltage LNA, mixer and VCO 1GHz

SA620 Low voltage LNA, mixer and VCO 1GHz INTEGRATED CIRCUITS Low voltage LNA, mixer and VCO 1GHz Supersedes data of 1993 Dec 15 2004 Dec 14 DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance

More information

Self Calibrated Image Reject Mixer

Self Calibrated Image Reject Mixer Self Calibrated Image Reject Mixer Project name: Self Calibrated Image Reject Mixer. Design number: 6313. Design password: Student names: Mostafa Elmala. Area: mm X mm. Technology: Technology is SCN4ME_SUBM,

More information

EECS 290C: Advanced circuit design for wireless Class Final Project Due: Thu May/02/2019

EECS 290C: Advanced circuit design for wireless Class Final Project Due: Thu May/02/2019 EECS 290C: Advanced circuit design for wireless Class Final Project Due: Thu May/02/2019 Project: A fully integrated 2.4-2.5GHz Bluetooth receiver. The receiver has LNA, RF mixer, baseband complex filter,

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION 1 Bluetooth Receiver Ryan Rogel, Kevin Owen Abstract A Bluetooth radio front end is developed and each block is characterized. Bits are generated in MATLAB, GFSK endcoded, and used as the input to this

More information

A 5 GHz CMOS Low Power Down-conversion Mixer for Wireless LAN Applications

A 5 GHz CMOS Low Power Down-conversion Mixer for Wireless LAN Applications Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTES, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-, 2006 26 A 5 GHz COS Low Power Down-conversion ixer for Wireless LAN Applications

More information

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector Po-Han Peter Wang, Haowei Jiang, Li Gao, Pinar Sen, Young-Han Kim, Gabriel M. Rebeiz, Patrick P.

More information

Decoupling Technique for Reducing Sensitivity of Differential Pairs to Power-Supply-Induced Jitter

Decoupling Technique for Reducing Sensitivity of Differential Pairs to Power-Supply-Induced Jitter Decoupling Technique for Reducing Sensitivity of Differential Pairs to Power-Supply-Induced Jitter John McNeill Vladimir Zlatkovic David Bowler Lawrence M. DeVito ANALOG DEVICES Application Presentation

More information

A 1MHz-64MHz Active RC TI-LPF with Variable Gain for SDR Receiver in 65-nm CMOS

A 1MHz-64MHz Active RC TI-LPF with Variable Gain for SDR Receiver in 65-nm CMOS 2017 5th International Conference on Computer, Automation and Power Electronics (CAPE 2017) A 1MHz-64MHz Active RC TI-LPF with Variable Gain for SDR Receiver in 65-nm CMOS Chaoxuan Zhang1, a, *, Xunping

More information

350MHz, Ultra-Low-Noise Op Amps

350MHz, Ultra-Low-Noise Op Amps 9-442; Rev ; /95 EVALUATION KIT AVAILABLE 35MHz, Ultra-Low-Noise Op Amps General Description The / op amps combine high-speed performance with ultra-low-noise performance. The is compensated for closed-loop

More information

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility Integrated receivers for mid-band SKA Suzy Jackson Engineer, Australia Telescope National Facility SKADS FP6 Meeting Chateau de Limelette 4-6 November, 2009 Talk overview Mid band SKA receiver challenges

More information

NEW WIRELESS applications are emerging where

NEW WIRELESS applications are emerging where IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 4, APRIL 2004 709 A Multiply-by-3 Coupled-Ring Oscillator for Low-Power Frequency Synthesis Shwetabh Verma, Member, IEEE, Junfeng Xu, and Thomas H. Lee,

More information

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS FUNCTIONS OF A RADIO RECEIVER The main functions of a radio receiver are: 1. To intercept the RF signal by using the receiver antenna 2. Select the

More information

Radio Receiver Architectures and Analysis

Radio Receiver Architectures and Analysis Radio Receiver Architectures and Analysis Robert Wilson December 6, 01 Abstract This article discusses some common receiver architectures and analyzes some of the impairments that apply to each. 1 Contents

More information

Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators

Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 1, JANUARY 2003 141 Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators Yuping Toh, Member, IEEE, and John A. McNeill,

More information

800 MHz, 4:1 Analog Multiplexer ADV3221/ADV3222

800 MHz, 4:1 Analog Multiplexer ADV3221/ADV3222 8 MHz, : Analog Multiplexer ADV/ADV FEATURES Excellent ac performance db bandwidth 8 MHz ( mv p-p) 7 MHz ( V p-p) Slew rate: V/μs Low power: 7 mw, VS = ± V Excellent video performance MHz,. db gain flatness.%

More information

24 GHz ISM Band Integrated Transceiver Preliminary Technical Documentation MAIC

24 GHz ISM Band Integrated Transceiver Preliminary Technical Documentation MAIC FEATURES Millimeter-wave (mmw) integrated transceiver Direct up and down conversion architecture 24 GHz ISM band 23.5-25.5 GHz frequency of operation 1.5 Volt operation, low-power consumption LO Quadrature

More information

Efficiently simulating a direct-conversion I-Q modulator

Efficiently simulating a direct-conversion I-Q modulator Efficiently simulating a direct-conversion I-Q modulator Andy Howard Applications Engineer Agilent Eesof EDA Overview An I-Q or vector modulator is a commonly used integrated circuit in communication systems.

More information

i 1 i 2 LOmod 3 RF OUT 4 RF OUT 5 IF 6 IF 7 ENABLE 8 YYWW

i 1 i 2 LOmod 3 RF OUT 4 RF OUT 5 IF 6 IF 7 ENABLE 8 YYWW Vector Modulator/Mixer Technical Data HPMX-27 Features 5 MHz to 4 GHz Overall Operating Frequency Range 4-4 MHz LOmod range 2.7-5.5 V Operation (3 V, 25 ma) Differential High Impedance i, q Inputs On-Chip

More information

2.Circuits Design 2.1 Proposed balun LNA topology

2.Circuits Design 2.1 Proposed balun LNA topology 3rd International Conference on Multimedia Technology(ICMT 013) Design of 500MHz Wideband RF Front-end Zhengqing Liu, Zhiqun Li + Institute of RF- & OE-ICs, Southeast University, Nanjing, 10096; School

More information

14 MHz Single Side Band Receiver

14 MHz Single Side Band Receiver EPFL - LEG Laboratoires à options 8 ème semestre MHz Single Side Band Receiver. Objectives. The objective of this work is to calculate and adjust the key elements of an Upper Side Band Receiver in the

More information

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications Teerachot Siriburanon, Wei Deng, Ahmed Musa, Kenichi Okada, and Akira Matsuzawa Tokyo Institute

More information

PARAMETER CONDITIONS TYPICAL PERFORMANCE Operating Supply Voltage 3.1V to 3.5V Supply Current V CC = 3.3V, LO applied 152mA

PARAMETER CONDITIONS TYPICAL PERFORMANCE Operating Supply Voltage 3.1V to 3.5V Supply Current V CC = 3.3V, LO applied 152mA DESCRIPTION LT5578 Demonstration circuit 1545A-x is a high linearity upconverting mixer featuring the LT5578. The LT 5578 is a high performance upconverting mixer IC optimized for output frequencies in

More information

Exercise 1: RF Stage, Mixer, and IF Filter

Exercise 1: RF Stage, Mixer, and IF Filter SSB Reception Analog Communications Exercise 1: RF Stage, Mixer, and IF Filter EXERCISE OBJECTIVE DISCUSSION On the circuit board, you will set up the SSB transmitter to transmit a 1000 khz SSB signal

More information

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004 Designing a 960 MHz CMOS LNA and Mixer using ADS EE 5390 RFIC Design Michelle Montoya Alfredo Perez April 15, 2004 The University of Texas at El Paso Dr Tim S. Yao ABSTRACT Two circuits satisfying the

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in RTU1D-2 LAICS A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in 0.18µm CMOS L. Zhang, D. Karasiewicz, B. Ciftcioglu and H. Wu Laboratory for Advanced Integrated Circuits and Systems

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

Programmable analog compandor

Programmable analog compandor DESCRIPTION The NE572 is a dual-channel, high-performance gain control circuit in which either channel may be used for dynamic range compression or expansion. Each channel has a full-wave rectifier to

More information

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS 95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS Ekaterina Laskin, Mehdi Khanpour, Ricardo Aroca, Keith W. Tang, Patrice Garcia 1, Sorin P. Voinigescu University

More information

A Comparative Analysis between Homodyne and Heterodyne Receiver Architecture Md Sarwar Hossain * & Muhammad Sajjad Hussain **

A Comparative Analysis between Homodyne and Heterodyne Receiver Architecture Md Sarwar Hossain * & Muhammad Sajjad Hussain ** A Comparative Analysis between Homodyne and Heterodyne Receiver Architecture Manarat International University Studies, 2 (1): 152-157, December 2011 ISSN 1815-6754 @ Manarat International University, 2011

More information

System-on-Chip. Electro-thermal effects in radio ICs. Overview. Tri-band GSM radio receiver (front-end)

System-on-Chip. Electro-thermal effects in radio ICs. Overview. Tri-band GSM radio receiver (front-end) System-on-Chip Overview Pietro Andreani Dept. of Electrical and Information Technology Lund University, Sweden Material from Sensitivity Degradation in a Tri-Band GSM BiCMOS Direct-Conversion Receiver

More information

60 GHz Receiver (Rx) Waveguide Module

60 GHz Receiver (Rx) Waveguide Module The PEM is a highly integrated millimeter wave receiver that covers the GHz global unlicensed spectrum allocations packaged in a standard waveguide module. Receiver architecture is a double conversion,

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN60: Network Theory Broadband Circuit Design Fall 014 Lecture 13: Frequency Synthesizer Examples Sam Palermo Analog & Mixed-Signal Center Texas A&M University Agenda Frequency Synthesizer Examples Design

More information

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Marvin Onabajo Assistant Professor Analog and Mixed-Signal Integrated Circuits (AMSIC) Research Laboratory Dept.

More information

MAX2105CWI 0 C to +70 C 28 SO 90 /64, /65

MAX2105CWI 0 C to +70 C 28 SO 90 /64, /65 19-1256; Rev 2; 1/98 EVALUATION KIT MANUAL FOLWS DATA SHEET Direct-Conversion Tuner ICs for General Description The MAX212/MAX215 are low-cost direct-conversion tuner ICs designed for use in digital direct-broadcast

More information

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc GHz RX VRXWG Features Complete millimeter wave receiver WR-, UG-8/U flange Operates in the to GHz unlicensed band db noise figure Up to.8 GHz modulation bandwidth I/Q analog baseband interface Integrated

More information

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS 8 TO 35 V OPERATION 5.1 V REFERENCE TRIMMED TO ± 1 % 100 Hz TO 500 KHz OSCILLATOR RANGE SEPARATE OSCILLATOR SYNC TERMINAL ADJUSTABLE DEADTIME CONTROL INTERNAL

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter J. Park, F. Maloberti: "Fractional-N PLL with 90 Phase Shift Lock and Active Switched-Capacitor Loop Filter"; Proc. of the IEEE Custom Integrated Circuits Conference, CICC 2005, San Josè, 21 September

More information

A 3 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in 0.18µ CMOS

A 3 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in 0.18µ CMOS Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November -, 6 5 A 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in.8µ

More information

TANK+ VRLO TANK- GND MAX2104 CPG2 CPG1 RFOUT IDC+ XTLOUT TQFP. Maxim Integrated Products 1

TANK+ VRLO TANK- GND MAX2104 CPG2 CPG1 RFOUT IDC+ XTLOUT TQFP. Maxim Integrated Products 1 19-1431; Rev 4; 6/05 Direct-Conversion Tuner IC for General Description The low-cost direct-conversion tuner IC is designed for use in digital direct-broadcast satellite (DBS) television set-top box units.

More information

Advanced Regulating Pulse Width Modulators

Advanced Regulating Pulse Width Modulators Advanced Regulating Pulse Width Modulators FEATURES Complete PWM Power Control Circuitry Uncommitted Outputs for Single-ended or Push-pull Applications Low Standby Current 8mA Typical Interchangeable with

More information

FEATURES APPLICATIO S. LT GHz to 1.4GHz High Linearity Upconverting Mixer DESCRIPTIO TYPICAL APPLICATIO

FEATURES APPLICATIO S. LT GHz to 1.4GHz High Linearity Upconverting Mixer DESCRIPTIO TYPICAL APPLICATIO FEATURES Wide RF Frequency Range:.7GHz to.ghz 7.dBm Typical Input IP at GHz On-Chip RF Output Transformer On-Chip 5Ω Matched LO and RF Ports Single-Ended LO and RF Operation Integrated LO Buffer: 5dBm

More information

RF transmitter with Cartesian feedback

RF transmitter with Cartesian feedback UNIVERSITY OF MICHIGAN EECS 522 FINAL PROJECT: RF TRANSMITTER WITH CARTESIAN FEEDBACK 1 RF transmitter with Cartesian feedback Alexandra Holbel, Fu-Pang Hsu, and Chunyang Zhai, University of Michigan Abstract

More information

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45 INF440 Noise and Distortion Jørgen Andreas Michaelsen Spring 013 1 / 45 Outline Noise basics Component and system noise Distortion Spring 013 Noise and distortion / 45 Introduction We have already considered

More information

Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS

Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS A. Pizzarulli 1, G. Montagna 2, M. Pini 3, S. Salerno 4, N.Lofu 2 and G. Sensalari 1 (1) Fondazione Torino Wireless,

More information

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN 5.4: A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN David Su, Masoud Zargari, Patrick Yue, Shahriar Rabii, David Weber, Brian Kaczynski, Srenik Mehta, Kalwant Singh, Sunetra Mendis, and Bruce Wooley

More information

Flexible CMOS Frequency Translation Circuits

Flexible CMOS Frequency Translation Circuits Flexible CMOS Frequency Translation Circuits Eric Klumperink Zhiyu Ru, Michiel Soer, Bram Nauta 1 Outline Intro Analog Front Ends for SDR Interferer robust SDR Receiver analog part Interferer robust SDR

More information

A Wideband Precision Quadrature Phase Shifter

A Wideband Precision Quadrature Phase Shifter Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-06-28 A Wideband Precision Quadrature Phase Shifter Steve T. Noall Brigham Young University - Provo Follow this and additional

More information