mmw to THz ultra high data rate radio access technologies

Size: px
Start display at page:

Download "mmw to THz ultra high data rate radio access technologies"

Transcription

1 mmw to THz ultra high data rate radio access technologies Dr. Laurent HERAULT VP Europe, CEA LETI Pierre Vincent Head of RF IC design Lab, CEA LETI

2 Outline mmw communication use cases and standards mmw CEA LETI mmw communication challenges THz communication challenges Summary & conclusions 19th January

3 Wireless HD 19th January

4 WIGIG applications Kiosk, P2P Forecasted market: - 2 million chipsets by 2015 (ADI Research) - 1 billion chipsets by 2020 (NICTA) Wireless Display Cordless Computing WLAN Other potential applications: fine localization, chip to chip, board to board (connector replacement), etc 19th January

5 Redefining Home Networks with mmwave BS/CS/Digital Terrestrial Analog Signal Digitally Stored TV Program (Compressed) Digitally Stored TV Program (Compressed) Internet Access Fast synchronization HD Uncompressed Digital Stream Femto base station on the ceiling & Backbone Low power, short range 1m 1 to 10 Gbps link UC1 Multiple Data Streams Internet HDD Home Server / Router TV Monitor UC2 HD-DVD Player TV Monitor Digital Media Adaptor No penetration through walls (High Security) Ultra High-Speed Stream HD Video 2 to 6 Gbps Medium range 10m 19th January

6 Other Gbps wireless standards : Uncompressed Audio & Video streaming Up to 3Gbps over 30m In the unlicensed GHz band Commercial products by Amimon : Short range Photo & Video transfer Up to 560Mbps over 15m In the GHz band Antenna is replaced by a specific coupler (close proximity) (CameraJet, Wireless USB, Wireless 1394 ) Compressed 1080p Video transfer, Data transfer Up to 1024Mbps (480Mbps historical limit) In the GHz band 19th January

7 mmw Gbps wireless standards : Uncompressed Audio & Video streaming, multimedia kiosk, P2P link, multi Gbps WLAN Up to 6.8Gbps 4 60GHz Active discussions with WiFi Alliance Uncompressed Audio & Video streaming Up to 7.1Gbps 4 60GHz Future evolutions: 10 28Gbps 19th January

8 Technology LETI Need of versatile and reconfigurable chip architecture to satisfy multiple markets with a single packaging solution P2P, Wireless display, cordless computing & WLAN Internet access Multiple set of range and data rate 1 to 3m, 10m) Single carrier (priority) and OFDM (compatibility) 1 to 8 paths antenna array High volume & Low cost Single chip on advance 65 nm CMOS Bulk & SOI Low form factor 3D packaging (organic, silicon interposer) Low Power efficient RFFE & digital processing Digital compensation of RF impairments Leti s tester Verigy Address manufacturability Testability with standard industrial equipment at silicon and packaging level 19th January

9 Leti developments Two 60GHz developments have been implemented and tested. Frequency domain: Industrial partner STM Objectives: Demonstration of 3.8Gbps OFDM 60GHz wireless link at 3meters using standard CMOS 65nm RFFE Roller with industrial HTCC package Time domain: Industrial partner Nokia Objectives: Merge UWB power efficient architecture and high performances 65nm SOI High Resistivity substrate technology to provide 0,5m, 2.5Gbps very low power and cost solution Concept «Explore & Share» 19th January

10 60GHz WiHD industrial module 13.5*8.5mm² Industrial HTCC 3.8Gbps, 3 meters, single IPD glass antenna 3 Chips on CMOS standard 65nm : RFFE, PA et Digital BB. Transceiver chip 3.3x2.8mm² Flip chip CMOS PA 1.0X0.7mm² TX antenna ADC/DAC Digital BB CMOS 65 HTCC module (13.5x8.5mm²) RX antenna 19th January

11 60GHz RFFE architecture Sliding IF architecture TX mode: 474 mw + 700mW external CMOS PA RX mode: 530 mw State of the art: 3 ISSCC papers 2010 & 2011 PPA Mixer Baseband input I (50 ) 60GHz RF output (50 ) 36MHz External Ref. 60GHz RF input (50 ) 40GHz LO 40GHz LO LNA 20GHz 0 /90 and 40GHz PLL Mixer 20GHz LO GHz LO 5 th order I2C, Registers, Channel selection, Power management 3 rd order Baseband input Q (50 ) Baseband output Q (50 ) Baseband output I (50 ) 19th January

12 WiHD Digital Base Band processing WiHD specification need Digital compensation of RF impairments: IQ mismatch Time and frequency offset Common phase noise 12mm 26 mm CMOS 65nm 2.53GHz 9bit ADC & DAC Mux & Dmux 320MHz Digital clock HRP & LRP modem 19th January

13 60GHz Wireless demonstration Compliant with WiHD HRP2 modulation OFDM 16QAM 3.8Gbps 4 channels, Single Antenna, Up to 3m TX RX 19th January

14 Time Domain 60GHz transceiver IR UWB at 60GHz will offer new uses cases for device to device communications 2.5Gbps (RFFE +DBB): TX 30mW, RX 70mW Range 0.5m meter single antenna Scalable data rate from 100Mbps to 2.5Gbps Integrated 4dBi 60GHz Antenna (thanks to SOI 65nm HR process) Very low cost (standard package) 2mm x 3.5mm Pulse Generator PA TX 60GHz UWB TX Data input Signal shaping RF output Re-generation RF input LNA Synchronization managment Detection, analogue base band, digitization RX Data output RX antenna 60GHz UWB RX TX antenna 19th January

15 mmw challenge: long range backhauling Explore mmw spectrum for larger bandwith for backhauling Mobile data explosion Video becoming major content Target: > 1Gbps data Range from 250 to 1000m BW from 500Mhz to 1GHz Carrier from 30GHz to 90GHz 19th January

16 Other challenges: 70 80GHz outdoor Private networks Enterprise LAN extensions Fiber extensions Fiber backup Diversity Connections 19th January

17 mmw long range communications challenges Spectrum allocation mmw outdoor channel models Antennas: directionality Increasing antenna and RF efficiencies High gain power amplifier Digital BB CMOS implementation Low power, area & cost effective solutions 19th January

18 Terahertz Transition region between Electronics and Photonics: λ = 1mm 0,1mm Measurement instrumentation is scarce and expensive THz communications: spectrum not yet allocated above 0,3THz THz electronics limited by the device performance (Ft, Fmax) IEEE WPAN Terahertz Interest Group (started from 2008) 19th January

19 THz chip to chip communication Target: replace high speed wired links that requires complex networking in a limited area. Terahertz advantages: wide bandwidth allows to provide tens of Gb/s data rate for chip to chip or intra chip communication Smaller antenna size reducing die area and cost 19th January

20 To conclude mmw communications require high performance components implementing radio access technologies: CEA LETI is developing prototypes. Some key challenges Spectrum allocation Propagation Antennas design: directionality, beamforming RFFE, including high gain PA Digital BB Energy efficiency Versatile and reconfigurable ICs covering several standards CMOS implementation (CMOS bulk or SOI (65nm, 28nm)) Area & cost effective solutions 19th January

21 Publications 2 papers at ISSCC 10 A 17.5 to 20.94GHz and 35 to 41.88GHz PLL in 65nm CMOS for Wireless HD applications. A 53 68GHz 18dBm Power Amplifier with 8 combined ways in standard 65nm CMOS. ISSCC 11 A 65nm CMOS fully integrated transceiver module for 60GHz Wireless HD applications Journal JSSC 10 A 60GHz Power Amplifier with 14.5dBm Saturation Power and 25% Peak PAE in CMOS 65nm SOI Journal JSSC 12 accepted A 65nm CMOS fully integrated transceiver module for 60GHz Wireless HD applications EuCAP 10 European Conference on Antennas and Propagation 60 GHz Antennas in HTCC and Glass Technology SIRF 2011 A 60 GHz UWB impulse radio transmitter with integrated antenna in CMOS65nm SOI technology IEEE CNCC 2010 (Consumer Communications and Networking Conference ) A wirelesshd Baseband Development under RF and Implementation Constraints, 19th January

22 Thanks for your attention

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion November 11, 11, 2015 2015 1 mm-wave advantage Why is mm-wave interesting now? Available Spectrum 7 GHz of virtually

More information

Millimeter-wave wireless R&D status in Panasonic and future research

Millimeter-wave wireless R&D status in Panasonic and future research Millimeter-wave wireless R&D status in Panasonic and future research 4th Japan-EU Symposium 19 th January, 2012 Michiaki MATSUO Kazuaki TAKAHASHI Panasonic corporation Outline Panasonic s R&D activities

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [60GHz-band Gigabit Transceivers and Their Applications ] Date Submitted: [12 January 2004] Source: [Kenichi

More information

Research Overview. Payam Heydari Nanoscale Communication IC Lab University of California, Irvine, CA

Research Overview. Payam Heydari Nanoscale Communication IC Lab University of California, Irvine, CA Research Overview Payam Heydari Nanoscale Communication IC Lab University of California, Irvine, CA NCIC Lab (Sub)-MMW measurement facility for frequencies up to 120GHz Students 11 Ph.D. students and 2

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

A 60GHz Transceiver RF Front-End

A 60GHz Transceiver RF Front-End TAMU ECEN625 FINAL PROJECT REPORT 1 A 60GHz Transceiver RF Front-End Xiangyong Zhou, UIN 421002457, Qiaochu Yang, UIN 221007758, Abstract This final report presents a 60GHz two-step conversion heterodyne

More information

High Speed E-Band Backhaul: Applications and Challenges

High Speed E-Band Backhaul: Applications and Challenges High Speed E-Band Backhaul: Applications and Challenges Xiaojing Huang Principal Research Scientist and Communications Team Leader CSIRO, Australia ICC2014 Sydney Australia Page 2 Backhaul Challenge High

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Feasibility test of THz channel for high-speed wireless link Date Submitted: 12 Nov 2013 Source: Jae-Young Kim, Ho-Jin

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

How to tackle 5G challenges Dr. Dominique Noguet Head of Communication and Security Technologies Dpt CEA-LETI

How to tackle 5G challenges Dr. Dominique Noguet Head of Communication and Security Technologies Dpt CEA-LETI How to tackle 5G challenges Dr. Dominique Noguet Head of Communication and Security Technologies Dpt CEA-LETI Dr. Emilio Calvanese Strinati Smart Devices & Telecommunications Strategy Program Director

More information

Fiber-fed wireless systems based on remote up-conversion techniques

Fiber-fed wireless systems based on remote up-conversion techniques 2008 Radio and Wireless Symposium incorporating WAMICON 22 24 January 2008, Orlando, FL. Fiber-fed wireless systems based on remote up-conversion techniques Jae-Young Kim and Woo-Young Choi Dept. of Electrical

More information

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson Design Considerations for 5G mm-wave Receivers Stefan Andersson, Lars Sundström, and Sven Mattisson Outline Introduction to 5G @ mm-waves mm-wave on-chip frequency generation mm-wave analog front-end design

More information

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell University of Washington, Seattle Feb. 8, 2017 International

More information

Power Reduction in RF

Power Reduction in RF Power Reduction in RF SoC Architecture using MEMS Eric Mercier 1 RF domain overview Technologies Piezoelectric materials Acoustic systems Ferroelectric materials Meta materials Magnetic materials RF MEMS

More information

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers 2017.07.03 Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers Akira Matsuzawa and Kenichi Okada Tokyo Institute of Technology Contents 1 Demand for high speed data transfer Developed high

More information

RF and SOI Technologies for 5G

RF and SOI Technologies for 5G RF and SOI Technologies for 5G Kirk Ouellette VP, World Wide Strategy Development and Strategic Marketing RFSOI conference, SOI Consortium, Shanghai September 19, 2018 Agenda 2 Introduction 5G Disruption

More information

Trends in Future RF Applications

Trends in Future RF Applications Trends in Future RF Applications Neil C. Bird Philips Research Europe May 15 th, 2006 Outline Technical Trends Next Generation Wireless Communication in the Home Conclusions 2 Scope of RF Future Mobile

More information

COSMOS Millimeter Wave June Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia

COSMOS Millimeter Wave June Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia COSMOS Millimeter Wave June 1 2018 Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia srangan@nyu.edu, hk2532@columbia.edu Millimeter Wave Communications Vast untapped spectrum

More information

3. IEEE WPAN

3. IEEE WPAN LITERATURE SURVEY 1. A Single-Chip 2.4GHz Low-Power CMOS Receiver and Transmitter for WPAN Applications In this paper A single chip 2.4GHz low power CMOS receiver and transmitter for WPAN applications

More information

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN 5.4: A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN David Su, Masoud Zargari, Patrick Yue, Shahriar Rabii, David Weber, Brian Kaczynski, Srenik Mehta, Kalwant Singh, Sunetra Mendis, and Bruce Wooley

More information

5G mmwave Radio design for Mobile. Kamal Sahota Vice President Engineering Qualcomm Inc.

5G mmwave Radio design for Mobile. Kamal Sahota Vice President Engineering Qualcomm Inc. 5G mmwave Radio design for Mobile Kamal Sahota Vice President Engineering Qualcomm Inc. Agenda 5G RF standard 5G mm Wave bands WAN Transceiver complexity over the last 5 years. Process technology requirements

More information

Pulse-Based Ultra-Wideband Transmitters for Digital Communication

Pulse-Based Ultra-Wideband Transmitters for Digital Communication Pulse-Based Ultra-Wideband Transmitters for Digital Communication Ph.D. Thesis Defense David Wentzloff Thesis Committee: Prof. Anantha Chandrakasan (Advisor) Prof. Joel Dawson Prof. Charles Sodini Ultra-Wideband

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS

A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS Seitaro Kawai, Ryo Minami, Yuki Tsukui, Yasuaki Takeuchi, Hiroki Asada, Ahmed Musa, Rui Murakami, Takahiro Sato, Qinghong

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Application of PC Vias to Configurable RF Circuits

Application of PC Vias to Configurable RF Circuits Application of PC Vias to Configurable RF Circuits March 24, 2008 Prof. Jeyanandh Paramesh Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, PA 15213 Ultimate Goal:

More information

Integrated RoF Network Concept for Heterogeneous / Multi-Access 5G Wireless System

Integrated RoF Network Concept for Heterogeneous / Multi-Access 5G Wireless System Integrated RoF Network Concept for Heterogeneous / Multi-Access 5G Wireless System Yasushi Yamao AWCC The University of Electro-Communications LABORATORY Goal Outline Create concept of 5G smart backhaul

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley WCA Futures SIG Outline THz Overview Potential THz Applications THz Transceivers in Silicon? Application

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N doc.: IEEE 802.15-03101r0 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Submission Title: [Channel ized, Optimum Pulse Shaped UWB PHY Proposal] Date Submitted:

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [MSK-based 60GHz PHY Proposal] Date Submitted: [7 May, 2007] Source: [Troy Beukema, Brian Floyd, Brian Gaucher,

More information

A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding A 64-QAM 6GHz CMOS Transceiver with 4-Channel Bonding Kenichi Okada, Ryo Minami, Yuuki Tsukui, Seitaro Kawai, Yuuki Seo, Shinji Sato, Satoshi Kondo, Tomohiro Ueno, Yasuaki Takeuchi, Tatsuya Yamaguchi,

More information

L homme connecté URSI 26 Mars 2014

L homme connecté URSI 26 Mars 2014 Towards the integration of millimeter wave access points and backhauls in 2020 5G heterogeneous networks: stakes, challenges, and key enabling technologies L homme connecté URSI 26 Mars 2014 www.cea.fr

More information

MULTI-GIGABIT WIRELESS DATA TRANSFER USING THE 60 GHZ BAND

MULTI-GIGABIT WIRELESS DATA TRANSFER USING THE 60 GHZ BAND Wireless readout MULTI-GIGABIT WIRELESS DATA TRANSFER USING THE 60 GHZ BAND Hans Kris)an Soltveit On behave of the WADAPT Working Group Wireless Allowing Data And Power Transmission FCC- Week Rome 14-04-

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [SSA UWB Implementation: an approach for global harmonization and compromise in IEEE 802.15.3a WPAN]

More information

Challenges in Designing CMOS Wireless System-on-a-chip

Challenges in Designing CMOS Wireless System-on-a-chip Challenges in Designing CMOS Wireless System-on-a-chip David Su Atheros Communications Santa Clara, California IEEE Fort Collins, March 2008 Introduction Outline Analog/RF: CMOS Transceiver Building Blocks

More information

From Antenna to Bits:

From Antenna to Bits: From Antenna to Bits: Wireless System Design with MATLAB and Simulink Cynthia Cudicini Application Engineering Manager MathWorks cynthia.cudicini@mathworks.fr 1 Innovations in the World of Wireless Everything

More information

Research on Flexible radios. Dr. Krishnamurthy Soumyanath Intel Fellow Director, Communications Circuits Lab

Research on Flexible radios. Dr. Krishnamurthy Soumyanath Intel Fellow Director, Communications Circuits Lab Research on Flexible radios Dr. Krishnamurthy Soumyanath Intel Fellow Director, Communications Circuits Lab Tomorrow s needs Today 2008-10 2010+ WLAN WLAN WWAN WPAN WLAN WWAN WWAN Discrete Radios One/multi

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS

LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS Introduction WPAN (Wireless Personal Area Network) transceivers are being designed to operate in the 60 GHz frequency band and will mainly

More information

5G: implementation challenges and solutions

5G: implementation challenges and solutions 5G: implementation challenges and solutions University of Bristol / Cambridge Wireless 18 th September 2018 Matthew Baker Nokia Bell-Labs Head of Radio Physical Layer & Coexistence Standardisation Higher

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

60 GHz Receiver (Rx) Waveguide Module

60 GHz Receiver (Rx) Waveguide Module The PEM is a highly integrated millimeter wave receiver that covers the GHz global unlicensed spectrum allocations packaged in a standard waveguide module. Receiver architecture is a double conversion,

More information

November 2010 doc.: IEEE thz

November 2010 doc.: IEEE thz Slide 1 Feasibility Test of Terahertz Wireless Communications at 300 GHz H.-J. Song 1, K. Ajito 1, T. Nagatsuma 2 and N. Kukutsu 1 1 NTT Microsystem Integration Laboratories. 2 Osaka University Slide 2

More information

Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998

Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998 2008/Sep/17 1 Text Book: Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998 References: (MSR) Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2/e, Cambridge University Press,

More information

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP)

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Hyemin Yang 1, Jongmoon Kim 2, Franklin Bien 3, and Jongsoo Lee 1a) 1 School of Information and Communications,

More information

THz communications: general issues THz devices for coms (Tx and Rx) Some Reported com links Some conclusions

THz communications: general issues THz devices for coms (Tx and Rx) Some Reported com links Some conclusions THz communications for next generation HD rate wireless links TENXSYS Talk, 2015, June 17th G. Ducournau, M. Zaknoune, P. Szriftgiser, Jean-François Lampin (Tx and Rx) (Tx and Rx) 2 3 THz coms: general

More information

24 GHz ISM Band Integrated Transceiver Preliminary Technical Documentation MAIC

24 GHz ISM Band Integrated Transceiver Preliminary Technical Documentation MAIC FEATURES Millimeter-wave (mmw) integrated transceiver Direct up and down conversion architecture 24 GHz ISM band 23.5-25.5 GHz frequency of operation 1.5 Volt operation, low-power consumption LO Quadrature

More information

Signal Processing in Future Radio Systems

Signal Processing in Future Radio Systems Signal Processing in Future Radio Systems Bob Brodersen Dept. of EECS Univ. of Calif. Berkeley http://bwrc.eecs.berkeley.edu Who really does the work I would like to acknowledge my fellow researchers 60

More information

Transmitting Multiple HD Video Streams over UWB Links

Transmitting Multiple HD Video Streams over UWB Links MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Transmitting Multiple HD Video Streams over UWB Links C. Duan, G. Pekhteryev, J. Fang, Y-P Nakache, J. Zhang, K. Tajima, Y. Nishioka, H. Hirai

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Title: [General Atomics Call For Proposals Presentation] Date Submitted: [4 ] Source: Naiel Askar, Susan Lin, General Atomics-

More information

先進情報科学特別講義 Ⅱ,Ⅳ 高スループット無線通信システムに関する研究動向. Research Trends on High Throughput Wireless Communication Systems

先進情報科学特別講義 Ⅱ,Ⅳ 高スループット無線通信システムに関する研究動向. Research Trends on High Throughput Wireless Communication Systems 先進情報科学特別講義 Ⅱ,Ⅳ 高スループット無線通信システムに関する研究動向 Research Trends on High Throughput Wireless Communication Systems 1 Tran Thi Hong Computing Architecture Lab Room: B405 LECTURE INFORMATION Lecturer Assistant Prof.

More information

CPCC. University of California, Irvine, CA 92697

CPCC. University of California, Irvine, CA 92697 Circuit and Systems Payam Heydari CPCC Department t of EECS University of California, Irvine, CA 92697 Possible Research Collaboration Exploring unique opportunity with mutual benefit Strong collaborative

More information

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board Page 1 of 16 ========================================================================================= TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board =========================================================================================

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

EECS 142/242A Course Overview. Prof. Ali M. Niknejad University of California, Berkeley

EECS 142/242A Course Overview. Prof. Ali M. Niknejad University of California, Berkeley EECS 142/242A Course Overview Prof. Ali M. Niknejad University of California, Berkeley Course Logistics Instructor: Ali Niknejad (niknejad@berkeley.edu) Graduate Student Instructors: Nai-Chung Kuo and

More information

60 GHz TECHNOLOGY FOR GBPS WLAN AND WPAN

60 GHz TECHNOLOGY FOR GBPS WLAN AND WPAN 60 GHz TECHNOLOGY FOR GBPS WLAN AND WPAN FROM THEORY TO PRACTICE Su-Khiong (SK) Yong Marvell Semiconductor, USA Pengfei Xia Broadcom Corporation, USA Alberto Valdes-Garcia IBM, USA A John Wiley and Sons,

More information

Millimeter Waves. Millimeter Waves. mm- Wave. 1 GHz 10 GHz 100 GHz 1 THz 10 THz 100 THz 1PHz. Infrared Light. Far IR. THz. Microwave.

Millimeter Waves. Millimeter Waves. mm- Wave. 1 GHz 10 GHz 100 GHz 1 THz 10 THz 100 THz 1PHz. Infrared Light. Far IR. THz. Microwave. Millimeter Waves Millimeter Waves 1 GHz 10 GHz 100 GHz 1 THz 10 THz 100 THz 1PHz 30 GHz 300 GHz Frequency Wavelength Microwave mm- Wave THz Far IR Infrared Light UV 10 cm 1 cm 1 mm 100 µm 10 µm 1 µm Page

More information

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc GHz RX VRXWG Features Complete millimeter wave receiver WR-, UG-8/U flange Operates in the to GHz unlicensed band db noise figure Up to.8 GHz modulation bandwidth I/Q analog baseband interface Integrated

More information

Doodle Labs WiFi Frequency Shifter xm-915

Doodle Labs WiFi Frequency Shifter xm-915 Doodle Labs WiFi Frequency Shifter xm-915 Frequency Shifters - Overview Doodle Labs family of Wi-Fi Frequency Shifters (WiFi-FES) provide flexibility to system integrators looking to deploy their existing

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Title: [The Scalability of UWB PHY Proposals] Date Submitted: [July 13, 2004] Source: [Matthew Welborn] Company [Freescale

More information

Wireless Networking: Trends and Issues

Wireless Networking: Trends and Issues Wireless Networking: Trends and Issues Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu A talk given in CS 131: Computer Science I Class October 10, 2008 These slides

More information

2002 IEEE International Solid-State Circuits Conference 2002 IEEE

2002 IEEE International Solid-State Circuits Conference 2002 IEEE Outline 802.11a Overview Medium Access Control Design Baseband Transmitter Design Baseband Receiver Design Chip Details What is 802.11a? IEEE standard approved in September, 1999 12 20MHz channels at 5.15-5.35

More information

Experimental mmwave 5G Cellular System

Experimental mmwave 5G Cellular System Experimental mmwave 5G Cellular System Mark Cudak Principal Research Specialist Tokyo Bay Summit, 23 rd of July 2015 1 Nokia Solutions and Networks 2015 Tokyo Bay Summit 2015 Mark Cudak Collaboration partnership

More information

Radio Frequency Integrated Circuits Prof. Cameron Charles

Radio Frequency Integrated Circuits Prof. Cameron Charles Radio Frequency Integrated Circuits Prof. Cameron Charles Overview Introduction to RFICs Utah RFIC Lab Research Projects Low-power radios for Wireless Sensing Ultra-Wideband radios for Bio-telemetry Cameron

More information

A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues

A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues Rui Wu, Yuuki Tsukui, Ryo Minami, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of

More information

Aerospace Structure Health Monitoring using Wireless Sensors Network

Aerospace Structure Health Monitoring using Wireless Sensors Network Aerospace Structure Health Monitoring using Wireless Sensors Network Daniela DRAGOMIRESCU, INSA Toulouse 1 Toulouse Aerospace City 2 Outline Objectives and specifications for greener and safer aircrafts

More information

Proposing. An Interpolated Pipeline ADC

Proposing. An Interpolated Pipeline ADC Proposing An Interpolated Pipeline ADC Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Lab. Background 38GHz long range mm-wave system Role of long range mm-wave Current Optical

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information

An Integrated 60GHz Low Power Two- Chip Wireless System Based on IEEE802.11ad Standard

An Integrated 60GHz Low Power Two- Chip Wireless System Based on IEEE802.11ad Standard An Integrated 60GHz Low Power Two- Chip Wireless System Based on IEEE802.11ad Standard 1 Kaixue Ma; 1 Kiat Seng Yeo; Francois Chin 2 Xiaoming Peng 2 ; Xianming Qing 2 ; Zhining Chen 2 ; etc. 1 Nanyang

More information

Measurement Setups for Millimeter-Wave Antennas at 60/140/270 GHz Bands

Measurement Setups for Millimeter-Wave Antennas at 60/140/270 GHz Bands Measurement Setups for Millimeter-Wave Antennas at 60/140/270 GHz Bands Xianming QING *1 Zhi Ning CHEN *1,2 1 Institute for Infocomm Research (I 2 R), Singapore 2 National University of Singapore (NUS)

More information

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC Hussein Fakhoury and Hervé Petit C²S Research Group Presentation Outline Introduction Basic concepts

More information

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone 26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone William W. Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, KeithOnodera, SteveJen, Susan Luschas, Justin Hwang, SuniMendis, DavidSu, BruceWooley

More information

5GCHAMPION. mmw Hotspot Trial, Results and Lesson Learned. Dr. Giuseppe Destino, University of Oulu - CWC Dr. Gosan Noh, ETRI

5GCHAMPION. mmw Hotspot Trial, Results and Lesson Learned. Dr. Giuseppe Destino, University of Oulu - CWC Dr. Gosan Noh, ETRI 5GCHAMPION mmw Hotspot Trial, Results and Lesson Learned Dr. Giuseppe Destino, University of Oulu - CWC Dr. Gosan Noh, ETRI EU-KR Symposium on 5G From the 5G challenge to 5GCHAMPION Trials at Winter Olympic

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Jin Bains Vice President R&D, RF Products, National Instruments 1 We live in a Hyper Connected World Data rate

More information

Nanoelectronics for Communication - A wider perspective -Use of Impulse based systems. Based on input from Lars Ohlsson och Mats Ärlelid

Nanoelectronics for Communication - A wider perspective -Use of Impulse based systems. Based on input from Lars Ohlsson och Mats Ärlelid Nanoelectronics for Communication - A wider perspective -Use of Impulse based systems Based on input from Lars Ohlsson och Mats Ärlelid Motivation HDMI Up to 10.2 Gbps Wifi 802.11n Up to 600 Mbps USB 3.0

More information

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 Full Duplex Radios Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 It is generally not possible for radios to receive and transmit on the same frequency band because of the interference that

More information

Broadband Communications at mmwave Frequencies: An MSK system for Multi-Gb/s Wireless Communications at 60GHz. IBM Research

Broadband Communications at mmwave Frequencies: An MSK system for Multi-Gb/s Wireless Communications at 60GHz. IBM Research Broadband Communications at mmwave Frequencies: An MSK system for Multi-Gb/s Wireless Communications at 60GHz A. Valdes-Garcia, T. Beukema, S. Reynolds, Y. Katayama (TRL), B. Gaucher IBM Thomas J. Watson

More information

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS FUNCTIONS OF A TRANSMITTER The basic functions of a transmitter are: a) up-conversion: move signal to desired RF carrier frequency.

More information

The Evolution of WiFi

The Evolution of WiFi The Verification Experts Air Expert Series The Evolution of WiFi By Eve Danel Senior Product Manager, WiFi Products August 2016 VeEX Inc. 2827 Lakeview Court, Fremont, CA 94538 USA Tel: +1.510.651.0500

More information

Korea (Republic of) TECHNICAL FEASIBILITY OF IMT IN THE BANDS ABOVE 6 GHz

Korea (Republic of) TECHNICAL FEASIBILITY OF IMT IN THE BANDS ABOVE 6 GHz Radiocommunication Study Groups Received: 23 January 2013 Document 23 January 2013 English only SPECTRUM ASPECTS TECHNOLOGY ASPECTS GENERAL ASPECTS Korea (Republic of) TECHNICAL FEASIBILITY OF IMT IN THE

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

Future Radio Technologies Towards 5G: Research Opportunities at DCE + RF education at University of Oulu

Future Radio Technologies Towards 5G: Research Opportunities at DCE + RF education at University of Oulu Future Radio Technologies Towards 5G: Research Opportunities at DCE + RF education at University of Oulu Aarno Pärssinen Professor, Radio Engineering WIRELESS IN SMART PHONE iphone 6 Plus Teardown (https://www.ifixit.com/teardown/iphone+6+plus+teardown/29206)

More information

Radar System Design Considerations -- System Modeling Findings (MOS-AK Conference Hangzhou 2017)

Radar System Design Considerations -- System Modeling Findings (MOS-AK Conference Hangzhou 2017) Radar System Design Considerations -- System Modeling Findings (MOS-AK Conference Hangzhou 2017) Silicon Radar GmbH Im Technologiepark 1 15236 Frankfurt (Oder) Germany Outline 1 Introduction to Short Distance

More information

FD-SOI FOR RF IC DESIGN. SITRI LETI Workshop Mercier Eric 08 september 2016

FD-SOI FOR RF IC DESIGN. SITRI LETI Workshop Mercier Eric 08 september 2016 FD-SOI FOR RF IC DESIGN SITRI LETI Workshop Mercier Eric 08 september 2016 UTBB 28 nm FD-SOI : RF DIRECT BENEFITS (1/2) 3 back-end options available Routing possible on the AluCap level no restriction

More information

Features. The Hmc6001LP711E is ideal for: OBSOLETE

Features. The Hmc6001LP711E is ideal for: OBSOLETE Millimeterwave Receiver Typical Applications Features The Hmc61LP711E is ideal for: WiGig Single Carrier Modulations 6 GHz ISM Band Data Transmitter Multi-Gbps Data Communications High Definition Video

More information

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers ADI 2006 RF Seminar Chapter II RF/IF Components and Specifications for Receivers 1 RF/IF Components and Specifications for Receivers Fixed Gain and Variable Gain Amplifiers IQ Demodulators Analog-to-Digital

More information

Millimeter Wave: the future of commercial wireless systems

Millimeter Wave: the future of commercial wireless systems Sildes are Robert W. Heath Jr. 2016 Millimeter Wave: the future of commercial wireless systems Professor Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

From 1 Tbs per Carrier to 1 THz

From 1 Tbs per Carrier to 1 THz From 1 Tbs per Carrier to 1 THz Sorin P. Voinigescu ECE Department, University of Toronto European Microwave Conference 1 Outline Introduction Examples of Tbs Wireless and Photonics Systems Segmented Power

More information

Project in Wireless Communication Lecture 7: Software Defined Radio

Project in Wireless Communication Lecture 7: Software Defined Radio Project in Wireless Communication Lecture 7: Software Defined Radio FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Tufvesson, EITN21, PWC lecture 7, Nov. 2018 1 Project overview, part one: the

More information

22. VLSI in Communications

22. VLSI in Communications 22. VLSI in Communications State-of-the-art RF Design, Communications and DSP Algorithms Design VLSI Design Isolated goals results in: - higher implementation costs - long transition time between system

More information

SiGe PLL design at 28 GHz

SiGe PLL design at 28 GHz SiGe PLL design at 28 GHz 2015-09-23 Tobias Tired Electrical and Information Technology Lund University May 14, 2012 Waqas Ahmad (Lund University) Presentation outline E-band wireless backhaul Beam forming

More information

Updates on THz Amplifiers and Transceiver Architecture

Updates on THz Amplifiers and Transceiver Architecture Updates on THz Amplifiers and Transceiver Architecture Sanggeun Jeon, Young-Chai Ko, Moonil Kim, Jae-Sung Rieh, Jun Heo, Sangheon Pack, and Chulhee Kang School of Electrical Engineering Korea University

More information

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs Murat Demirkan* Solid-State Circuits Research Laboratory University of California, Davis *Now with Agilent Technologies, Santa Clara, CA 03/20/2008

More information

60 GHz TX. Waveguide Transmitter Module. Data Sheet Features V60TXWG3. Applications. VubIQ, Inc

60 GHz TX. Waveguide Transmitter Module. Data Sheet Features V60TXWG3. Applications. VubIQ, Inc Features Complete millimeter wave transmitter WR-, UG-8/U flange Operates in the to GHz unlicensed band dbm typical output power Up to.8 GHz modulation bandwidth I/Q analog baseband interface On chip synthesizer

More information

Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS

Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS LETTER IEICE Electronics Express, Vol.15, No.7, 1 10 Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS Korkut Kaan Tokgoz a), Seitaro Kawai, Kenichi Okada, and Akira Matsuzawa Department

More information

5G.The Road Ahead. Thomas Cameron, PhD Analog Devices, Inc. All rights reserved.

5G.The Road Ahead. Thomas Cameron, PhD Analog Devices, Inc. All rights reserved. 5G The Road Ahead Thomas Cameron, PhD 2017 Analog Devices, Inc All rights reserved CONNECTIVITY noun: the state or extent of being connected or interconnected 2 2017 Analog Devices, Inc All rights reserved

More information